
Chapter 2

Linear models

2.1 Overview

Linear process: A process {Xn} is a linear process if it has the representation

Xn =
∞∑
j=0

bjεn−j

for all n, where εn ∝ N(0, σ2) (Gaussian distributed with zero mean and
variance σ2 and

∑∞
j=0 b

2
j <∞. Thus a time series of a linear process could

be generated by applying a linear filter to Gaussian noise.
Linear processes are modeled using the following model classes:

Moving average(MA-)model of order q:

Xn = εn +

q∑
l=1

blεn−l

By setting b0 = 1 this can be written as

Xn =

q∑
l=0

blεn−l .

Using the shift operator Bxn = xn−1 we can write

Xn = (1 +

q∑
l=1

blB
l)εn . (2.1)
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Autoregressive(AR-)model of order p:

Xn =

p∑
k=1

akXn−k + εn

or

(1−
p∑

k=1

akB
k)Xn = εn

ARMA-models of order (p, q):

xn =

p∑
k=1

akXn−k + εn +

q∑
l=1

blεn−l

with

(1−
p∑

k=1

akB
k)Xn = (1 +

q∑
l=1

blB
l)εn (2.2)

State space models: They re equivalent to the the ARMA model class
and are written as

xxxn = AAAxxxn−1 +Kεεεn

yyyn = CCCxxxn + εεεn

in the so called innovation representation.

Basic properties of linear models:

� If the inputs ε are Gaussian iid noise then the x values are Gaussian
distributed too.

� Any stationary process can be represented by a linear model with
infinite model order and uncorrelated residuals εn, which, however,
are only independent, if the process is real a linear one.

2.1.1 The autocorrelation function

We introduced already the autocorrelation

ρ(t1, t2) =
Cov[Xt1 , Xt2 ]√

Cov[Xt1 , Xt1 ]Cov[Xt2 , Xt2 ]
.
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Under the assumption of stationarity this is equal to

ρ(τ) =
Cov[Xt, Xt+τ ]

Cov[Xt, Xt]
=
C(τ)

σ2
.

with C(τ) denoting the autocovariance function.
Because the covariance is symmetric we have C(τ) = C(−τ) and C(0) = 1.
The autocorrelation function is the normalized autocovariance function

ρ(τ) =
C(τ)

C(0)
.

The estimator of the autocorrelation function estimated from a time series
is called the sample autocorrelation function ρ̂(τ). In practice there are used
more than one estimator for the autocovariance function:

Unbiased estimate:

Ĉ(τ) =
1

N − τ

N−τ∑
k=1

(xk − µ̂)(xk+τ − µ̂)

The problem is that for large τ only a very few samples enter.

Biased estimate:

Ĉ(τ) =
1

N

N−τ∑
k=1

(xk −−µ̂)(xk+τ − µ̂)

How can we test that some data are uncorrelated, as e.g. the residuals {εn}
of our linear models should be? There are a lot of proposals in the literature,
however they assume that the data are not only uncorrelated but iid. i.e.
independent.
The most simple one is to use the fact that for large N the sample auto-
correlations of an iid sequence with finite variance are approximately iid,
normal distributed with a variance 1/N (τ � N), thus 95% of the sample
autocorrelations should fall into the interval ±1.96/

√
N . If there more than

5% of the values fall outside this bound, we should think about rejecting the
hypothesis.
Another possibility is the Portmanteau test with the test statistic

Q = N
m∑
j=1

ρ̂2(j)

which is distributed according to a χ2-distribution with m degrees of free-
dom.
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2.1.2 Autocorrelation function of MA-models

In the case of the MA-models the autocorrelation gives us the order of the
model, because

C(τ) = Cov[Xn, Xn+τ ]

=

{
0 if τ > q

σ2
∑q−τ

k=0 bkbk+τ if τ ≤ q

Thus for any process with a non-vanishing correlation function for larger τ
the moving average model might be a bad choice for the model class.

