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The sleeping brain as a dynamical system - insights
from time series analysis of the human sleep EEG

E. Olbrich

Abstract—The human sleep EEG is studied using a dynamical
system approach to the sleeping brain. The dynamics of the
sleeping brain is governed by multiple time scales: ranging from
the typical EEG oscillations at 1 − 30 Hz up to the ≈ 24h
circadian rhythm. Starting point is the fastest time scale - the
sleep oscillations. They are described by modeling the EEG using
adaptive linear models. The slower dynamics appear then as time
dependence of the parameters of these models.

Index Terms—sleep oscillations

I. THE SLEEPING BRAIN AS A DYNAMICAL SYSTEM

The sleeping brain is a complex dynamical system. It shows
a rich repertoire of internally generated dynamic patterns and
transitions between states. A particular property of the sleeping
brain is that it exhibits dynamics on very different time scales.
A sketchy overview is given in Table I. According to the two
process model of sleep regulation the interaction between the
circadian rhythm and the homeostatically regulated sleep pres-
sure S determines the transitions between sleep and waking
[1] while an ultradian process controls the alternation between
NonREM and REM sleep.
The slow oscillation of the membrane potential of cortical
neurons between “up” (depolarization) and “down” (hyperpo-
larization) states giving rise to the slow waves in deep sleep
and K complexes in light sleep [2]. Between these two time
scales some authors assume an additional process leading to
an alternation between phasic and tonic activity, the so called
cyclic alternating pattern (CAP) [3]. The different time scales
are not independent. The sleep stages, for instance, are defined
with respect to the occurrence of certain oscillatory patterns
[4]. The central marker for sleep homeostasis is the slow wave
activity that is usually defined as the spectral band power in
the delta frequency band ≈ 0.5− 4.5 Hz.
In the following a general framework will be proposed that
allows to analyze systematically the connection between the
different time scales by reconstructing appropriate state spaces
using parameters of the models of the faster time scales as
state vectors for the slower dynamics. After discussing the
character of the human sleep EEG as a time series the general
framework of the analysis following [5] will be introduced and
applied to the human sleep EEG starting from the fastest time
scale in sleep EEG - the time scale of the sleep oscillations
that is modeled by linear models. It will be discussed, how
the sleep oscillations are described by these models and how
the parameter dynamics, i.e. the dynamics on the next slower
time scale is related to the temporal organization of these sleep
oscillations.
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TABLE I
THE DIFFERENT TIME SCALES OF THE SLEEP DYNAMICS

≈ 24 h Circadian rhythm and sleep homeostasis

≈ 60− 90 minutes ultradian process
alternation between REM and NonREM sleep

several seconds transitions between NonREM
to several minutes sleep stages

several seconds Cyclic alternating patterns (CAP)

& 1s Slow oscillations between “up”
(high firing rate) and a “down” (no firing) states

1− 20 Hz The typical sleep oscillations: delta oscillations,
sleep spindles, alpha and theta oscillations

II. THE CHARACTERISTICS OF THE HUMAN SLEEP EEG AS
A TIME SERIES

The electroencephalogram (EEG) is resulting the summed
postsynaptic activity of large numbers of neurons primarily
of the cortex. For clinical purposes one looks usually for
particular patterns in the EEG, which are thought to represent
some kind of synchronized activity. From the viewpoint of
data analysis the EEG has traditionally been described as a
stochastic process often characterized by its spectral proper-
ties.

