Exponential families

Amine Hadj

Statistics reminders

Exponential families

Discrete regular exponential families

Exponential families Part I - Statistics

Amine Hadji

University of Leiden

m.a.hadji@math.leidenuniv.com

November 21, 2018

Overview

Exponential families

Amine Hadj

Statistics reminders

Exponential families

Discrete regular exponential 1 Statistics reminders

2 Exponential families

3 Discrete regular exponential families

Probability and Statistics

Exponential families

Amine Hadj

Statistics reminders

Exponential families

Discrete regular exponential

Exponential families

Amine Hadj

Statistics reminders

Exponentia families

Discrete regular exponentia families "All models are wrong, but some are useful" - George E.P. Box

Definition (Statistical model)

A statistical model is a pair of sets $(\mathcal{X}, \mathcal{M})$ with \mathcal{X} is the set of possible observations (i.e. the sample space), and \mathcal{M} is a set of probability distributions on \mathcal{X} .

 ${\mathcal X}$ is generally implicitly defined via ${\mathcal M}$

Definition (Parametric model)

A parametric model $\mathcal{M}_{\Theta} = \{P_{\theta} : \theta \in \Theta\}$ is a set of probability distributions P_{θ} described by a parameter θ , such that the dimension of Θ is finite.

 \mathcal{M}_{Θ} can also be seen as the image of Θ for the map $\theta \mapsto P_{\theta}$.

Exponential families

Amine Had

Statistics reminders

Exponentia families

Discrete regular exponential families

Example 1 - Binomial random variable

Let X be a binomial random variable $B(r, \theta)$. $\mathcal{X} = \{1, 2, ..., r\}$, $\Theta = [0, 1]$ and for all $\theta \in \Theta$, P_{θ} is defined as:

$$P_{\theta}(X = i) = \binom{r}{i} \theta^{i} (1 - \theta)^{r-i}$$
 for all $i = 1, 2, ..., r$.

The set of P_{θ} for all $\theta \in \Theta$ is a binomial random variable model, which is a subset of the probability simplex Δ_r .

Exponential families

Amine Hadj

Statistics reminders

Exponentia families

Discrete regular exponential

Example 2 - Multivariate Normal random variable

Let $X \in \mathcal{X} = \mathbb{R}^m$ be a multivariate normal random variable $N(\mu, \Sigma)$. $\Theta = \mathbb{R}^m \times PD_m$, where PD_m is the cone of symmetric $m \times m$ positive definite matrices. For all $\theta = (\mu, \Sigma) \in \Theta$, the density f_θ of X is defined as:

$$f_{\theta}(x) = \frac{1}{(2\pi)^{m/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right)$$

The set of probability distributions P_{θ} generated by the densities f_{θ} for all $\theta \in \Theta$ is a model of non-degenerate multivariate normal random variable.

Exponential families

Amine Hadj

Statistics reminders

Exponentia families

Discrete regular exponential families

Example 3 - A non-parametric model

Let $\mathcal{M}_{\Theta} = \{P_{\theta} : \theta \in \Theta\}$ be a model, such that P_{θ} is generated by the density θ and.

$$\Theta = \{\theta \in C^0(\mathbb{R}) : \theta \text{ is a density}, \int_{\mathbb{R}} x\theta(x)dx = 0\}$$

 \mathcal{M}_{Θ} is a non-parametric model, since the dimension of the parameter space Θ is infinite.

Identifiability

Exponential families

Amine Hadj

Statistics reminders

Exponentia families

Discrete regular exponential families

Definition (Identifiability)

A parametric model is said to be *identifiable* if the map $\theta \mapsto P_{\theta}$ which defines it is one-to-one (i.e. bijective).

Examples 1 and 2 are both identifiable.

Identifiability

Exponential families

Amine Hadj

Statistics reminders

Exponentia families

Discrete regular exponential families

Example - A non-identifiable model

Let $X \in \mathbb{R}^m$ be a multivariate normal random variable $N(\mu_1 + \mu_2, \Sigma)$. $\Theta = \mathbb{R}^m \times \mathbb{R}^m \times PD_m$. For all $\theta = (\mu_1, \mu_2, \Sigma) \in \Theta$, the density f_θ of X is defined as:

$$f_{\theta}(x) = \frac{1}{(2\pi)^{m/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x - (\mu_1 + \mu_2))' \Sigma^{-1}(x - (\mu_1 + \mu_2))\right)$$

The model defined by these densities is not identifiable.

Data

Exponential families

Amine Had

Statistics reminders

Exponentia families

Discrete regular exponentia families In statistics, we assume that data x is a realization of a random variable X with probability distribution P. In the rest of the talk, we'll refer to both the realization and the random variable as data, and we'll note it X (i.e. P(X) = P(X = x)).

