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Tensor-structured methods in R
d Basic rank-structured formats

Rank-structured representation of higher order tensors

A = [ai1...id ] ∈ Rn1×...×nd , ℓ = 1, . . . , d,

for nℓ = n, N = nd –“curse of dimensionality”.

⇒ We need structured representation of tensors:

Tensor product of vectors u(ℓ) = {u(ℓ)iℓ
}niℓ=1 ∈ RIℓ forms the canonical rank-1 tensor

A(1) = u(1) ⊗ . . .⊗ u(d) ≡ [ui]i∈I,

with entries ui = u
(1)
i1

· · · u(d)id
. Storage: dn << nd .

Definition 3. The canonical format, CR,n

A(R) =
∑R

k=1
cku

(1)
k ⊗ . . .⊗ u

(d)
k , ck ∈ R, (1)

with normalised u
(ℓ)
k ∈ Rn and the canonical rank ≤ R.
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Tensor-structured methods in R
d Basic rank-structured formats

Tucker tensor format

Definition. Given the rank parameter r = (r1, . . . , rd ), define the Tucker tensor format [Tucker ’66].

A(r) =
∑r1

ν1=1
. . .
∑rd

νd=1
βν1...νd v

(1)
ν1 ⊗ . . .⊗ v

(d)
νd , (2)

with orthonormal v
(ℓ)
νℓ ∈ Vℓ = R

Iℓ (1 ≤ νℓ ≤ rℓ), and the core tensor

β = [βν1,...,νd ] ∈ Br = R
r1×...×rd

.

Using side matrices V (ℓ) = [v
(ℓ)
1 . . . v

(ℓ)
rℓ ] ∈ R

nℓ×rℓ and tensor-by-matrix contracted product,

A(r) = β ×1 V
(1) ×2 V

(2) ×3 . . .×d V (d).

A
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Storage: rd + drn ≪ nd .
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Tensor-structured methods in R
d Basic rank-structured formats

Mixed Tucker-canonical (TC) tensor format

A(r) =

(
R∑

k=1

bku
(1)
k ⊗ . . .⊗ u

(d)
k

)
×1 V

(1) ×2 V
(2) ×3 . . .×d V (d).
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+ d r n
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Advantages of the Tucker tensor decomposition:
1. Robust algorithm for approximating full format tensors of size nd .
2. Rank reduction of the rank-R canonical tensors with large R .
3. Efficient for 3D tensors since r3 is small.
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Tensor-structured methods in R
d Tensor product operations

Multilinear operations in canonical tensor format

A1 =

R1∑

k=1

cku
(1)
k ⊗ . . .⊗ u

(d)
k , A2 =

R2∑

m=1

bmv
(1)
m ⊗ . . .⊗ v

(d)
m .

Euclidean scalar product (complexity O(dR1R2n) ≪ nd ),

〈A1,A2〉 :=
R1∑

k=1

R2∑

m=1

ckbm

d∏

ℓ=1

〈
u
(ℓ)
k , v

(ℓ)
m

〉
.

Hadamard product of A1, A2

A1 ⊙ A2 :=

R1∑

k=1

R2∑

m=1

ckbm
(
u
(1)
k ⊙ v

(1)
m

)
⊗ . . .⊗

(
u
(d)
k ⊙ v

(d)
m

)
.

Convolution, for d = 3 (complexity O(R1R2n log n) ≪ n3 log n (3D FFT))

A1 ∗ A2 =

R1∑

k=1

R2∑

m=1

ckbm(u
(1)
m ∗ v

(1)
k )⊗ (u

(2)
m ∗ v

(2)
k )⊗ (u

(3)
m ∗ v

(3)
k )
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Tensor-structured methods in R
d Tensor product operations

The unfolding of a tensor along mode ℓ is a matrix

A(ℓ) = [aij ] ∈ R
nℓ×(nℓ+1···nd n1···nℓ−1)

whose columns are the respective fibers along ℓ-mode.