2.2 Autoregressive models

2.2.1 AR(1)-model

Let us first look at an example. The simplest autoregressive model is the
AR(1)-model

xn = axn−1 + εn (2.3)

containing only one parameter a. The deterministic part describes an ex-
ponentially damped motion with the fixed point x = 0. The invariant dis-
tribution results from this damping toward the origin and the simultaneous
excitation by the noise. If the noise ε is Gau”ssian also the state variable x
is Gaussian distributed and can be characterized by its mean and variance.
Because εi has zero mean, also µ = E(x) = 0. The variance can be esti-
mated easily from (2.3) by squaring both sides and building the expectation
taking into account that εn and xn−1 are uncorrelated:

E(x2) = a2E(x2) + E(ε2)

leads to

σ2(x) =
σ2
ε

1− a2
.

In particular, we see that the variance will diverge if a is approaching 1, i.e.
if the deterministic dynamics becomes unstable.
In the last chapter we considered iid samples, i.e. to subsequently measured
samples should be statistically independent. Now we have temporal correla-
tions. Multiplying both sides of (2.3) with xn−1 and taking the expectation
value we get

E(xnxn−1) = aE(x2
n−1)
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or

a =
E(xnxn−1)

E(x2
n)

i.e. the model parameter a is given by the value of the normalized autocor-
relation function for one time step delay. Thus it seems obvious to estimate
the model parameter using estimates of the autocorrelation function. This
can be generalized for autoregressive models of arbitrary order and is known
as the Yule-Walker algorithm.
How would the AR(1)-process looks like if we would represent it by a MA-
model? By recursively inserting (2.3) we get

xn = a2xn−2 + εn + aεn−1

= a3xn−3 + εn + aεn−1 + a2εn−3

= . . .

=

∞∑
k=0

akεn−k

i.e. bk = ak.

2.2.2 Stability of AR-models

Let us now consider the general AR-model

Xn =

p∑
k=1

akXn−k + ε .

In order to study its stability we rewrite it in matrix form

XXXn = AAAXXXn−1 + εεε

with XXXn−1 = (Xn−1, . . . , Xn−p)
T , εεεn = (εn, 0, . . . , 0)T

A =


a1 a2 . . . ap−1 ap
1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 1 0


The model is stable, if the absolute vale of the eigenvalues of AAA is smaller
than 1. The eigenvalues are given by the zeros of the characteristic polyno-
mial

zp − zp−1a1 − . . .− zap−1 − ap = 0 .
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Complex zeros correspond to damped oscillatory behavior, real zeros to pure
relaxatory behavior as in the AR(1)-model. If the zero are

zk = rke
−iφk fk =

φk
2π
· fs γ = −fs ln r

the model is stable if rk < 1 for all k.

2.2.3 Estimating the AR-parameters

Least square estimation

(ar-model in TISEAN, lpc in MATLAB)
The most common way to test the quality of a model is to use it as a
predictor and to calculate the prediction error by the mean square error, i.e.

MSE =
1

N − p

N∑
n=p+1

(xn − x̂n)2 (2.4)

with estimating x̂n by the linear predictor

x̂n =

p∑
k=p+1

akxn−k . (2.5)

Thus an obvious way to estimate the parameter ak from data would be to
minimize the prediction error

0
!

=
∂1/N

∑N
k=1(xn − x̂n)2

∂ak

0 =
1

N − p

N∑
n=p+1

(xn −
p∑

k′=1

ak′xn−k′)xn−k

leading to a system of linear equations:

1

N − p

N∑
n=p+1

xnxn−k =

p∑
k′=1

ak′
1

N − p

N∑
n=p+1

xn−k′xn−k (2.6)

which can be solved using standard techniques. The resulting estimator
for the ak is also known as least squares estimator. Recognizing that he
equations contains some kind of sample autocorrelation function it can be
written as

Ĉ ′(k) =

p∑
k′=1

ak′Ĉ ′(k − k′) (2.7)

with asymptotically for large N Ĉ ′(k − k′) = Ĉ(k − k′).
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Yule-Walker algorithm

(aryule in MATLAB)
Another possibility to derive an estimator starts directly from the model

xn =

p∑
k=1

akxn−k + εn .

