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Statistical model

”All models are wrong, but some are useful” - George E.P. Box

Definition (Statistical model)

A statistical model is a pair of sets (X ,M) with X is the set
of possible observations (i.e. the sample space), and M is a set
of probability distributions on X .

X is generally implicitly defined via M

Definition (Parametric model)

A parametric model MΘ = {Pθ : θ ∈ Θ} is a set of probability
distributions Pθ described by a parameter θ, such that the
dimension of Θ is finite.

MΘ can also be seen as the image of Θ for the map θ 7→ Pθ.
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Statistical model

Example 1 - Binomial random variable
Let X be a binomial random variable B(r , θ). X = {1, 2, ..., r},
Θ = [0, 1] and for all θ ∈ Θ, Pθ is defined as:

Pθ(X = i) =

(
r

i

)
θi (1− θ)r−i for all i = 1, 2, ..., r .

The set of Pθ for all θ ∈ Θ is a binomial random variable
model, which is a subset of the probability simplex ∆r .
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Statistical model

Example 2 - Multivariate Normal random variable
Let X ∈ X = Rm be a multivariate normal random variable
N(µ,Σ). Θ = Rm × PDm, where PDm is the cone of
symmetric m ×m positive definite matrices. For all
θ = (µ,Σ) ∈ Θ, the density fθ of X is defined as:

fθ(x) =
1

(2π)m/2|Σ|1/2
exp

(
− 1

2
(x − µ)′Σ−1(x − µ)

)
The set of probability distributions Pθ generated by the
densities fθ for all θ ∈ Θ is a model of non-degenerate
multivariate normal random variable.
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Statistical model

Example 3 - A non-parametric model
Let MΘ = {Pθ : θ ∈ Θ} be a model, such that Pθ is generated
by the density θ and.

Θ = {θ ∈ C 0(R) : θ is a density,

∫
R
xθ(x)dx = 0}

MΘ is a non-parametric model, since the dimension of the
parameter space Θ is infinite.
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Identifiability

Definition (Identifiability)

A parametric model is said to be identifiable if the map θ 7→ Pθ
which defines it is one-to-one (i.e. bijective).

Examples 1 and 2 are both identifiable.
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Identifiability

Example - A non-identifiable model
Let X ∈ Rm be a multivariate normal random variable
N(µ1 + µ2,Σ). Θ = Rm × Rm × PDm. For all
θ = (µ1, µ2,Σ) ∈ Θ, the density fθ of X is defined as:

fθ(x) =
1

(2π)m/2|Σ|1/2
exp

(
−1

2
(x−(µ1+µ2))′Σ−1(x−(µ1+µ2))

)
The model defined by these densities is not identifiable.
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Data

In statistics, we assume that data x is a realization of a random
variable X with probability distribution P. In the rest of the
talk, we’ll refer to both the realization and the random variable
as data, and we’ll note it X (i.e. P(X ) = P(X = x)).

Ideally, P ∈M meaning that our data is generated by a
distribution in our model, but that’s not always the case.
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Data

The most common way to generate data is the case of
independent and identically distributed data.

Definition (Independent and identically distributed)

Let X = (X1,X2, ...,Xn) such that Xi ∈ S for all i = 1, 2, ..., n,
X = Sn. The data X is independent and identically distributed
(iid) if X1,X2, ...,Xn are mutually independent and all have the
same distribution P, which we call marginal distribution.

Then the distribution of the data is defined by the marginal
distribution.

P(X1,X2, ...,Xn) = Πn
i=1P(Xi )
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Sufficience

Definition (Statistic)

A statistic is a function T from X to another space S .

Definition (Sufficient statistic)

A statistic is sufficient for θ if the data X ∈ X and the
parameter θ are conditionally independent given T (X ).

In a discrete model, this can be rewritten as
P(X |T (X ) = t, θ) = P(X |T (X ) = t), or even
P(X |θ) = h(X )g(T (X ), θ).
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Sufficience

Theorem (Fisher-Neyman factorization)

If the data X has a density fθ, then T is sufficient for θ if and
only if there exist two nonnegative functions g and h such that

fθ(x) = h(x)g(T (x), θ).
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Estimation - Maximum likelihood

Definition (Estimator)

An estimator of a parameter θ (resp. g(θ)) is a statistic with
codomain Θ (resp. g(Θ)).