I

I

I2

3

1

I 3A

I 2

A(1)I1

Given a tensor A ∈ RI1×...Id and a matrix M ∈ RJℓ×Iℓ , we define the mode-ℓ tensor-matrix
product by

B = A×ℓ M ∈ R
I1×...×Iℓ−1×Jℓ×Iℓ+1...×Id ,

where bi1,...,iℓ−1,jℓ,iℓ−1,...,id =
nℓ∑

iℓ=1
ai1,...,iℓ−1,iℓ,iℓ−1,...,idmiℓ,jℓ , jℓ ∈ Jℓ.

n3 n 3

r3

r3

n
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n
1

n
2

n
2
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Tensor-structured methods in R
d Why Tucker was important

Tucker tensor approximation

Multilinear algebra for the problems of chemometrics, psychometrics, data processing, etc.
[Tucker ’66, De Lathauwer et al, 2000]

A0 ∈ Vn : f (A) := ‖A(r) − A0‖2 → min over A ∈ T r. (3)

The minimisation problem is equivalent to the maximisation problem

g(V (1), ...,V (d)) :=
∥∥∥A0 ×1 V

(1)T × ...×d V (d)T
∥∥∥
2
→ max (4)

over the set of V (ℓ) ∈ Rnℓ×rℓ .
For given V (ℓ), the core β in minimizer of (3), A(r) = β ×1 V (1) ×2 . . .×d V (d) is

β = A0 ×1 V
(1)T × ...×d V (d)T ∈ R

r1×...×rd .

Complexity for d = 3, O(n4 + n3r + n2r2 + nr3), r = maxℓ rℓ.

For function related tensors, [B. Khoromskij 2006]:

‖A(r) − A0‖ ≤ Ce−αr , with r = min
ℓ

rℓ.
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Tensor-structured methods in R
d Why Tucker was important

Full-size tensor to Tucker

Algorithm ALS Tucker (Vn → T r,n). Given the input tensor A ∈ Vn.

1 Compute an initial guess V
(ℓ)
0 (ℓ = 1, ...,d) for the ℓ-mode side-matrices by truncated SVD

applied to matrix unfolding A(ℓ) (cost O(nd+1)).

2 For k = 1 : kmax do: for each q = 1, ...,d, and with fixed side-matrices V (ℓ) ∈ Rn×rℓ ,
ℓ 6= q, optimise the side matrix V (q) via computing the dominating rq-dimensional
subspace (truncated SVD) for the respective matrix unfolding B(q) ∈ Rn×r̄q ,
r̄q = r1...rq−1rq+1...rd , corresponding to the q-mode contracted product

B(q) = A×1 V
(1)T × ...×q−1 V

(q−1)T ×q+1 V
(q+1)T ...×d V (d)T .

Each iteration costs O(drd−1nmin{rd−1, n}), since r̄q = O(rd−1).

3 Compute the core β as the representation coefficients of the orthogonal projection of A
onto Tn = ⊗d

ℓ=1Tℓ with Tℓ = span{vν
ℓ }

rℓ
ν=1,

β = A×1 V
(1)T × ...×d V (d)T ∈ Br,

at the cost O(rdn).
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Tensor-structured methods in R
d Why Tucker was important

Functional Tucker approximation [B.N. Khoromskij, VKH ’06 (CEJM ’07)]

f (x), x = (x(1), x(2), x(3))T ∈ R
3 is discretized in [a, b]3. Sampling points: x

(ℓ)
iℓ

= aℓ + (iℓ − 1
2
)( b−a

nℓ
), iℓ = 1, 2, . . . nℓ .

⇒ We generate a tensor A ∈ R
n1×n2×n3 with entries aijk = f (x

(1)
i

, x
(2)
j

, x
(3)
k

).

x i
x j

x
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B

B [1]
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n1 n
1n1

B [1]

r 3 r2

...

r3
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.

Example: Slater function f (x) = exp(−α‖x‖), EFN =
‖A0−A(r)‖

||A0||
EFE =

‖A0‖−‖A(r)‖

||A0||
, EC :=

maxi∈I |a0,i−ar,i |

maxi∈I |a0,i |
.
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Tensor-structured methods in R
d Why Tucker was important

Multigrid Tucker for 3D periodic structures

[VKH ’10 (TU Berlin, dissertation)]

Complexity for d = 3: O(n3) (instead of O(n4)).