Multiplying both sides with xn−k′ and calculating the expectation value
leads to

E(xnxn−k′) =

p∑
k=1

akxn−kxn−k′ .

by taking into account that E(xkεm) = 0 for k < m. Moreover, because
E(xn) = 0, we get

C(k′) =

p∑
k=1

akC(k − k′) . (2.8)

These equations for the autocorrelation function are called Yule-Walker
equations. If we replace the autocorrelation function by its sample esti-
mate and solve the equations for the ak we get the Yule-Walker estimate for
the parameters. This estimates is as good as our sample estimate is for the
autocorrelation function.
Comparing (2.8) with (2.7) we recognize that they differ only in estimating
the correlation function of the right hand side and that the coincide asymp-
totically for N →∞.
Not that (2.8) implies that the autocorrelation function contains all infor-
mation about the model parameters. Or in other words: A linear process
is fully specified by its autocovariance function. We will use this property
later for constructing tests for non-linearity of time series.

Burg algorithm

(arburg in MATLAB)
A third algorithm for parameter estimation is the Burg algorithm. Here not
only the the forward prediction error is minimized, but also the backward
prediction error. This is based on the fact that linear processes are invariant
with respect to time reversal. The probabilities p(xn|xn−1, . . . , xn−k) =
p(xn−k|xn−k+1, . . . , x1). The main advantage of this algorithm is that it
always provides stable models.
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Maximum Likelihood Estimation

While minimizing the the mean square error is a reasonable pragmatic strat-
egy there is a more systematic approach to the problem of an optimal pa-
rameter estimate. For instance, we can as, how likely it is, that given certain
values of the parameters, the data were produced by the given model, i.e.
p(data—parameter). We can ask for the values of the parameter, for which
the observed data were most likely. An estimator, which maximizes this
likelihood is called maximum likelihood estimator. How does it looks like
for the autoregressive model? We start with the assumption of indepen-
dent Gaussian distributed residuals εn. The probability of the sequence of
residuals is given by

L =
N∏

i=p+1

p(εi)

L =

N∏
i=p+1

1√
2πσ2

exp

(
− 1

2σ2
(xi −

p∑
k=1

akxi−k)
2

)

−2 logL = (N − p) log(2πσ2) +
1

σ2

N∑
i=p+1

(xi −
p∑

k=1

akxi−k)
2 .

Thus, maximizing the likelihood or the log-likelihood corresponds to mini-
mizing the mean square errors, i.e. to least squares estimation in this case.
But even the maximum likelihood approach could be criticized because it
assumes that we observed a typical data set and so one has for instance
problems with outliers. Because by calling a data point an outlier we say
it is very unlikely that our system under study produces such a data point.
How can we incorporate this kind of knowledge in our analysis? This is done
in Bayesian statistics. Here we do not maximize the likelihood of the data,
but we ask, how likely is a given parameter given the data. Because we only
know the likelihood p(data|parameter) we use Bayes’ rule to estimate the
probability of the parameter values given the data:

p(parameter|data) =
p(data|parameter)p(parameter)∑

parameter p(data|parameter)p(parameter)

We can then use either the most probable parameter value or the condi-
tioned expectation as an estimate. The main difference to the maximum
likelihood estimate is the so called “prior” p(parameter), which contains our
assumptions about reasonable models. In particular, the posterior proba-
bility p(parameter|data) cannot be non-zero for parameter values with zero
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prior probability. The maximum posterior estimate is equal to the maximum
likelihood estimate if we assume a constant prior.

2.2.4 Estimating the parameters of ARMA-models

While the parameter estimation in the case of the AR-models led to the
problem of solving a system of linear equations, this is not the case anymore
for ARMA and state space models. Therefore nonlinear, usually iterative
procedures or approximations are necessary.

The Hannan-Rissanen algorithm

Here the parameter estimation is divided into two steps:

1. A high-order AR(m)-model is fitted to the data, with m > max(p, q).
This model is used to estimate the noise terms

εn = Xn −
m∑
k=1

âkXn−k .

