
Chapter 3

Nonlinear time series
analysis

3.1 Deterministic dynamical systems

While statisticians, when trying to explain the real world, are starting from
a “random world” by introducing correlations or dependencies, respectively,
physicians often think about the world as a deterministic one1 and stochas-
ticity (noise) is introduced as an approximation of effects which are either
too high—dimensional or fluctuate too fastly to take them explicitly into
account. So our starting point is a deterministic dynamic system living in
a state space X which should be at the moment finite dimensional. The
dynamics is either defined for discrete times

xxxn+1 = F (xxxn) (3.1)

thus defining a map or for continuous times

ẋxx(t) = f(xxx) . (3.2)

by a system of coupled ordinary differential equations which defines a flow
xxx(t+t0) = φt(xxx(t0)). There are several possibilites to relate the two descrip-
tions to each other. Very often one considers the stroboscopic map of (3.2)
for a given time T with xxxn = φT (xxxn−1), e.g. in the case of periodically driven
systems, or the Poincare surface of section (Poincare map) - the section of
the flow with a hyperplane transversal to the flow. Formally it is defined

1With the exception of quantum mechanics, but even there the evolution of the wave
function is deterministic
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28 CHAPTER 3. NONLINEAR TIME SERIES ANALYSIS

in the neighbourhood of a periodic orbit, but often it can be extented to
the whole phase space. A simple way to generate the hyperplane, is to set
one coordinate of the dynamical system to a fixed value (TISEAN program:
poincare). In the following we only consider maps F , be it generically maps,
maps generated by sampling flow data with a fixed sampling interval or
Poincare maps.

3.1.1 Characterization — Dynamical invariants

One of the objectives of time series analysis is the characterisation of the
system which generated the time series in question. In the case of deter-
ministic dynamic systems there are quantities available which are better
suited for this task than simply taking the model parameters. Determinis-
tic dynamical systems can be charaterised by quantities which are invariant
with respect to coordinate transformations and therefore independent of the
“channel” by which we observe the system. We will came back to that in
3.1.2.

Attractor dimension

The first invariant is the attractor dimension. There are several definitions
of attractors of dynamical systems around. Intuitively an attractor is the set
of points in the phase space which are visited by the system asymptotically
if the transient is discarded. A little bit more mathematically one could say
that an attractor is an invariant set, which is attracting - in contrast to a
repellor or a saddle point. To be attracting the set A must be a subset of
an open set U , its neighbourhood, with

lim
n→∞

inf
y∈A
||Fn(x)− y|| → 0 ∀x ∈ U .

Sometimes it is only required that A attracts a set of positive measure, which
leads to the different concept of Milnor attractors.
With respect to the dimension we can distinguish between dimensions of a
set or dimensions of a measure. The first simply considers all points of a
set, the latter also takes into account how often this points are visited by
the system.
Let us first consider the box-counting dimension, which is an example of the
first, but can be considered also in the more general framework of the latter.
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Box-counting dimension of a set A: There are several equivalent
definitions of this dimension. One possibility is to partition the phase space
of our system by hypercubes with a side length ε. Then we call Nε(A) the
number of cells, which are intersected by the attractor A. The box-counting
dimension D0 is then defined as

D0 = lim
ε→0
− logNε(A)

log ε
.

This is a property of the set only. It is invariant with respect to smooth
invertible transformations of the phace space.
Examples: Fixed point attractors have dimension zero, limit circles 1, quasiperi-
odic motion on a torus 2. Middle thirs cantor set: Repellor of

xn+1 =
3x if x ≤= 1/2

3− 3x if x > 1/2; .

is a Cantor set. With ε = 3−n and Nε = 2n we get D0 = log 2/ log 3 = log32.
Before considering dimensions that take the measure into account, let us
first discuss the entropy.