Definition (Likelihood)

Let X the data with distribution Pθ, which depends on θ ∈ Θ.
The likelihood function is the function L : Θ→ R such that

L(θ|X ) = Pθ(X ) if X is discrete.

L(θ|X ) = fθ(X ) if X is continuous with density fθ(X ).

The log-likelihood function is the logarithm of the likelihood
function `(θ|X ) = logL(θ|X ).
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Estimation - Maximum likelihood

Definition (Maximum likelihood estimator)

The maximum likelihood estimator for θ is the maximizer of
the likelihood (θ̂MLE (X ) = arg maxθ∈Θ L(θ|X )).

Proposition

Let X and Y two independent data sets generated by the same
distribution Pθ. Let T be a sufficient statistic for θ. If
T (X ) = T (Y ), then θ̂MLE (X ) = θ̂MLE (Y ).
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Estimation - Maximum likelihood

Theorem (Consistency)

If the model has nice properties (identifiability being the most
important) and the data X = (X1,X2, ...,Xn) are iid with
distribution Pθ, then θ̂MLE (X ) is consistent, meaning that it
converges in probability to θ (i.e.
limn→∞ P(‖θ̂MLE (X )− θ‖ > ε)→ 0)
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Definition

Consider a sample space X on which is defined a σ-finite
measure ν, let T : X → Rk be a statistic and h : X → R+ a
measurable function.

Nk(T , h) :=
{
η ∈ Rk :

∫
X
h(x) exp(η′T (x))dν(x) <∞

}
is called a natural parameter space. For η ∈ Nk(T , h), we can
define a probability density pη on X as

pη(X ) = h(X ) exp(η′T (X )− φ(η)).
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Definition

Definition (Exponential families 1)

Let k be a positive integer. The set of probability distributions
{pη : η ∈ Nk(T , h)} forms a regular exponential family of order
k if N is an open set in Rk .
The statistic T is called a canonical sufficient statistic and η a
natural parameter.

Definition (Exponential families 2)

Let MΘ = {pθ : θ ∈ Θ} be a parametric model. If all
pθ ∈MΘ can be written as

pθ(X ) = h(X ) exp(η(θ)′T (X )− φ(η(θ))),

then MΘ is an exponential family.



Exponential
families

Amine Hadji

Statistics
reminders

Exponential
families

Discrete
regular
exponential
families

Examples

Example 1 - Binomial random variable
Let MΘ the binomial random variable model with r trials. If
θ ∈]0, 1[, all pθ ∈MΘ can be written as

pθ(X ) =

(
r

X

)
θX (1− θ)r−X

pθ(X ) =

(
r

X

)
exp(X log(θ/(1− θ)) + r log(1− θ)).

Then MΘ is an exponential family, T (X ) = X is a sufficient
statistic and η = log(θ/(1− θ)) is a natural parameter.
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Examples

Example 2 - Multivariate Normal random variable
Let MΘ be the model of non-degenerate multivariate normal
random variables in Rm. All densities fθ generating a
distribution in MΘ can be written as:

fθ(X ) =
1

(2π)m/2|Σ|1/2
exp

(
− 1

2
(X − µ)′Σ−1(X − µ)

)
fθ(X ) = exp

(
η(θ)′T (X )− φ(η(θ))

)
with

T (X ) = (X1, ...,Xm,−X 2
1 /2, ...,−X 2

m/2,−X1X2, ...,−Xm−1Xm)

η(θ) = (
∑
j

σ1,jµj , ...,
∑
j

σm,jµj , σ1,1, ..., σm,m, σ1,2, ..., σm−1,m).

where µ = (µi )1≤i≤m and Σ−1 = (σi ,j)1≤i ,j≤m
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Examples

Example 3 - Uniform random variable
Let MΘ be the model of uniform random variables U[0,θ] (i.e.
with densities fθ = 1[0,θ]/θ). All densities fθ generating a
distribution in MΘ are in the form:

fθ(X ) =
1

θ
10≤X≤θ.