Ideally, $P \in \mathcal{M}$ meaning that our data is generated by a distribution in our model, but that's not always the case.

Data

Exponential families

Amine Hadj

Statistics reminders

Exponentia families

Discrete regular exponentia families The most common way to generate data is the case of independent and identically distributed data.

Definition (Independent and identically distributed)

Let $X = (X_1, X_2, ..., X_n)$ such that $X_i \in S$ for all i = 1, 2, ..., n, $\mathcal{X} = S^n$. The data X is independent and identically distributed (iid) if $X_1, X_2, ..., X_n$ are mutually independent and all have the same distribution P, which we call marginal distribution.

Then the distribution of the data is defined by the marginal distribution.

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i)$$

Sufficience

Exponential families

Amine Hadj

Statistics reminders

Exponentia families

Discrete regular exponential families

Definition (Statistic)

A *statistic* is a function T from \mathcal{X} to another space S.

Definition (Sufficient statistic)

A statistic is *sufficient* for θ if the data $X \in \mathcal{X}$ and the parameter θ are conditionally independent given T(X).

In a discrete model, this can be rewritten as $P(X|T(X) = t, \theta) = P(X|T(X) = t)$, or even $P(X|\theta) = h(X)g(T(X), \theta)$.

Sufficience

Exponential families

Amine Hadj

Statistics reminders

Exponentia families

Discrete regular exponential families

Theorem (Fisher-Neyman factorization)

If the data X has a density f_{θ} , then T is sufficient for θ if and only if there exist two nonnegative functions g and h such that

$$f_{\theta}(x) = h(x)g(T(x), \theta).$$

Estimation - Maximum likelihood

Exponential families

Amine Hadj

Statistics reminders

Exponentia families

Discrete regular exponentia families

Definition (Estimator)

An *estimator* of a parameter θ (resp. $g(\theta)$) is a statistic with codomain Θ (resp. $g(\Theta)$).

Definition (Likelihood)

Let X the data with distribution P_{θ} , which depends on $\theta \in \Theta$. The *likelihood function* is the function $\mathcal{L}: \Theta \to \mathbb{R}$ such that

- $\mathcal{L}(\theta|X) = P_{\theta}(X)$ if X is discrete.
- $\mathcal{L}(\theta|X) = f_{\theta}(X)$ if X is continuous with density $f_{\theta}(X)$.

The *log-likelihood function* is the logarithm of the likelihood function $\ell(\theta|X) = \log \mathcal{L}(\theta|X)$.

Estimation - Maximum likelihood

Exponential families

Amine Hadj

Statistics reminders

Exponentia families

Discrete regular exponentia families

Definition (Maximum likelihood estimator)

The maximum likelihood estimator for θ is the maximizer of the likelihood $(\hat{\theta}_{MLE}(X) = \arg\max_{\theta \in \Theta} \mathcal{L}(\theta|X))$.

Proposition

Let X and Y two independent data sets generated by the same distribution P_{θ} . Let T be a sufficient statistic for θ . If T(X) = T(Y), then $\hat{\theta}_{MLE}(X) = \hat{\theta}_{MLE}(Y)$.

Estimation - Maximum likelihood

Exponential families

Amine Hadj

Statistics reminders

Exponentia families

Discrete regular exponential families

Theorem (Consistency)

If the model has nice properties (identifiability being the most important) and the data $X = (X_1, X_2, ..., X_n)$ are iid with distribution P_{θ} , then $\hat{\theta}_{MLE}(X)$ is consistent, meaning that it converges in probability to θ (i.e.

$$\lim_{n\to\infty} P(\|\hat{\theta}_{MLE}(X) - \theta\| > \varepsilon) \to 0)$$

Definition

Exponential families

Amine Had

Statistics reminder

Exponential families

Discrete regular exponential families Consider a sample space \mathcal{X} on which is defined a σ -finite measure ν , let $T: \mathcal{X} \to \mathbb{R}^k$ be a statistic and $h: \mathcal{X} \to \mathbb{R}_+$ a measurable function.

$$N_k(T,h) := \left\{ \eta \in \mathbb{R}^k : \int_{\mathcal{X}} h(x) \exp(\eta' T(x)) d\nu(x) < \infty \right\}$$

is called a *natural parameter space*. For $\eta \in N_k(T, h)$, we can define a probability density p_{η} on \mathcal{X} as

$$p_{\eta}(X) = h(X) \exp(\eta' T(X) - \phi(\eta)).$$

Definition

Exponential families

Amine Hadj

Statistics reminders

Exponential families

Discrete regular exponential families

Definition (Exponential families 1)

Let k be a positive integer. The set of probability distributions $\{p_{\eta}: \eta \in N_k(T,h)\}$ forms a *regular exponential family* of order k if N is an open set in \mathbb{R}^k .