KS-entropy

While the dimension gives us information about the number of active de-
grees of freedom of the dynamical system, there is a second, complementary
quantitiy, the metric or Kolmogrov-Sinai entropy which tells us about the
randomness or irregularity of the dynamics. Basically it measures the un-
certainty of the next observation given all the observations from the past.
To describe this we use the notion of an invariant measure. Remeber the
probability space (Ω,B, P ) containing of a set of possible events Ω, a σ-
algebra of subsets B (Set of subsets of Ω) and the probability measure P .
Each set of events A ⊆ B has a probability 0 ≤ P (A) ≤ 1, P (Ω) = 1. Now
our set of events is the phase space X of our dynamical system. We say
a measure µ is invariant under a transformation F : X → X, or F is a
measure preserving transformation wrt to µ if

µ(F−1A) = µ(A) ∀ A ∈ B . (3.3)

Let us consider some probability space (X,B, µ) and a finite or countable
index set I. A collection of measurable subsets, ξ = {Cα ∈ B|α ∈ I} is
called a measurable partition of X if

1. µ(X \ ∪α∈ICα) = 0, i.e. the partition “contains” the whole measure.
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2. µ(Cα1 ∩ Cα2) = 0 if α1 6= α2, i.e. the cells Cα of the partition are
disjoint.

The entropy of µ with resepect to the partition ξ is then

H(ξ) := Hµ(ξ) = −
∑
α∈I

µ(Cα) logµ(Cα) ≥ 0 . (3.4)

Example: Logistic map
xn+1 = 1− 2x2 (3.5)

with the partition C1 = [−1, 0),C2 = [0, 1]. µ(C1) = µ(C2) = 1/2. Therefore
H(ξ) = log 2.
Now let us consider two partitions ξ = {Cα|α ∈ I} and η = {Dβ|β ∈ J}.
Then the joint partition ξ ∨ η is defined as

ξ ∨ η := {C ∩D|C ∈ ξ,D ∈ η, µ(C ∩D) > 0}

It is also possible to define the conditional entropy of ξ given η using the
notation µ(A|B) = µ(A ∩B)/µ(B) as

H(ξ|η) := −
∑
β∈J

µ(Dβ)
∑
α∈I

µ(Cα|Dβ) logµ(Cα|Dβ) (3.6)

which can be written alternatively

H(ξ|η) = H(ξ ∨ η)−H(η) .

Now we are able to define the entropy of the transformation F with respect to
the partition ξ. First we introduce the joint partition of ξ and its preimages
under F

ξF−n := ξ ∨ F−1(ξ) ∨ . . . ∨ F−n+1(ξ) .

Example: ξF−2 for the logistic map (3.5) consists of the intervals between

the points−1,−
√

(1/2), 0,
√

(1/2), 1, withH(ξF−2) = log 4 andH(ξF−2|ξF−1) =
log 2.

A this point we can also employ a complementary way to introduce
these entropies, namely as entropies of a symbol sequence. Think of using
the partition ξ to encode the phase space of the dynamical system. The
trajectory {x1, . . . , xn} is encoded by a symbol sequence {α1, . . . , αn}, if
x1 ∈ Cα1 ,x2 ∈ Cα2 and so on. If we denote the probability to observe a
certain symbol by p(α) = µ(Cα) we get for the entropy

H(ξ) = H(α) = −
∑
α∈I

p(α) log p(α) .
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with α denoting the random variable which can have the value α with prob-
ability p(α). What corresponds then to ξF−n? Being in a cell of this partition
means that the trajectory was at time n in Cαn , at n − 1 in Cαn−1 and so
on. Thus the measure of one cell of this partition corresponds to the joint
probability p(αn, αn−1, . . . , α1), i.e. the probability of a certain subsequence
of the string. Consequently the conditional entropy

H(ξF−2|ξF−1) = H(α2|α1) = −
∑

α1,α2∈I
p(α2, α1) log p(α2|α1)

is denoting the uncertainty of observing the symbol α2 after α1 was seen.
The metric entropy of the transformation F relative to the partition ξ
(sometimes also called the entropy rate of the process generated by F ) is
defined as

h(F, ξ) := hµ(F, ξ) := lim
n→∞

1

n
H(ξF−n) (3.7)

which is equivalent to

h(F, ξ) = lim
n→∞

H(ξ|F−1(ξF−n) . (3.8)

H(ξ|F−1(ξF−n) is monotonically decreasing. This can be shown using the
representation via the symbol sequences:

H(ξ|F−1(ξF−n) = H(α0|α−1, . . . , α−n+1) := hn

Then

hn − hn+1 = H(α0|α−1, . . . , α−n+1)−H(α0|α−1, . . . , α−n)

= MI(α0 : αn|α−1, . . . , α−n+1) ≥ 0

is a conditional mutual information.