After the discovery of the phenomenon of deterministic
chaos, i.e. the fact that low dimensional nonlinear deterministic
systems could generate aperiodic signals it was speculated that
also the EEG might be a chaotic signal because the brain as the
underlying dynamical system is deterministic and nonlinear.
By applying the Grassberger-Procaccia algorithm [6], [7] to
the human sleep EEG several researchers (e.g. [8], [9], [10],
[11], [12], [13]) found that the correlation dimension varied
with the sleep stages being lower in deeper sleep, higher in
light sleep and highest in REM sleep. This appealed very much
to the intuition that the dynamics during deep sleep should
be less complex compared to the dynamics in light sleep or
even the dynamics during REM sleep and the awake state.
Nevertheless, already from the beginning these results have
been questioned for several reasons: From a general point of
view it seems very unlikely that such a complex system as the
brain should produce an activity which can be described by
low-dimensional dynamics. Moreover, the interpretation that
finite values of the correlation dimension were a sign of low
dimensional chaos had been challenged by the finding that also
correlated noise exhibiting power law spectra P (f) ∝ f−β ,
can produce finite estimates for the correlation dimension
[14]. Furthermore, in [15] a low pass filter to white noise
was applied and it was shown that the resulting time series
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produced finite estimates of the correlation dimension. These
studies demonstrated that finite correlation dimensions can
result already from linear stochastic processes. To avoid these
spurious finite estimates, Theiler [16] proposed a correction
to the original GP algorithm, which reduces the effects of
linear correlations. He showed that this correction removes the
scaling regions that lead to finite dimensions for colored noise.
In [17] it was shown that the usually reported values for the
dimensional complexity of the human sleep EEG are indeed
an effect of a missing correction for temporal correlations, also
known as “Theiler window” [16], [18]. A proper application of
the algorithms on the human sleep EEG would result in finding
the embedding dimension as dimension estimate, i.e. would
reveal that the human sleep EEG shows “stochastic behavior”
in the sense of [19]. If one, nevertheless, sticks to a smaller
“Theiler window” one can still ask, which property of the data
is reflected by a dimensional complexity measured this way.
The answer for the human sleep EEG was that dimensional
complexity measures essentially the amount of delta power.
This result can be directly related to the finding of [14]: The
power spectrum of the the sleep EEG between 1 and 20 Hz
can be fitted by a power law function except the peaks due to
spindle and sometimes theta or alpha activity. In [17] it was
shown that the corresponding exponent, the logarithm of the
delta power and the dimensional complexity estimated from
EEG segments of 1minute duration are strongly correlated.
Thus it is very likely that similar reasons as in [14] found
for fractional Brownian motion are responsible for the dimen-
sional complexity estimates in the human sleep EEG. This
does not mean, however, that the human sleep EEG is best
described as fractional Brownian motion, it only says that it
is similar and that this similarity is reflected in the dimension
estimates.
If the findings for quantities such as the correlation dimension
can be explained by linear features of the EEG such as the
spectral band power one may ask whether the sleep EEG in
general is sufficiently well described by linear models. This
type of questions is usually addressed with surrogate data
analysis. This is a method for hypothesis testing with the null
hypothesis being that the data can be fully described by a
linear model. Surrogate data are data with the same “linear”
properties, i.e. power spectrum or correlation function, as the
original data, but being random otherwise. One computes a
nonlinear test statistics, e.g. the dimensional complexity, on
both the surrogate data and the original data and rejects the
null hypothesis if the value of the test statistics is significantly
different from that of the surrogates (see [20] for an overview
and [21], [22] for some open problems).
In the case of human sleep EEG surrogate data analysis
produced evidences for the rejection of the null hypothesis
of a linear stochastic process (see e.g. [23], [13], [17]). These
analyses were performed, however, on segments with a length
larger than 10s. Because the null hypothesis includes also sta-
tionarity, its rejection can be both due to non-linearity on short
time scales, i.e. nonlinear oscillations, or non-stationarity, i.e.
an additional slow dynamics, and the test cannot distinguish
between these two possibilities. By performing the surrogate
data test on segments of increasing length it was argued in

[24] that rejections of the null hypothesis reported previously
are probably due to some additional slow dynamics on a time
scale > 1s such as 4s “periodicity” of the occurrence of
sleep spindles [25] or the occurrence of K-complexes. The
main conclusion from this analysis was that the human sleep
EEG is sufficiently well described by linear models on times
scales ≈ 1s, i.e. the time scale of the sleep oscillations,
but incorporating slower dynamics needs more complicated,
nonlinear models.

III. SEPARATING THE TIME SCALES

Considering the sleeping brain as a dynamical system means
that its state at any time t can be described by a state variable
x̃(t) and some transition function that describes how the future
state depends on the previous state.

x̃(t+ ∆) = F(x̃(t), ξ) (1)

with ∆ denoting the time difference between two observations,
i.e. the sampling interval. In general the full state might be not
observable. Therefore we have to introduce also an observation
equation

y(t) = h(x̃(t), ν(t)) (2)

with y(t) being the observed quantity, for instance one or more
EEG channels. ν is denoting the measurement noise. Taking
into account a second time scale explicitly we split the original
state x̃(t) into a new “fast” state x(t) and a parameter p with
a slower dynamics

x(t+ ∆) = Fx(p(t),x(t), ξx(t)) (3)
p(t+ ∆) = Fp(p(t),x(t), ξp(t)) (4)

y(t) = h(x(t), ν(t)) . (5)

At this point we made the assumption that the observed
quantity, here the measured EEG, does not depend explicitly
on the parameters p, but only on the state x. That corresponds
to the idea that the EEG is generated by postsynaptic potentials
and that neuromodulatory influences determine their strength
but do not influence the EEG directly.
So far Eqs. (3,4) are only a rewritten form of (1). Now the
basic idea is that the slow dynamics (4) depends not on all
details of the fast state x(t), otherwise it would be fast itself,
but only on slow features of the fast dynamics. In order to
define the notion of such a feature formally we consider the
fast dynamics (3) for fixed parameters p

x(t+ ∆) = Fx(p,x(t), ξx(t)) (6)