The statistic T is called a *canonical sufficient statistic* and η a *natural parameter*.

Definition (Exponential families 2)

Let $\mathcal{M}_{\Theta} = \{p_{\theta} : \theta \in \Theta\}$ be a parametric model. If all $p_{\theta} \in \mathcal{M}_{\Theta}$ can be written as

$$p_{\theta}(X) = h(X) \exp(\eta(\theta)' T(X) - \phi(\eta(\theta))),$$

then \mathcal{M}_{Θ} is an exponential family.

Exponential families

Amine Had

Statistics reminder

Exponential families

Discrete regular exponentia families

Example 1 - Binomial random variable

Let \mathcal{M}_{Θ} the binomial random variable model with r trials. If $\theta \in]0,1[$, all $p_{\theta} \in \mathcal{M}_{\Theta}$ can be written as

$$p_{\theta}(X) = {r \choose X} \theta^{X} (1 - \theta)^{r - X}$$

$$p_{\theta}(X) = {r \choose X} \exp(X \log(\theta / (1 - \theta)) + r \log(1 - \theta)).$$

Then \mathcal{M}_{Θ} is an exponential family, T(X) = X is a sufficient statistic and $\eta = \log(\theta/(1-\theta))$ is a natural parameter.

Exponential families

Amine Had

Statistics reminder

Exponential families

Discrete regular exponentia families

Example 2 - Multivariate Normal random variable

Let \mathcal{M}_{Θ} be the model of non-degenerate multivariate normal random variables in \mathbb{R}^m . All densities f_{θ} generating a distribution in \mathcal{M}_{Θ} can be written as:

$$f_{\theta}(X) = \frac{1}{(2\pi)^{m/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(X-\mu)'\Sigma^{-1}(X-\mu)\right)$$

$$f_{\theta}(X) = \exp\left(\eta(\theta)'T(X) - \phi(\eta(\theta))\right)$$

with

$$T(X) = (X_1, ..., X_m, -X_1^2/2, ..., -X_m^2/2, -X_1X_2, ..., -X_{m-1}X_m)$$
$$\eta(\theta) = (\sum_i \sigma_{1,j}\mu_j, ..., \sum_i \sigma_{m,j}\mu_j, \sigma_{1,1}, ..., \sigma_{m,m}, \sigma_{1,2}, ..., \sigma_{m-1,m}).$$

where
$$\mu=(\mu_i)_{1\leq i\leq m}$$
 and $\Sigma^{-1}=(\sigma_{i,j})_{1\leq i,j\leq m}$ and $\Sigma^{-1}=(\sigma_{i,j})_{1\leq i,j\leq m}$

Exponential families

Amine Had

Statistics reminder

Exponential families

Discrete regular exponential families

Example 3 - Uniform random variable

Let \mathcal{M}_{Θ} be the model of uniform random variables $U_{[0,\theta]}$ (i.e. with densities $f_{\theta} = \mathbf{1}_{[0,\theta]}/\theta$). All densities f_{θ} generating a distribution in \mathcal{M}_{Θ} are in the form:

$$f_{\theta}(X) = \frac{1}{\theta} \mathbf{1}_{0 \leq X \leq \theta}.$$

Since there is no way of writing f_{θ} in an exponential form, \mathcal{M}_{Θ} is not an exponential family.

Setting

Exponential families

Amine Hadj

Statistics reminder

Exponential families

Discrete regular exponential families From now on, we'll assume that X is discrete with sample space $\mathcal{X}=\{1,...,r\}$ and that its distribution p_{η} is in an exponential family of order k. These assumptions leads to a number of simplications of the representation of the model. Indeed $p_{\eta}(X)=h(X)\exp(\eta'T(X)-\phi(\eta))$ can be written as

$$p_{\theta}(X) = \frac{1}{Z(\theta)} h_X \prod_j \theta_j^{a_{jX}},$$

where $h_X = h(X)$, $\theta_j = e^{\eta_j}$, $a_{jX} = T_j(X)$ and $Z(\theta)$ is a normalizing parameter.

In particular, if all the a_{jX} are integers, then the exponential family is a parametrized family of probability distribution where the parametrizing functions are rational.

Log-linear model

Exponential families

Amine Had

Statistics reminder

Exponentia families

Discrete regular exponential families An equivalent representation of the model is given by

$$\log p_{\theta} = \log(h) + \log(\theta)' A - \log Z(\theta) \mathbf{1},$$

where $\log p_{\theta}$ (resp. $\log(h)$) is the vector $(\log p_{\theta}(x))_{1 \leq x \leq r}$ (resp. $(\log h(x))_{1 \leq x \leq r}$) and A is the matrix $(a_{jx})_{1 \leq j \leq k, 1 \leq x \leq r}$. If we make the assumption that the vector $\mathbf{1} = (1, 1, ..., 1)$ is in rowspan(A), then the representation is equivalent to say that $\log p_{\theta}$ belongs to the affine space $\log(h)$ +rowspan(A) for all θ .