The KS-entropy of F with respect to µ is then defined as the supremum
over all partitions:

hKS(F ) := hµ(F ) := sup
ξ,h(ξ)<∞

hµ(F, ξ) . (3.9)

A generating partition ξg is a partition for which the metric entropy is
maximal, i.e.

h(F, ξg) = hKS(F ) .

There is however, in general no algorithm to find generating partitions for
arbitrary dynamical systems. For 1-dimensional maps it is known how to
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find them and for 2-d also an algorithm exists, which allowed to determine
the generating partitions for well known systems, such as the henon map
Grassberger and Kantz (1985) or the standard map ?.
But if we cannot find a generating partition, is it possible to estimate the
KS-entropy? Yes, because in most cases (nonatomic Borel measure on a
compact metric space) a finer and finer refinement of the partition allows to
get better and better estimates. Or more formally: If I consider a sequence
of partitions ξi with diam(ξi) → 0 (diam(ξi) := supC∈ξ diam(C)), then
h(F, ξi)→ hKS(F ). An important property of the KS-entropy is that

hKS(F k) = khKS(F ); . (3.10)

This should be taken into account, when estimating entropies from flow data
using a delay embedding.

Lyapunov exponents

The central property of chaotic dynamics is its sensitive dependence on
the initial conditions, i.e. the exponential divergence of initially neigh-
bouring trajectories. In order to keep the dynamics bounded, however,
this “stretching” of the attractor has to be complemented by a folding
mechanism, which brings points together which were far away from each
other. If we look only locally at the dynamics wo only see the stretch-
ing. So, if we denote the distance between two trajectories at time n by
∆n = ||xxxn − xxx′n|| = ||Fn(xxx0)− Fn(vx′0)|| then we expect

∆n ∝ eλn

with the Lyapunov exponent

λ = lim
n→∞

lim
∆0→0

1

n
log ∆n . (3.11)

As we will see in a moment, one can define a whole spectrum of exponents
and (3.11) ist the largest one. This Lyapunov exponents allow already a
classification of deterministic dynamical systems:

• stable fixed point: λ < 0

• stable limit cycle: λ = 0

• chaotic behaviour: λ > 0
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Note that, however, for a diffusion process (random walk) ∆n ∝
√

(n), i.e.

λ ∝ log(n)
n → 0 for n→∞.

Now let us analyze the dynamics of the difference between two trajectories
xxxn and yyyn = xxxn + ∆∆∆n in more detail. Because we consider in the end
infinitesimal differences, their dynamics is governed by the linearization of
the map FFF (3.1),i.e. its Jacobian

JJJ(xxxn) =

(
∂FFF

∂xxx

)
xxx=xxxn

Jij(xxxn) =

(
∂Fi
∂xj

)
xxx=xxxn

.

This leads to a linear dynamical system with time dependent coefficients for
the perturbations ∆∆∆

∆∆∆n+1 = JJJ(xxxn)∆∆∆n .

The long term dynamics is the governed by the eigenvalues Λi of the product
of th Jacobians (

N∏
n=1

JJJ(xxxn)

)
uuu

(N)
i = Λ

(N)
i uuu

(N)
i . (3.12)

with uuu
(N)
i denoting the eigenvectors of the product of the N Jacobians.

The Lyapunov exponent λi is then defined as the normalized logarithm of
the modulus of the ith eigenvalue Λi of the product of all Jacobians along
the trajectory (in time order) in the limit of an infinitely long trajectory:

λi = lim
N→∞

1

N
log |Λ(N)

i | (3.13)

Usually the eigenvalues are ordered according their magnitude, starting with
the largest. The fact that the limit (3.13) exists and is unique was schown
by ? and is known as multiplicative ergodic theorem. This is a highly non-
trivial result because the multiplication of matrices is non-commutative and
the logarithm cannot be exchanged with the formation of the eigenvalues.
In the case of one-dimensional maps, however, the definition reduces to

λ = lim
N→∞

1

N

N∑
n=1

log |F ′(xn)|

and the existence and uniqueness is established by the usual (Birkhoff) er-
godic theorem.
Some properties:
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• The Lyapunov exponents are invariant under smooth transformations
of the phase space.