2 4 6 8 10 12
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Tucker rank

Slater function, MGA Tucker, E
FN
 (solid), E

EN
 (dashed)

 

 

n=512

n=256

n=128

n=64

n=512

n=256

n=128

n=64

−5

0

5

−5

0

5
0

0.2

0.4

0.6

The “multi-centered Slater potential“ obtained by displacing a single Slater potential with
respect to the m ×m ×m spatial grid of size H > 0, (here m = 10)

g(x) =
m∑

i=1

m∑

j=1

m∑

k=1

e−α
√

(x1−iH)2+(x2−jH)2+(x3−kH)2 .
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Tensor-structured methods in R
d Canonical to Tucker tensor approximation

Canonical to Tucker Approximation

[B.N. Khoromskij, VKH ’08 (SISC ’09)] Theorem.
Let A ∈ CR,n. Then the minimisation problem

A ∈ CR,n ⊂ Vn : A(r) = argminV∈Tr,n
‖A− V ‖Vr , (5)

[Z (1), ...,Z (d)] = argmaxV (ℓ)∈Mℓ

∥∥∥∥∥

R∑

ν=1

cν
(
V (1)T u

(1)
ν

)
⊗ ...⊗

(
V (d)T u

(d)
ν

)∥∥∥∥∥

2

Vr

,

Init. guess: RHOSVD Z
(ℓ)
0 ⇒ the truncated SVD of U(ℓ) = [u

(ℓ)
1 ...u

(ℓ)
R ],

under the compatibility condition

rℓ ≤ rank(U(ℓ)) with U(ℓ) = [u
(ℓ)
1 ...u

(ℓ)
R ] ∈ R

n×R ,

Error bounds for RHOSVD

‖A− A0
(r)‖ ≤ ‖c‖

d∑

ℓ=1

(

min(n,R)∑

k=rℓ+1

σ2
ℓ,k )

1/2, where ‖c‖2 =
R∑

ν=1

c2ν .
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Tensor-structured methods in R
d Canonical to Tucker tensor approximation

C2T + T2C rank reduction

[B.N. Khoromskij, VKH ’07 (SICS ’09)]

A =
R∑

k=1
ck ⊗ u

(1)
k ⊗2 u
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Tensor-structured methods in R
d Canonical to Tucker tensor approximation

Tensor formats for higher dimensions

Matrix product states tensor factorization (MPS): [White 1992], [Cirac, Verstraete 2004] [Vidal 2003]

(reinvented as tensor train format by [Oseledets, Tyrtyshnikov 2009])

ai1,i2,i3,i4,i5 =
5∏

k=1

Bk(ik), A ∈ R
n1×n2×n3×n4×n5 , Bk ∈ R

rk−1×rk , r0 = r5 = 1.

.

r r

r r r

r

r
1 1

2 3

3

4

4

i

i i

i

1

2 4

5

n

n n n

n

1

2 3 4

5

2
r

3i

Quantized tensor format (for function related vectors/tensors):[Khoromskij 2009, (CA ’11)]

2L >> 2Lr2, r = 1 for e−α‖x‖, r = 2 for sin(x), etc.

F

N=2
3

L=log N=3

+ ...
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Tensor-structured methods in R
d

Grid-based approaches and related tensor formats

Sparse grids: M. Griebel, H. Yserentant, C.Schwab, et al. 1990.

Wavelets with canonical format: G. Beylkin, M. Mohlenkamp (2002),
R. Schneider, H.-J. Flad, W. Hackbusch, B. Khoromskij (2005).

Functional Tucker, canonical-to-Tucker transform (2006-2008)
tensor-structured numerical methods, 3D convolution integrals (2008)
V. Khoromskaia, B. Khoromskij.

3D grid based solvers for the Hartree-Fock equation (2009-2012),
3D grid-based TEI (2011-12):
V. Khoromskaia, B. Khoromskij, H.-J. Flad, R. Schneider.

Matrix Product States, Tensor Train (TT):
S. White (1992), Cirac, Verstraete (2004),
I. Oseledets, E. Tyrtyshnikov (2009).

Quantized vector/tensor low rank approximation:
B. Khoromskij (2009).

QTT library:
I. Oseledets, B. Khoromskij, S. Dolgov, et. al. (2009-2012).

Hierarchical Tucker, hierarchical SVD of tensors:
W. Hackbusch, L. Grasedyck (2009). D. Kressner, C. Tobler, (2010)

Best TT approximation:
R. Schneider, T. Rohwedder, S. Holtz (2010-2012).
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Start of tensor-structured numerical methods The Hartree-Fock (HF) equation

The Hartree-Fock equation, standard Galerkin scheme

Nonlinear eigenvalue problem

Fϕi (x) ≡ (−1

2
∆ + Vc + VH −K)ϕi (x) = λi ϕi (x), i = 1, ...,Norb.