2. In a second step the parameters of the ARMA(p,q)-model are esti-
mated by a least squares linear regression ofXn onto (Xn−1, . . . , Xn−p, εn−1, . . . , εn−q)

2.2.5 Order selection

Before estimating the parameters of the model we have to specify the order
p. Increasing the order p usually leads to smaller prediction errors. Does it
mean that is also produces the better model? No, this is not the case.
From a statistical point of view and starting from the assumption of an
underlying “true model” one has to note that at least the variance (and
perhaps also the bias) of the estimator increases if I increase the model
order for a fixed number of data and thus the probability that the true
values are near the estimated ones decreases. We can, however, also adopt
another point of view without referring to the “true model”: Modeling a
time series usually intends to build a model of the system, which generated
the time series. Thus, we do not only want to describe the given time series,
but the model should be a good model for any time series produced by this
system, i.e. the model should generalize. In order to do so succesfully we
have to distinguish between the regularities in the time series and the noise.
Increasing the the model order increase the possibility that we do not fit the
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regularities produced by the system, but only the noise. This is also called
“overfitting”. To avoid this we have different possibilities, depending on our
prior knowledge about the system.

In sample and Out-of-sample error: If there are enough data available
the data set can be splitted into a training data set and a test data
set. The parameters are estimated on the training set leading to the
in-sample prediction error. The the estimated model is used to predict
the test data giving the out-of-sample prediction error.

Final prediction error: The FPE criterion was developed by Akaike 1969
by implementing the above idea for autoregressive processes, which led
to an out-of-sample prediction error estimate

FPEp = σ̂2n+ p

n− p
with σ2 being the mean square in-sample prediction error.

More general criteria based on estimations of the likelihood of the test data
given the model estimated using the training data. There are the AIC
(Akaike information criterion), its bias corrected version AICC or the BIC
(Bayes information criterion). All these criteria have to be applied with
caution, but they are often provided by software packages and can be used
to give at least an orientation.

2.3 Spectral analysis

Performing spectral analysis represents the data as sum (or integral) of
components at a single frequency. If we consider a time continous signal
x(t) of infinite length we can define the Fourier transform

x(f) =

∫ ∞
−∞

dtx(t)e−i2πft x(t) =
1

2π

∫ ∞
−∞

dfx(f)ei2πft

The spectral power or power spectrum is the given by the absolute value of
the fourier component at frequency f, i.e.

S(f) = |x(f)|2

The Fourier transform of the convolution of two functions in time is the
product of their Fourier transforms:

z(t) =

∫ +∞

∞
dτy(t− τ)x(τ) ⇒ z(f) = y(f)x(f) .
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The inverse relationship is called modulation:

v(t) = x(t)y(t) ⇒ v(f) =
1

2π

∫ +∞

∞
df ′y(f − f ′)x(f)

The power spectrum is directly related to the autocorrelation function by
the Wiener-Khinchin theorem:

C(t) =

∫ ∞
−∞

dτx(t+ τ)x(τ) ⇒ C(f) = S(f) = |x(f)|2 .

The discrete Fourier transform of the time series sampled at discrete times
can be written as

x̂(fk) =
N−1∑
n=0

xne
−i2πfk/fsn (2.9)

which is the discrete Fourier transform for fk = fsk/N and k = 0, . . . , N−1.
The inverse transform is then

xn =
1

N

N−1∑
n=0

x(fk)e
2πikn/N .

If one considers a given time series as a sample from a process which is con-
tinous in time we can ask, under which conditions the time series represents
the original process. This question is answered by the Nyquist-Shannon
sampling theorem, saying that the sampling frequency fs has to be twice
as large as the highest frequency contribution. Half of the sampling fre-
quency is also called Nyquist frequency fNyquist. This theorem is related to
the problem of aliasing. Aliasing means that a high frequency component
(f > fNyquist) of the orginal signal appears in the sampled signal as a low
frequency component. A common example of temporal aliasing in film is
the appearance of vehicle wheels travelling backwards, the so-called Wagon-
wheel effect.
The second problem is that we have only a finite time series available (win-
dowing). Both problems can be analyzed using the modulation property of
the Fourier transform. Let us consider the following periodic function