Thus, a probability density ρ(x(t),x(t−∆), . . . ,x(t−m∆)
exists that is invariant with respect to the dynamics and
depends on the parameter vector p. A feature fi is now defined
as an expectation value with respect to this density. Examples
for such features would be the auto- or cross-correlations
function up to a time delay m∆ or the power spectra. If the
invariant density is unique, its features would be functions of
the parameters p. Thus the parameter dynamics (4) can be
written as

p(t+ ∆) = G(p(t), f(p), ξp(t)) (7)
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In order to be consistent the time scale m∆ for the definition
of the features has to be much smaller than the typical time
scale of the parameter dynamics (7). More details and some
examples for the application of this framework can be found in
[5]. The distinction between a state variable and parameters
varying on a slower time scale can be iterated leading to a
hierarchy of descriptions. In the following we will concentrate
on the description of the fastest time scale, i.e. the sleep
oscillations and then discuss, how these descriptions might
lead to parameter dynamics on slower time scales.

IV. TIME VARYING LINEAR MODELS

The result from [24] that short segments of the human
sleep EEG (≈ 1s) can be described sufficiently well by
linear models and that nonlinear signatures found in longer
EEG segments are probably due to nonstationarities, i.e. slow
parameter changes means that in the case of the human sleep
EEG linear models should be sufficient for the description of
the fast dynamics (3). The most general form to write down a
linear model is the state space model - here in the innovation
representation:

x(t+ ∆) = Ax(t) + Ke(t) (8)
y(t) = Cx(t) + e(t) .

with the dynamical matrix A, the observation matrix C,
prediction errors (innovations) e and the Kalman gain K.
The deterministic part of the dynamics is described by the
matrix A. The dimension of yn is given by the number
of observations, i.e. the number of EEG channels that are
considered. The dimension p of x, i.e. the dimension of the
internal state is also a parameter of the model that has to
be determined from the data or by other considerations (see
below). The other parameters of this model are the matrices
A, C, K and the covariance of the innovations. In order to
study the parameter dynamics a reparametrization that allow a
better interpretation of the parameters can be obtained by the
diagonalization of A = V−1DV. This leads to

z(t+ ∆) = Dz(t) + VKe(t) (9)
y(t) = CVz(t) + e(t) .

with Eigenvalues λk = rk exp(−iφk) k = 1, . . . , p. Thus the
models (8,9) describe stochastically driven harmonic oscilla-
tors with damping constants

γk = τ−1
k = −∆−1 ln rk (10)

and frequencies
fk = φk/(2π∆) (11)

Each Oscillator k is additionally influenced by the size of its
driving noise (V−1Ke)k and its observability characterized
by (CV)Tk . The basic idea is that an oscillatory pattern
with frequency fk is observed in the EEG if the damping
γk is sufficiently small and the oscillator is observable. By
considering (9) as the description of the fast dynamics (6) with
fixed parameters, Eq. (3) corresponds to a description of the
human sleep EEG as a set of stochastically driven harmonic
oscillators with time dependent frequencies, dampings and
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Fig. 1. 20s EEG segment (derivation C3A2) from sleep stage 2. Overlapping
1s segments were fitted with an AR(8) model. Panels from top to bottom (1):
data, (2): absolute value r of the poles, (3): frequency f of the poles (4): color
coded spectrogram, warmer colors denote higher power. (5): Time course of
spectral band power: δ (0.5-4.5 Hz) blue, α (8.5-11 Hz) green, and σ (11-
16 Hz) red. Power spectra for (4) and (5) were estimated from the fitted
AR(8)-models.

possibly also time varying observability and driving noise.
Is there any counterpart from the physiological side to such
a description? The most direct connection to physiologically
motivated models can be made by considering (8) as the
linearization around a stationary state. In [26] this connection
was demonstrated using a toy model of the Wilson-Cowan
type [27] of two randomly coupled populations of excitatory
and inhibitory populations of rate1 neurons driven by ran-
dom inputs. The system can be analyzed using a mean-field
approximation. Linearizing around the fixed point solution
one gets a stochastically driven harmonic oscillator with the
frequency and damping depending on the excitatory-excitatory
and excitatory-inhibitory coupling constants.

Moreover, it was shown that when these coupling constants
are varying in time, the corresponding time dependence of
the frequencies or damping can be traced by fitting a linear
model with time dependent coefficients to the network activity.
This was performed by fitting an autoregressive (AR)-model
[26], which is a special case of the state space model (8)(see
below) on overlapping segments. A similar analysis using
more realistic models such as e.g. [28] has to be done in the
future.