The Fock operator F depends on τ(x , y) = 2
Norb∑
i=1

ϕi (x)ϕi (y),

Fϕ := [−1

2
∆−

M∑

ν=1

Zν

‖x − aν‖
+

∫

R3

τ(y , y)

‖x − y‖ dy ]ϕ− 1

2

∫

R3

τ(x , y)

‖x − y‖ ϕ(y)dy .

Numerical challenges: high accuracy, 3D and 6D singular integrals, strong nonlinearity.
Standart computational scheme.

Expansion of molecular orbitals in {gµ}1≤µ≤Nb
,

ϕi (x) =

Nb∑

µ=1

ciµgµ(x), i = 1, ...,Norb,

yields the Galerkin system of nonlinear equations for coefficients matrix C = {ciµ} ∈ R
Norb×Nb ,

(and density matrix D = 2CC∗ ∈ RNb×Nb )

F (C)C = SCΛ, Λ = diag(λ1, ..., λNb
), CTSC = INb

,

where F (C) = H + J(C) + K(C).
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Start of tensor-structured numerical methods The Hartree-Fock (HF) equation

Standard Galerkin scheme

Precomputed: core Hamiltonian H = {hµν}

hµν =
1

2

∫

R3
∇gµ · ∇gνdx +

∫

R3
Vc (x)gµgνdx 1 ≤ µ, ν ≤ Nb.

and two-electron integrals (TEI)

bµνκλ =

∫

R3

∫

R3

gµ(x)gν(x)gκ(y)gλ(y)

‖x − y‖ dxdy .

Then the EVP
F (C)C = SCΛ

is solved iteratively, using DIIS [Pulay ’80] and updating F (C) = H + J(C) + K(C),

J(C)µν =

Nb∑

κ,λ=1

bµν,κλDκλ, K(C) = −1

2

Nb∑

κ,λ=1

bµλ,νκDκλ.

The ground state energy

EHF = 2

Norb∑

i=1

λi −
Norb∑

i=1

(
J̃i − K̃i

)
,

where J̃i = (ϕi ,VHϕi ) and K̃i = (ϕi ,Kϕi ).
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Start of tensor-structured numerical methods The Hartree-Fock (HF) equation

Competing grid-based tensor approach to computational quantum chemistry

Benchmark packages (analytic): MOLPRO [Werner et al.], GAUSSIAN, CRYSTAL, ...

Grid-based tensor methods in HF calculations: [Khoromskij, VKH, Flad, 2009, SISC ’11],

◮ Example of a compact molecule computed by tensor method: Alanin aminoacid

◮ 3D lattice structure

◮ Grid-based tensor numerical methods look promising for computation of

structured extended systems and periodic compounds.
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Start of tensor-structured numerical methods The Hartree-Fock (HF) equation

Basic building blocks

[VKH, Khoromskij ’08 - ’13]

◮ Canonical, Tucker and QTT tensor arithmetics.

◮ Grid basis {gµ}, and core Hamiltonian in (O(n) and O(log n) operations.

◮ Fast 3D tensor convolution in O(n log n) operations.

◮ Direct/redundancy free factorizations of TEI matrix B = [bµν;κλ] ∈ R
N2
b×N2

b .

◮ Cholesky decomposition (ε-approximation) of B:
Compute columns and diagonal of B using precomputed factorization,

B = mat(B) := [bµν,κλ] ≈ LLT , RB = rankε(B) = O(Nb).

QTT compression of the Cholesky factor L ∈ R
N2
b×RB : N2

b ⇒ N2
orb, Nb ≈ 10Norb.

◮ DIIS self-consistent iteration (standard in quantum chemistry).

◮ MP2 energy correction via tensor factorizations.
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Start of tensor-structured numerical methods The Hartree-Fock (HF) equation

Discretization of 3D basis functions

−b +bx

g

g
(1)

gk k

k

i i+1

i−1

g k (x  )1

(1) (1)

xx1,i1,i−1 1,i+1

g
k
(x  )1

x
1

x x x x

The computational box: [−b, b]3, b ≈ 15
◦
A

n × n × n 3D Cartesian grid, n ∼ 105

gk (x) = pk (x1, x2, x3)e
αk (x

2
1+x22+x23 )

the continuous basis functions gk(x) : I0 : gk → gk :=
∑
i∈I

gk (xi)ζi(x).