F̃FF (x̃xx) = ggg ◦FFF ◦ ggg−1(x̃xx)

Then
N∏
n=1

J̃JJn(xxxn) = J̃JJ
(ggg)
N

∏
JJJnJ̃JJ

(ggg−1)
1

yields in the limit N → ∞ the same eigenvalues and thus the same
Lyapunov spectrum as the original dynamics. This ensures that the
Lyapunov exponents are indeed invariants of a dynamical system.

• If µ is invariant under FFF then it is also under FFF−1. The absolute values
of the Lyapunov exponents of FFF−1 remain the same but the sign of
the exponents becomes reversed.

• Flow data have always at least one λj = 0.

• The Lyapunov spectra of Hamiltonian systems are symmetric wrt to
zero, because the dynamics remains invariant wrt to time reversal.

Relation between the invariants

In many cases the Lyapunov spetrum contains all informations about the
invariants of a dynamical system: The entropy is equal to the sum of the
positiv Lyapunov exponents, the so called PESIN identity

hKS =
∑
λk>0

λk . (3.14)

The KAPLAN-YORKE formula makes the connection between the Lya-
punov exponents and the fractal dimension of the attractor. If there is only
one fractal diraction, one has

DKY = n+

∑n
i=1 λi
|λn+1|

,

n∑
i=1

λi ≥ 0 >

n+1∑
i=1

λi

DKY is called the KAPLAN-YORKE or also the LYAPUNOV dimension.
A more general theorem was proven by Ledrappier and Young (1985):∑

i

Diλi = 0.

with Di being partial dimensions, i.e. dimensions in a certain direction, with
values between 0 and 1.
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Some Examples

• Linear Systems: What about the deterministic parts of the linear sys-
tems considered by the statisticians? If they are stable, they have fixed
point attractors, i.e. D = 0, only negative Lyapunov exponents and
thus zero entropy.

• One dimensional maps: They have only one Lyapunov exponent. If
λ > 0, hKS = λ, DKS = 1.

• Two dimensional maps: If λ1 > 0 > λ2:

DKS =

{
2 if |λ1| > |λ2|

1 + λ1
|λ2| else

3.1.2 Phase space recontruction — embedding theorems

Very often one can only observe one or a few variables of a higher dimensional
dynamics. The question then is: Can we reconstruct the phase space of
the underlying dynamical systems in order to estimate dimension, entropy
and the Lyapunov exponents? The answer is yes and is founded on the
embedding theorems by Whitney (1936), Takens (1980) and its extension
by Sauer et al. (1991). The basic idea is the following: If we oberve a
dynamical system

xxxn+1 = F (xxxn)

via an observation function y = h(xxx), the dynamical system (3.1) gives
rise to a dynamic of y. Takens proposed to reconstruct the original phase
space using the so called delay coordinates yyyn = (yn, yn−1, . . . , yn−m+1).
The question is now under which conditions there exists a deterministic
dynamical system G for the dynamics of yyy and how it is related to F?
Obviously, FFF induces a dynamics for yyy because

yn+k = h(xxxn+k) = h(F k(xxxn)) .

But exists there a also a dynamical system

yn+1 = G(yyyn)