A. Single channel data

Fig. 1 shows the result of this analysis to real EEG data from
sleep stage 2. There an AR(8)-model was fitted to overlapping
1s segments. The AR(p)-model has the form

y(t) =
p∑
k=1

aky(t− k∆) + e(t) (12)

1That means that only the firing rate and not the single spikes were modeled
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Eq. (12) can be casted in the form of (8) by setting

Aik =

 ak for i = 1
1 for i = k + 1
0 else

C =


1
0
· · ·
0

 Kk = ak .

The panels in Fig. 1 show different possibilities to visualize
the result of this procedure. Only the relevant frequency range
0 − 20Hz is shown. While the second and third panels show
the time dependence of the frequencies and the corresponding
modules the lower panels show the time course of the spectral
power that contains similar information because the power
spectrum P (f) of an AR-model can be directly expressed by
its parameters: The eigenvalues λk are related to the power
spectrum by

P (f) = σ2
ε

∣∣∣∣ zp∏p
k=1(z − λk)

∣∣∣∣2 z = e2πif∆ , (13)

Note, that the order of the autoregressive model p not only
determines the maximal number of oscillators p/2 that can be
modeled, but also the number of frequency bands that could
contain information that is not already contained in the other
frequency bands.
Sleep spindles can be seen in Fig. 1 at t = 9s and t = 17s.
While the AR-model has a pole in spindle frequency range
almost for the full 20s a sleep spindle is only seen in the
data, if the damping is sufficiently small, i.e. the corresponding
module r is large enough. The oscillation of this module and
therefore of the damping of the “spindle oscillator” can be
considered as an example of the slow parameter dynamics
introduced above. The two sleep spindles in this example are
both associated with some slower oscillatory patterns in delta
frequency range which however, produce not such a clear
signature in the time course of the frequencies and modules,
but could be clearly recognized in the time course of delta
power.

B. Multivariate analysis

The state space model (9) is the natural starting point for the
analysis of more than one channel. Using the full state space
model instead of only an autoregressive model adds, however,
some technical difficulties. An additional technical difficulty
stems from the fact that the estimation of the parameters of
the full state space model is not a linear problem anymore in
contrast to the AR model and thus is more time consuming
and vulnerable to local minima. Moreover, fitting a state space
model to 1s raises the danger of overfitting considerably and
does not lead to stable results in the sense that the time
dependence of the parameters becomes sufficiently continuous.
An alternative is showed in Fig. 2. There a state space model
of the form (8) with a considerably higher order p = 24 was
fitted to a 20s segment including 4 channels. In contrast to
Fig. 1 the frequencies and dampings of the oscillators are now
by definition constant over the whole 20s segment, because
only one model was fitted for the whole segment. The typical
4s “period” of the spindle occurrence is therefore visible in
the state amplitudes only. This means that, if we assume that

m

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
    

O1A2

P3A2

C3A2

F3A2

t [s]

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
t [s]

States in state space model p=24

50 Hz

46.7 Hz

43.2 Hz

13.9 Hz

13.5 Hz

12.4 Hz

6.11 Hz

4.93 Hz

1.15 Hz
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20s human sleep EEG of sleep stage 2.Top: Data, Bottom: Normalized states
<zk + =zk with the corresponding frequencies fk .
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Fig. 3. Normalized coefficients of the observation matrix (CV)T for the
four EEG channels and the three spindle frequency oscillators from Fig. 2.

this “periodicity” is due to an underlying additional dynamical
process (see [25] for an extensive discussion), this state space
model is not a generative model in the sense, that iterating it
with random inputs would generate a signal that also shows
this “periodicity”, in contrast to the AR-model with time
dependent coefficients shown in Fig. 1.

On the other hand, fitting the model to longer time segment
allows a better frequency resolution. In the presented example
one sees that the models fits three oscillators in the spindle
frequency range with slightly different frequencies. As shown
in Fig. 3 a closer analysis reveals that the slower spindles are
stronger visible in the more frontal derivations.

V. OUTLOOK

It was shown that a dynamics on different time scales can
be modeled by dividing the original state space into fast
new state variables and slow parameters. In the case of the
human sleep EEG it was argued that the fast dynamics can
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be modeled using linear models. Then the slower parameter
dynamics can be considered as the dynamics of the frequencies
and dampings of stochastically driven oscillators underlying
the sleep oscillations. Moreover, there is a direct connection
from this description to a description of slower dynamics using
spectral band power, such as slow wave activity, the spectral
band power in the δ-frequency band which is the central
observable in models of sleep homeostasis [1].
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