gk(x) ≈ I0gk := gk(x) =
∏3

ℓ=1 g
(ℓ)
k (xℓ) =

∏3
ℓ=1

n∑
iℓ=1

g
(ℓ)
k (xℓ,iℓ)ζ

(ℓ)
iℓ

(xℓ), ℓ = 1, 2, 3

rank-1 tensors: Gk = G
(1)
k ⊗ G

(2)
k ⊗ G

(3)
k , with G

(ℓ)
k = {g (ℓ)

k (xℓ,iℓ)}niℓ=1 ∈ R
Iℓ .
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Start of tensor-structured numerical methods The Hartree-Fock (HF) equation

Example: 3D grid-based Hartree potential in 1D complexity

VH (x) :=

∫

R3

ρ(y)

‖x − y‖ dy ρ(x) = 2

Norb∑

a=1

(ϕa)
2, x ∈ R

3

ϕa(x) =

Nb∑

µ=1

caµgµ(x), a = 1, ...,Norb,

ρ ≈ Θ : =

Norb∑

a=1




Nb∑

κ=1

Nb∑

λ=1

cκacλaGκ ⊙ Gλ





=

Rρ∑

m=1

cmu
(1)
m ⊗ u

(2)
m ⊗ u

(3)
m , u

(ℓ)
m = G

(ℓ)
κ ⊙ G

(ℓ)
λ ∈ R

n.

Rρ(CH4) = 1540, Rρ(C2H6) = 4656, Rρ(H2O) = 861

Multigrid C2T + T2C tensor rank reduction: Θ ⇒ Θ′

rank(Θ) ≈ 104 ⇒ rank(Θ′) ∼ 102.
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Start of tensor-structured numerical methods
3D grid-based Hartree and exchamge potentials

in 1D complexity

Example: 3D grid-based Hartree potential in 1D complexity [Khoromskij, VKH ’08 (SISC 2009)]

The Newton kernel PN =
[
〈 1
‖x‖

, ζi〉
]
, ζi p.w.c.,

by sinc-quadratures. Rank(PN ) ∼ 20÷ 30. [Bertoglio, Khoromskij ’08 (CPC 2012)]

The tensor-product convolution [Khoromskij ’08], (accuracy O(h2))

VH = ρ ∗ 1

‖ · ‖ ≈ Θ′ ∗ PN

=

Rρr∑

m′=1

RN∑

k=1

cm′bk

(
u
(1)
m′ ∗ v

(1)
k

)
⊗
(
u
(2)
m′ ∗ v

(2)
k

)
⊗
(
u
(3)
m′ ∗ v

(3)
k

)
.

The Coulomb matrix

J(C)µν =

∫

R3
gµ(x)VH (x)gν(x)dx ≈

∫

R3
gµ(x)VH (x)gν(x)

≈ 〈Gµ ⊙ Gν ,Θ
′ ∗ PN 〉, 1 ≤ µ, ν ≤ Nb.

WC∗C = O(RρrRNn log n)
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Start of tensor-structured numerical methods
3D grid-based Hartree and exchamge potentials

in 1D complexity

Tensor-product convolution vs. 3D FFT

[Khoromskij, VKH ’08 (SISC 2009)]

The cost of computation of VH by tensor product convolution (1D FFT):

NC∗C = O(RρrRNn log n)

instead of O(n3 log n) for 3D FFT.

n3 1283 2563 5123 10243 20483 40963 81923 163843

FFT3 4.3 55.4 582.8 ∼ 6000 – – – ∼ 2 years
C ∗ C 0.2 0.9 1.5 8.8 20.0 61.0 157.5 299.2
C2T 4.2 4.7 5.6 6.9 10.9 20.0 37.9 86.0

CPU time (in sec) for the computation of VH for H2O.

(3D FFT time for n ≥ 1024 is obtained by extrapolation).
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Start of tensor-structured numerical methods
3D grid-based Hartree and exchamge potentials

in 1D complexity

Example 2: TS computation of the exchange matrix

[VKH, 2010]

Kk,m :=

∫

R3

∫

R3
gk(x)

ϕa(x)ϕa(y)

|x − y | gm(y)dxdy , k,m = 1, . . .Nb

1. Convolution

Wa,m(x) =

∫

R3

ϕa(y)gm(y)

|x − y | dy ≈ W a,m :=



Gm ⊙
Nb∑

ν=1

cνaGν



 ∗ PN ,

2. Scalar products

Vkm,a =

∫

R3
ϕa(x)gk (x)Wa,m(x)dx ≈ V km,a := 〈Gk ⊙




Nb∑

µ=1

cµaGµ



 ,W am〉.