and is the map between the two state spaces invertible, i.e. will we have a
one to one relationship between xxx and yyy? The answer is that under generic
conditions m has to be large enough to ensure this one to one relationship.
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Whitney proved that every D-dimensional smooth manifold can be embed-
ded in the R2D+1, and that the set of maps forming an embedding is a dense
and open set in the space of C1 (continously differentiable) maps. Thus for
an arbitrary map ∈ C1 there exists an embedding in its neighborhood. Tak-
ens applied this to attractor reconstruction using delay coordinates. Sauer
et al. improved the result of Takens and extented it to more general situ-
ations. Their central result is, that the recontructed state space has to be
at least of dimension m > 2D0, with D0 the box counting dimension of the
attractor, in order to have almost every embedding of the original phase
space being one to one for the states and the Jacobian (Immersion).
Sauer et al. also considered the question, whether filtering the data could
affect to possibility of a proper embedding. The result was, that the appli-
cation of finite impuls response (FIR) filters to the delay coordinates would
still allow an embedding, as long as enough independent observables will
be considered. On the other hand, IIR filters might change the properties
of the dynamical system (they are a dynamical system by themselves) and
therefore affect the dimension and entropies of the whole system. Consider
for instance the following extented Henon map:

xn+1 = 1−Ax2
n +Byn (3.15)

yn+1 = xn (3.16)

zn+1 = αzn + xn (3.17)

Even for |α| < 1 this additional degree of freedon can increase the attractor
dimension.
Up to this point we only discussed to which extend the properties of a given
dynamical system can be recovered in the reconstructed phase space, e.g.
by using a delay embedding. Here two remarks are in order:

1. For practical applications there might be better or worse phase space
reconstruction. For instance, in the case of the delay embedding the
delay time τ has to be selected, which we set to 1 so far, but which
can be set arbitrarily in principle — with some exceptions for periodic
processes, remember the discussion of the aliasing problem. Also, if
more then one observable is available, one can ask, which coordinates
should be used, delay coordinates from only one, or some mixed delay
vector of the two, but which one? There is up to now no general
method to find optimal state space reconstructions, but there are some
pragmatical approaches available, which we will discuss later.

2. Up to now we started with a dynamical system and a given “true”
state space. This is, however, not the situation, which we will find
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in practice. There we want to characterize the system, which has
produced the data, but there is nothing like a “true” state space - there
are only equivalent representations of one physical system and one of
them is our state space reconstruction. There might be, however, some
of them easier to interpret than others.

False nearest neighbors

TISEAN program: false nearest
How can we detect a sufficiently large embedding dimension m? One Possi-
bility is to look for so called false nearest neighbors (Kennel et al. (1992)).
The idea is to use the geometrical structure induced by the deterministic
character of the dynamics, i.e. the fact that the attractor lies in a low-
dimensional manifold. As long as the embedding dimension is too low,
there is no one to one embedding of the attractor and neighbouring points
in the embedding space might not be neighbours in the phase space. Thus
if a point xxxi is a nearest neighbour to xxxj in m dimensions, but not in m+ 1
dimensions, it is called a false neighbor 2 .
Then with increasing m the fraction of false nearest neighbours is estimated.
If this fraction drops for some m∗ this is a good candidate for a minimal
embedding dimension. Usually, it drops already for m > D0, which might
not be sufficient as an embedding dimension, depending what one wants to
analyze. There are, however, some pitfalls of this algorithm, which one has
to aware of:

• In chaotic systems also true neighbours become more seperated when
increasing the embedding dimension due to the effect of the chaotic
dynamics.

• If the data are noisy the signature of the determinism becomes weak-
ened.

• If the attractor is strongly folded in the reconstructed phase space the
neighborhood size has to be small enough to separate several sheets of
the folded attractor.

2In false nearest a slighty different criterion is used: if the distance in m + 1 is larger
than factor times the distance in m dimensions it is considered a false nearest neighbor.



38 CHAPTER 3. NONLINEAR TIME SERIES ANALYSIS

3.1.3 Dimension and entropy estimation

Box-counting dimensions and — entropies

TISEAN implementation: boxcount.
Univariate data: Let us start with a time series ofN data points {x1, . . . , xN}.
If we have data from an interval [xmin, xmax] encoding the data with k-
symbols corresponds to a partition of the reconstructed phase space with
hypercubes of side length ε = xmax−xmin

k . In the m-dimensional recon-
structed phase space spanned by the points xxxn = (xn, xn−1, . . . , xn−m+1)
we can count how often each of the hypercubes is visited. The relative fre-
quencies defines a probability distribution on the cells of this partition and
we can estimate its Shannon entropy

H(m, ε) = −
∑

pj log pj with pj =
nj
N

(3.18)

The information dimension can then be estimated by looking at the slope
of H(m, ε) with respect to − log ε, because

H(m, ε) = const−D1 log ε+O(ε) .