Log-linear model

Exponential families

Amine Hadj

Statistics reminder

Exponential families

Discrete regular exponential families

Definition

Let $A \in \mathbb{Z}^{k \times r}$ be a matrix of integers such that $\mathbf{1} \in \text{rowspan}(A)$ and $h \in (\mathbb{R}_+)^k$. The *log-affine model* associated to A and h is the set of probability distributions

$$\mathcal{M}_{A,h} := \{ p \in \mathsf{int}(\Delta_{r-1}) : \log p \in \log h + \mathsf{rowspan}(A) \}.$$

If h = 1, then $\mathcal{M}_{A,h}$ is called a *log-linear model*.

Toric ideals

Exponential families

Amine Hadj

Statistics reminder

Exponentia families

Discrete regular exponential families

Definition

Let $A \in \mathbb{Z}^{k \times r}$ be a matrix of integers such that $\mathbf{1} \in \text{rowspan}(A)$ and $h \in (\mathbb{R}_+)^k$. The monomial map associated to A and h is the rational map

$$\phi^{A,h}: \mathbb{R}^k \to \mathbb{R}^r$$
, where $\phi_j^{A,h}(\theta) = h_j \prod_{i=1}^k \theta_j^{a_{ij}}$.

Definition (Toric ideal)

Let $A \in \mathbb{Z}^{k \times r}$ be a matrix of integers such that $\mathbf{1} \in \text{rowspan}(A)$ and $h \in (\mathbb{R}_+)^k$. The ideal $I_{A,h} := I(\phi^{A,h}(\mathbb{R}^k))$, which is a subset of $\mathbb{R}[p_\theta]$, is called the *toric ideal* associated to A and h. When $h = \mathbf{1}$, we denote $I_A := I_{A,\mathbf{1}}$.

Toric ideals

Exponential families

Amine Had

Statistics reminder

Exponentia families

Discrete regular exponential families Since generators for the ideal $I_{A,h}$ can be easily obtained from generators of I_A , we focus on the case of the toric ideal I_A .

Proposition

Let $A \in \mathbb{Z}^{k \times r}$ be a matrix of integer. Then the toric ideal I_A is a binomial ideal and

$$I_A = \langle p^u - p^v : u, v \in \mathbb{N}^r \text{ and } Au = Av \rangle.$$

If $\mathbf{1} \in \text{rowspan}(A)$, then I_A is homogeneous.

Exponential families

Amine Had

Statistics reminder

Exponentia families

Discrete regular exponential families

Example 1 - Twisted Cubic

Let $A=\begin{pmatrix} 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 \end{pmatrix}$. I_A is the vanishing ideal of the parametrization

$$p_1 = \theta_2^3, \ p_2 = \theta_1 \theta_2^2, \ p_3 = \theta_1^2 \theta_2, \ p_4 = \theta_1^3.$$

The toric ideal is generated by three quadratic binomials

$$I_A = \langle p_1 p_3 - p_2^2, p_1 p_4 - p_2 p_3, p_2 p_4 - p_3^2 \rangle.$$

The variety $V(I_A)$ is the twisted cubic curve. Note that if h = (1, 3, 3, 1), then I_A is the vanishing ideal of the binomial random variable model with 3 trials.

Exponential families

Amine Had

Statistics reminder

Exponentia families

Discrete regular exponential families

Example 2 - Discrete independent random variables

Let X_1, X_2 two independent variables respectively in $\{1,...,r_1\}$ and $\{1,...,r_2\}$ such that

$$P(X_1 = i, X_2 = j) = p_{ij} = \alpha_i \beta_j \ i \in \{1, ..., r_1\}$$
and $j \in \{1, ..., r_2\},$

where α and β are independent parameters. Since the distribution is a rational function of the parameters, it's possible to find A a matrix $(r_1 + r_2) \times (r_1 r_2)$ representing the toric ideal of this model.

Exponential families

Amine Hadj

Statistics reminders

Exponentia families

Discrete regular exponential families For example with $r_1 = 2$ and $r_2 = 3$, we get

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

By computing a Gröbner basis for the toric ideal I_A , we can see that

$$I_{A} = \langle p_{i1j1}p_{i2j2} - p_{i1j2}p_{i2j1} : i_{1}, i_{2} \in \{1, ..., r_{1}\}, j_{1}, j_{2} \in \{1, ..., r_{2}\} \rangle.$$