3. The exchange matrix

Kk,m =

Norb∑

a=1

V km,a.
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HF Solver by a standard but 3D grid-based
scheme 3D grid-based factorized TEI

Grid-based two-electron integrals (TEI)

[VKH, Khoromskij, Schneider, ’12]

bµνκλ =

∫

R3

∫

R3

gµ(x)gν(x)gκ(y)gλ(y)

‖x − y‖ dxdy = 〈Gµ ⊙ Gν ,PN ∗ (Gκ ⊙ Gλ)〉n⊗3 ,

Gµ = G
(1)
µ ⊗ G

(2)
µ ⊗ G

(3)
µ ∈ R

n×n×n.

G (ℓ) =
[
G

(ℓ)
µ ⊙ G

(ℓ)
ν

]

1≤µ,ν≤Nb

∈ R
n×N2

b ℓ = 1, 2, 3.

Factorization (“1D density fitting”) by Cholesky decomposition of G (ℓ)G (ℓ)T :

G (ℓ) ∼= U(ℓ)V (ℓ)T , U(ℓ) ∈ R
n×Rℓ , V (ℓ) ∈ R

N2
b×Rℓ ,

⇒ number of convolutions is reduced from N2
b to Rℓ ≤ Nb,

n = 32768 (up to 131072),
N2

b ∼ 28000 (40000 for alanine):

ε-rank reduction for glycine:
from N2

b = 28900, to Rℓ ∼ 100÷ 220. 0 50 100 150 200 250
10

−8

10
−6

10
−4

10
−2

10
0

glycin, 4k, Nrank=170
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HF Solver by a standard but 3D grid-based
scheme 3D grid-based factorized TEI

Fast convolution via tensor approximation of Green’s kernel

Tensor approximation of the Newton kernel using Laplace transform and sinc-quadratures:
[Gavrilyuk, Hackbusch, Khoromskij ’08]

[Bertoglio, Khoromskij ’10]

Green’s function for ∆ in R3, via (2M + 1)-term sinc-quadrature approximation

1

‖x‖ =

∫ ∞

0
e−t2‖x‖2dt ≈

M∑

k=−M

cke
−t2k‖x‖

2
=

M∑

k=−M

ck
∏3

ℓ=1
e−t2k x

2
ℓ 7→ PN .

PN ∈ Rn×n×n, can. rank of PN RN ≤ 30.

Tensor-product convolution, O(n log n):
[Khoromskij ’08]

[Khoromskij, Khoromskaia ’09]

U ∗ PN =

RF∑

k=1

RN∑

m=1

ckbm(u
(1)
m ∗ p

(1)
k ) ⊗ (u

(2)
m ∗ p

(2)
k )⊗ (u

(3)
m ∗ p

(3)
k )

n3 5123 10243 20483 40963 81923 163843 327683

FFT3 37.5 350.6 ∼ 3500 – – – ∼ 1.2 years
CRF

∗ CRN
2.4 6.7 14.6 44 107 236 535

CPU time (in sec) for TEI: 1
‖x‖

∗ gµgν , µ, ν = 1, ...,Nb, ε = 10−7,

H2O, Nb = 41,
Nb(Nb+1)

2
7→ RF = 71, RN = 27.
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HF Solver by a standard but 3D grid-based
scheme 3D grid-based factorized TEI

Factorized TEI

The Newton kernel: P(ℓ) ∈ Rn×RN are the factor matrices in the rank-RN canonical tensor
PN ∈ Rn×n×n.

B ∼= Bε :=

RN∑

k=1

⊙3
ℓ=1V

(ℓ)M
(ℓ)
k V (ℓ)T ∈ R

N2
b×N2

b

with the convolution matrix

M
(ℓ)
k = U(ℓ)T (P

(ℓ)
k ∗n U(ℓ)) ∈ R

Rℓ×Rℓ , k = 1, ...,RN .

The diagonal elements and j-column in the TEI matrix B :

B(i , i) =

RN∑

k=1

⊙3
ℓ=1V

(ℓ)(:, i)M
(ℓ)
k V (ℓ)(:, i)

T
.