Clearly, for k = 1 and therefore ε = xmax− xmin only one box is filled, with
p = 1 and H(ε) = 0. On the other hand, for sufficciently small ε, each cell of
the partition contains only one point therefore pj = 1/N and H(ε) = logN .
This is clearly a finite sample effect. The entropy (3.18) is only a good
estimate of the entropy of the invariant measure if ε is not too small, or N
is large enough, respectively. For a more detailed discussion of finite sample
effects and its correction see Grassberger (2003).
The dimension

D1 = lim
ε→0
− Hε

log ε
(3.19)

is called the information dimension. It is possible to introduce a whole
family of Dq, the so called Renyi dimensions, using the Renyi entropies

H(q)(ε) =
1

1− q
log
∑
j

pqj (3.20)

and corresponding dimensions

D(q)(m, ε) = lim
ε→0
−H

(q)
ε

log ε
. (3.21)
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Exercise: Show using the rule of l’Hospital that

lim
q→1

H(q)(ε) = −
∑

pj log pj .

If the Dq are different the system is called multifractal. Several methods,
like multifractal analysis and the thermodynamic formalism builds upon the
Renyi entropies and dimensions, respectively.

Estimating the KS-entropie

Estimating the KS-entropy using the box-counting entropy estimatesH(m, ε)
is straightforward:

1. Find an embedding dimension m0, which is large enough, at least
m0 > D0.

2. Estimate H(m, ε) for some values of m ≥ m0. Estimate the conditional
entropies

h(m, ε) = H(m+ 1, ε)−H(m, ε) (3.22)

plot h(m, ε) as a function of log ε and look for a plateau h(m, ε) ≈ const
at some ε range. The ε has to be large enough to minimize finite sample
effects, but also small enough to resolve the deterministic structure.

3. If the h(m, ε) remains also constant for increasing m the value might
be used as an estimate for hKS .

There are, however, severe problems with this procedure. Although the
h(m, ε) are monotonically decreasing, i.e. h(m, ε) ≥ h(m + 1, ε) we cannot
expect that h(m, ε) estimated from the data gives an upper bound for the
h(∞, ε), because the finite sample effects lead to an underestimation of the
conditional entropies. Thus also alternative methods should be used to
estimate the KS-entropy from a time series, such as the correlation entropy
and the Lyapunov exponents.

The correlation dimension

TISEAN implementation d2
The most popular quantity from nonlinear time series analysis is the cor-
relation dimension. For low dimensional data it can be reliably estimated
already from relatively short data sets with a relatively simple algorithm.
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Mathematically the correlation dimension of a measure µ is defined as fol-
lows:

D2 = − lim
ε→0

log
∫
X µ(B(xxx, ε))dµ(xxx)

log ε
(3.23)

with B(xxx, ε) denoting the Ball of radius ε centered at point xxx, i.e. the set
of points yyy with ||xxx − yyy|| < ε. It is estimated from N data points via the
correlation sum

C(ε) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

Θ(ε− ||xxxi − xxxj ||)

with Θ being the Heaviside step function Θ(x) = 0 if x ≤ 0 and Θ(x) = 1 if
x > 1. That means we count the fraction of distances between data points
in the phase space, which is smaller than ε. In the limit N →∞ we expect
C to scale like a power law, C(ε) ∝ εD, and we can define the correlation
dimension by

D2(N, ε) =
∂C(ε,N)

∂ log ε
(3.24)

D2 = lim
ε→0

lim
N→∞

D2(N, ε) (3.25)