s(t) =

∞∑
n=−∞

δ(t− n∆) ∆ = 1/fs

which can be represented in a FOUREIER series with the coefficients

cn =
1

∆

∫
∆
dts(t)e−2πfsint =

1

∆
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s(t) =
∞∑
−∞

fse
2πinfst

Applying the Fourier tranform we get

s(ω) = ωs

∞∑
n=−∞

δ(ω − nωs) ωs = 2πfs

If we represent sampling the continuous function x(t) at discrete times by
multiplying with (2.3) we see that the resulting Fourier transform is a con-
volution of the original transform with the transform of (2.3). This results
in a new transform

x̃(ω) = fs

∞∑
n=−∞

x(ω + nωs) .

The effect of finite time can be analyzed similarly by multiplying the signal
with a window function. The rectangular window

wR(t) =

(
1 if − ∆

2 ≤ t < (N − 1
2)∆

0 otherwise

)
has the Fourier transform

wR(ω) = N∆
sinωN∆/2

ωN∆/2
exp−iω(1/2−N)∆

with its main contribution at ω = 0 but with a lot of side maxima which
distort the original spectrum. Therefore one uses other windows, which
taper smoothly to zero at both ends, such as the Bartlett, Welch, Hann or
Hamming windows.

2.3.1 The periodogram

The periodogram of a time series {x1, . . . , xN} is the function

Sn(fk) =
1

N

∣∣∣∣∣
N−1∑
n=0

xne
−2πifkn

∣∣∣∣∣ .
Note that there is no consensus regarding the normalization. Thus one has
to be check the normalization if one uses routines from program packages.
In order to estimate the power spectrum of the underlying stochastic process
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there is the problem that the periodogram is not a consistent estimator. In
fact, the values of the estimate are approximately distributed as exponential
random numbers, i.e. their variance is equal to the mean. Increasing the
number of data points increases the number of frequency values for which
we estimate a value but the single estimates do not become better. There
are two possibilities to overcome this problem:

1. Average over different frequency bins, which leads to spectral average
estimators. This is for instance implemented in the TISEAN routine
spectrum.

2. Welch’ method: Split the data set into possibly overlapping segments
and average the estimated periodograms. This is e.g. implemented in
MATLAB’s estimators of the power spectrum (pwelch, spectrum.welch).

2.3.2 Estimating the spectrum using ARMA models

A principal alternative to the periodogram is the estimation of the spectral
density of a stochastic process fitting a linear model to the data and using
the known spectral densitiy of this model as an estimate. Let us consider
the time shift operator BXn = Xn−1. It corresponds in Fourier space a
Multiplikation with z = e−2πifk . For an ARMA(p,q)-model written as

(1−
p∑

k=1

akB
k)xn = (1 +

q∑
l=1

blB
l)εn

we get the spectral density

x(fk) =
σ2(1 +

∑q
l=1 blz

l)

1−
∑p

k=1 akz
k

.

The autoregressive part appears in the denominator, thus small values of it
lead to high power at these frequencies. We discussed already the interpreta-
tion of the autoregressive part as a set of harmonic oscillators or linear relax-
ators, respectively. The frequencies of this oscillators correspond to the in-
verse zeros of the polynomial (1−

∑p
k=1 akz

k) = zp((1/z)p−
∑p

k=1 ak(1/z)
k.

For the spectral density the polynomial is evaluated on the unit circle only,
thus we see the nearer the poles are to the unit circle the higher and sharper
is the maximum in the power spectrum. Let us consider the example of the
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AR(2)-model.

Xn = a1Xn−1 + a2Xn−2 + εn

z2 − a1z − a2 = (z − zp)(z − z∗p)

zp = reiφ φ = ω∆ ∆ = 1/fs

a1 = 2r cosφ a2 = −r2

S(ω) =
σ2
ε

2π

1

(1− r2)2 + 4r2(cos2 φ+ cos2 ω∆)− 4r(1 + r2) cosφ cosω∆

with the maximum at

cos(ωmax∆) =
1 + r2

2r
cos(φ)

i.e. for r < 1 the maximum is not exactly at the position of the oscillator
frequency.