B(:, j) =

RN∑

k=1

⊙3
ℓ=1V

(ℓ)M
(ℓ)
k V (ℓ)(:, j)

T
,

Cholesky decomposition (ε-approximation)

B := mat(B) = [bµν,κλ] ≈ LLT , L ∈ R
N2
b×RB ,

with RB ∼ Nb.

Representation complexity of B using the quantized tensor format can be reduced to O(NbN
2
orb)

(instead of O(N3
b )). (Nb ∼ 10Norb).
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HF Solver by a standard but 3D grid-based
scheme Core Hamiltonian

Laplacian in Gaussian basis

[VKH, Andrae, Khoromskij, CPC’12]

For a function in Gaussian basis {gk (x)}1≤k≤Nb
, x ∈ R3, the 3D Laplace operator

Ag = {akm} ∈ R
Nb×Nb with akm = 〈∆gk (x), gm(x)〉.

The discete 3D Laplace operator ∆3 ∈ Rn3×n3

∆3 = ∆
(1)
1 ⊗ I (2) ⊗ I (3) + I (1) ⊗∆

(2)
1 ⊗ I (3) + I (1) ⊗ I (2) ⊗∆

(3)
1 ,

where ∆1 = 1
h
tridiag{−1, 2,−1}.

Given Gk = G
(1)
k ⊗ G

(2)
k ⊗ G

(3)
k , Ag ≈ AG = {akm},

akm = 〈∆1G
(1)
k ,G

(1)
m 〉〈G (2)

k ,G
(2)
m 〉〈G (3)

k ,G
(3)
m 〉

+ 〈G (1)
k ,G

(1)
m 〉〈∆1G

(2)
k ,G

(2)
m 〉〈G (3)

k ,G
(3)
m 〉

+ 〈G (1)
k ,G

(1)
m 〉〈G (2)

k ,G
(2)
m 〉〈∆1G

(3)
k ,G

(3)
m 〉

= 〈∆3Gk ,Gm〉.
Complexity (O(n)).

Quantized tensor approximation of O(log n) complexity introduced in [Khoromskij ’09,’11]

is used for quantized tensor calculation of the Laplacian in [Kazeev, Khoromskij, ’12],
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HF Solver by a standard but 3D grid-based
scheme Core Hamiltonian

Laplacian in Gaussian basis

[VKH, ’13]

p 15 16 17 18 19 20
n3 = 23p 327673 655353 1310713 2621433 5242873 10485753

err(AG ) 0.0027 6.8 · 10−4 1.7 · 10−4 4.2 · 10−5 1.0 · 10−5 2.6 · 10−6

RE - 1.0 · 10−5 8.3 · 10−8 2.6 · 10−9 3.3 · 10−10 0

time (sec) 12.8 17.4 25.7 42.6 77 135

∆a11 49 12 3 0.7 0.19 0.0480
RE - 0.3 0.0014 3.3 · 10−5 3.3 · 10−5 3.3 · 10−5

3D grid-based quantized tensor calculations for the water molecule (H2O):
accuracy and times vs 3D grid size for the Laplace Galerkin matrix err(AG )

(discretized basis of Nb = 41 Cartesian Gaussians).
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HF Solver by a standard but 3D grid-based
scheme Core Hamiltonian

Tensor-based nuclear potential

[VKH, Andrae, Khoromskij, CPC’12]

[VKH, ’13]

Vc (x) = −
M∑

α=1

Zα

‖x − aα‖
, Zα > 0, aα ∈ R

3, Pc =
M∑

α=1

ZαPc,α,

vkm =

∫

R3
Vc(x)gk (x)gm(x)dx ≈ 〈Gk ⊙ Gm,Pc〉, 1 ≤ k,m ≤ Nb.

Vc for ethanol molecule (C2H5OH) at two levels: z = 0 and z = 0.75 au,

Venera Khoromskaia The 7th Workshop on Analysis and Advanced Numerical Methods for PDEs St.Tensor methods in quantum chemistry 30 / 37



HF Solver by a standard but 3D grid-based
scheme Core Hamiltonian

Tensor-based Core Hamiltonian

Laplace and nuclear potential calculations for CH4, (Nb = 55).
Difference between the 3D grid-based and analytical calculations in Galerkin matrices

Er(AG ) =
‖Ag − AG ‖

‖Ag‖
, Er(VG ) =

‖Vg − VG‖
‖Vg‖

.