In practice, however, we have only a finite amount of data, so we cannot
perform the limits and so he have to estimate the dimension at finite res-
olution ε. Therefore one usually plots D2(m, ε) via log ε (see Fig. ??) for
the example of the henon map. Then one has to identify a region, where it
is approximately constant and can then estimate it by fitting a stright line
in the log-log plot of C(ε). This plateau or scaling range is limited on the
large scales, because if ε is too large, the structure of the attractor cannot
be resolved and usually the dimension is overestimated3, while the lower
end might be determined by the accuracy of the measurement (how many
digits), the number of data points and/or the amount of noise.
If the embedding dimension m is too small and the amount of data is suf-
ficiently large the plateau should appear at the value of the embedding
dimension D2 = m. Only if the embedding dimension is larger than D2 we
can expect to find a plaeau et the value of the attractor dimension. This
happens usually alread for m > D0 and not only for m > 2D0, the cor-
rect embedding dimension. The explanation is that the self-intersections of
the attractor have zero measure and therefore do not affect our dimension

3Note that this might be totally different for strongly correlated data, such as highly
sampled flow data.
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estimates. However, for prediction or modelling this self-intersections are
important and that m might be too small.

Temporal correlations and the Theiler correction

There is an important practical problem, which lead to many spurious di-
mension estimates in the past, the problem of temporal correlations. We use
the number of neighbours of xxx with a distance smaller than ε to estimate
the measure of µ(B(xxx, ε)), i.e. the probability to find a point in the ε neigh-
bourhood of xxx. If now the actual neighbours of these points are not only
neighbours in the phase space but also neighbours in time, we get obviously
a biased estimate. There might be even contributions to this bias from the
other points in the neighbourhood and their temporal correlated neighbours
if they are also neighbours of the first point. Theiler (1986) proposed there-
fore to exclude all points in a teporal window around the refence point from
the calculation. This is sometimes called the “Theiler window” nTW . The
formula for the correlation sum then reads

C(ε) =
2

(N − nTW (N − 1− nTW )

N∑
i=1

N∑
j=i+nTW +1

Θ(ε− ||xxxi − xxxj ||) .

To determine a good value of this window Provenzale et al. (1992) introduced
the so called space time separation plot (in TISEAN stp).

3.1.4 Estimating the Lyapunov exponents

The largest Lyapunov exponent

TISEAN: lyap k, lyap r For the restimation of the largest Lyapunov expo-
nent the expansion rate has to be estimated. This is done by calculating
the logarithm of the mean difference between points which were initially in
the neighbourhood of a reference point and finally also averaging over these
reference points:

S(∆n) =
1

N −∆n

N−∆n∑
n=1

log

 1

|U(xxx′)
|
∑

yyyn∈U(xxx′)

|vyn+∆n − xxxn+∆n|

 (3.26)

Then the linear slope of S(∆n) should be an estimate of the largest Lya-
punov exponent, becaue the difference will be dominated by the largest
exponent. Beside the usual embedding parameters one has also to specify
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the neighbourhood, either by its diameter ε or by the number of neighbours.
The program lyap k estimates the stretching factor for a set of neighbour-
hood sizes and provides some statistics about the numbers of neighbours
found.

Lyapunov spectrum

A reliable estimation of the Lyapunov spectrum is in most cases only possible
if the system equations are known or a global model is available for a given
data set. In this case we can estimate the Jacobian from the equations.
Nevertheless, the product of the Jacobians will become singular, so it cannot
be evaluated. Therefore usually a procedure introduced by Benettin et al.
(1980a,b) is used: A set of orthogonal vectors, spanning the phase space is
iterated using the linearized dynamics. After a few steps the vectors become
more and more aligned in the direction of the largest Lyapunov exponent.
Therefore the vectors are iteratively othonormalized, beginning with the
largest one and the scaling factors are stored. The Lyapunov exponents are
then estimated by the averages of the logarithms of the scaling factors.
One possibility to estimate the Lyapunov spectra from data would be to
estimate the Jacobians directly from the data (TISEAN: lyap spec). This
corresponds to fitting loacally linear models, which will be discussed later.
At this point we will only mentions some problems of this approach:

• The local neighbourhoods used for the linear fit has to be large enough
to avoid fitting the pecularities of the noise.

• On the other hand side the local neighbourhood has to be small enough
not to smear out the nonlinear structures of the attractor.

• Very often this method does not provide robust estimates of the ex-
ponents. Thus, although conceptionally appealing because it contains
all information about the invariants, only estimating the Lyapunov
spectrum from data might be actually a bad idea.
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