Since there is no way of writing fθ in an exponential form, MΘ

is not an exponential family.
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Setting

From now on, we’ll assume that X is discrete with sample
space X = {1, ..., r} and that its distribution pη is in an
exponential family of order k . These assumptions leads to a
number of simplications of the representation of the model.
Indeed pη(X ) = h(X ) exp(η′T (X )− φ(η)) can be written as

pθ(X ) =
1

Z (θ)
hX
∏
j

θ
ajX
j ,

where hX = h(X ), θj = eηj , ajX = Tj(X ) and Z (θ) is a
normalizing parameter.

In particular, if all the ajX are integers, then the exponential
family is a parametrized family of probability distribution where
the parametrizing functions are rational.
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Log-linear model

An equivalent representation of the model is given by

log pθ = log(h) + log(θ)′A− logZ (θ)1,

where log pθ (resp. log(h)) is the vector (log pθ(x))1≤x≤r (resp.
(log h(x))1≤x≤r ) and A is the matrix (ajx)1≤j≤k,1≤x≤r .
If we make the assumption that the vector 1 = (1, 1, ..., 1) is in
rowspan(A), then the representation is equivalent to say that
log pθ belongs to the affine space log(h)+rowspan(A) for all θ.
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Log-linear model

Definition

Let A ∈ Zk×r be a matrix of integers such that 1 ∈ rowspan(A)
and h ∈ (R+)k . The log-affine model associated to A and h is
the set of probability distributions

MA,h := {p ∈ int(∆r−1) : log p ∈ log h + rowspan(A)}.

If h = 1, then MA,h is called a log-linear model.
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Toric ideals

Definition

Let A ∈ Zk×r be a matrix of integers such that 1 ∈ rowspan(A)
and h ∈ (R+)k . The monomial map associated to A and h is
the rational map
φA,h : Rk → Rr , where φA,hj (θ) = hj

∏k
i=1 θ

aij
j .

Definition (Toric ideal)

Let A ∈ Zk×r be a matrix of integers such that 1 ∈ rowspan(A)
and h ∈ (R+)k . The ideal IA,h := I (φA,h(Rk)), which is a
subset of R[pθ], is called the toric ideal associated to A and h.
When h = 1, we denote IA := IA,1.
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Toric ideals

Since generators for the ideal IA,h can be easily obtained from
generators of IA, we focus on the case of the toric ideal IA.

Proposition

Let A ∈ Zk×r be a matrix of integer. Then the toric ideal IA is
a binomial ideal and

IA = 〈pu − pv : u, v ∈ Nr and Au = Av〉.

If 1 ∈ rowspan(A), then IA is homogeneous.
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Examples

Example 1 - Twisted Cubic

Let A =

(
0 1 2 3
3 2 1 0

)
. IA is the vanishing ideal of the

parametrization

p1 = θ3
2, p2 = θ1θ

2
2, p3 = θ2

1θ2, p4 = θ3
1.

The toric ideal is generated by three quadratic binomials

IA = 〈p1p3 − p2
2 , p1p4 − p2p3, p2p4 − p2

3〉.

The variety V (IA) is the twisted cubic curve. Note that if
h = (1, 3, 3, 1), then IA is the vanishing ideal of the binomial
random variable model with 3 trials.
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Examples

Example 2 - Discrete independent random variables
Let X1,X2 two independent variables respectively in {1, ..., r1}
and {1, ..., r2} such that

P(X1 = i ,X2 = j) = pij = αiβj i ∈ {1, ..., r1}and j ∈ {1, ..., r2},

where α and β are independent parameters. Since the
distribution is a rational function of the parameters, it’s
possible to find A a matrix (r1 + r2)× (r1r2) representing the
toric ideal of this model.



Exponential
families

Amine Hadji

Statistics
reminders

Exponential
families

Discrete
regular
exponential
families

Examples

For example with r1 = 2 and r2 = 3, we get

A =


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


By computing a Gröbner basis for the toric ideal IA, we can see
that

IA = 〈pi1j1pi2j2−pi1j2pi2j1 : i1, i2 ∈ {1, ..., r1}, j1, j2 ∈ {1, ..., r2}〉.
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