N3 = 23p 81923 163843 327683 655363 1310723

h(in au) 0.0036 0.0018 8.9 · 10−4 4.4 · 10−4 2.2 · 10−4

Er(AG ) 0.02 0.052 0.0013 3.2 · 10−4 8 · 10−5

RE - 2.6 · 10−4 0 2.0 · 10−6 1.7 · 10−8

Er(VG ) 0.012 0.0029 7.0 · 10−4 1.7 · 10−4 4.3 · 10−5

RE - 2.6 · 10−4 2.0 · 10−5 3.0 · 10−6 1.2 · 10−7

Note: 2.2 · 10−4au = 1.164 Å = 11.64 femtometers (10−15 m), which is ∼ to size of atomic radii in a molecule.
(Atomic radius of Oxygen is 60 pm, Hydrogen 25 pm.)

1fm = 10−15 m, 1pm = 10−12 m, 1
◦
A= 10−10 m.
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HF Solver by a standard but 3D grid-based
scheme “Ab-initio“ black-box HF solver

Self-consistent iteration for nonlinear EVP

[VKH, ’13, preprint]

[VKH, Khoromskij ’13]

EVP algorithm for black-box solver:

F (C)C = SCΛ, F = H0 + J(C) − K(C),

Initial guess for J = 0, K = 0, F (0) = H0.

solve EVP [H0 + J(C) − K(C)]C = SCΛ .

Update of J(C) and K(C):

⊲ Coulomb matrix: given D = vec(D),

vec(J) = BD ≈ L(LTD).

⊲ HF exchange: using D = 2CCT and B = LLT ,

K(D)µν = −
Norb∑

i=1

RB∑

k=1

(
∑

λ

LµλkCλi )(
∑

κ

CκiLκνk ),

[Lµνk ] = reshape(L, [Nb,Nb,RB ]) is the Nb × Nb × RB -folding of the Cholesky fact. L.

DIIS for providing convergence.

Venera Khoromskaia The 7th Workshop on Analysis and Advanced Numerical Methods for PDEs St.Tensor methods in quantum chemistry 32 / 37



HF Solver by a standard but 3D grid-based
scheme “Ab-initio“ black-box HF solver

TEI based nonlinear 3D EVP solver

[VKH, 2013]

DIIS iteration for amino acids glycine (C2 H5N O2) with TEI on n3 = 1310723

and alanine (C3H7N O2) with TEI on n3 = 327683.
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H2O: iteration with core Hamiltonian on 1310723; convergence in energy; last k + 27 iterations.
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Grid-based extended and periodic systems

Grid-based calculations of large extended/periodic systems

[VKH, Khoromskij Preprint MIS MPG’13]

Main ingredients in tensor approach:

Computing large lattice sums of the Newton kernels.

Lattice-structured TEI computation.

Block-structured representation of the Fock matrix.

Fast diagonalisation of the Fock matrix.

x

y

z

A0.74 
o

Figure: The periodic structure of the size 4.5 × 4.5 × 1.5
◦
A
3
in the box [−b, b]3, with b = 16 au (∼ 8.5

◦
A).
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Grid-based extended and periodic systems
Assembled tensor method for lattice sums of

long-range potentials

Lattice sums of electrostatic potentials by assembled tensor approximation

Fast and accurate calculation of lattice sums of electrostatic potentials (absolute accuracy 10−14)
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0.6

Assembled vectors along x- y - and z-axis, for a cluster of 32× 16× 8 Hydrogen atoms
in a rectangular box of size ∼ 55.4× 33.6× 22.4 au3 (Dirichle bound. cond.).
The resulting sum of 4096 nuclei potentials at cross-section with z = 0.83 au.
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Grid-based extended and periodic systems

Resume

Development of the tensor-structured numerical methods resulted in a
“black box” solver for the Hartree-Fock equation in a general basis.

Grid-based calculation of 3D integral operators with linear scaling in 1D.

Grid-based 3D Laplace and nuclear potential operators with controllable accuracy.

Two-electron integrals in a general basis.

General bases can include any physically relevant functions (local finite elements, AO,
Slater, truncated plane waves, etc).

Robust tensor rank reduction algorithms (C2T+T2C, ACA+QR, etc.).

Numerical tests for compact molecules confirm efficiency of algorithms.

TS numerical methods applicable to post-HF models: MP2.

Tensor numerical methods have a big potential for periodic and quasi-periodic structures.

http://personal-homepages.mis.mpg.de/vekh/

Thank you for attention
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Grid-based extended and periodic systems
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