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Prediction and Modeling

Deterministic dynamics
xxxn+1 = FFF (xxxn+1)

which reduces to
xn+1 = F (xn, . . . , xn−m+1)

in the case of delay embedding.

Local methods: Basic idea: Looking for similar events in the past and
using their future for prediction.
Local constant (lzo-run): Using the average as prediction.
Local linear (lfo-run): Fitting a linear model for similar
events, i.e. neighbors in phase space.

Global models: Parameterizing the function FFF and fitting the parameters.
Polynomials (polynom)
Radial basis functions (rbf)
Neural networks (not included in TISEAN)
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Local constant prediction — lzo

We want to predict xn+1.

1 Looking for similar events in the past. Formally, looking for xxxk with
|xxxn − xxxk | ≤ ǫ, thus xxxk ∈ Uǫ(xxxn)

2 Then our prediction is

x̂n+1 =
1

|Uǫ(xxxn)|

∑

k:xxxk∈Uǫ(xxxn)

xk+1

Parameter:

Embedding parameter: delay d and embedding dimension m

Minimal number of neighbours and/or neighbourhood size
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Local constant prediction

Lorenz system, m = 5, d = 5
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Advantage: High flexibility and robustness.

Disadvantage: Bad approximation of FFF (xxxn).

Large bias at the boundaries.
Dynamics more regular than the original one.

Optimal number of neighbours: trade-off between bias and variance of F̂FF
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Local constant prediction

Logistic map, m = 2, default parameters
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Large bias at the boundaries.
Dynamics more regular than the original one.

Optimal number of neighbours: trade-off between bias and variance of F̂FF
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Local linear prediction — lfo

We want to predict xn+1.

1 Looking for similar events in the past. Formally, looking for xxxk with
|xxxn − xxxk | ≤ ǫ, thus xxxk ∈ Uǫ(xxxn)

2 Now our prediction is not the average of the futures of the similar
from the past, but made by a linear model of these events.

x̂n+1 = AAAnxxxn + bbbn

with
x̂k+1 = AAAnxxxk + bbbn

being the optimal linear predictor for the xk+1.

Parameter:

Embedding parameter: delay d and embedding dimension m

Minimal number of neighbours and/or neighbourhood size
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Local linear prediction

Lorenz system, m = 5, d = 5
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Advantage: High flexibility, better model than local constant model

Disadvantage: Less robust than local constant, in particular with noisy
data
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From nonlinear back to linear models - lfo-ar

Local linear models provide an easy way to check for nonlinear
deterministic structure in the data by varying the neighbourhood size.

Small neighbourhood size → nonlinear structure is captured if present

Increasing the neighbourhood size → model converges to a global
linear model, a AR(m)-model.

A distinct minimum in the plot of the prediction error via the
neighbourhood size indicates non-linearity.

Note: We have to assume some dynamical noise on the data,
otherwise the global linear model would produce a fixed point.
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Example 2-d map with dynamical noise

xn+1 = 2(e−2x2
n − 1/2) + 0.3 · xn−1 + ξn

-1 -0.5  0  0.5  1  1.5-1
-0.5

 0
 0.5

 1
 1.5

-1
-0.5

 0
 0.5

 1
 1.5

xn+1

xn-1

xn

xn+1

-1.5 -1 -0.5  0  0.5  1  1.5-1.5
-1

-0.5
 0

 0.5
 1

 1.5
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

xn+1

xn-1

xn

xn+1

-4 -3 -2 -1  0  1  2  3 -4
-3

-2
-1

 0
 1

 2
 3

-4
-3
-2
-1
 0
 1
 2
 3

xn+1

xn-1

xn

xn+1

-10 -8 -6 -4 -2  0  2  4  6  8  10-10-8
-6-4-2 0 2 4 6 8 10

-10-8
-6-4
-2 0
 2 4
 6 8

 10

xn+1

xn-1

xn

xn+1

Delay plots for different noise am-
plitudes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.01  0.1  1  10

re
l. 

fo
re

ca
st

 e
rr

or
ε

noise=0.1
noise=0.5
noise=1.0
noise=2.0

Relative prediction error vs. local
neighbourhood size

Olbrich (Leipzig) 06.06.2008 8 / 27



Global models — Polynoms

FFF (xxx) =
∑

i1,...,im

ai1i2...imx i1
n x i2

n−1 . . . x im
n−m+1

with the sum going over all m-tupel (i1, . . . , im) with
∑m

k=1 ik ≤ p.
Parameter:

Embedding parameter: delay d and embedding dimension m

Order of the polynom p. p = 1 corresponds to a linear model.
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Polynomial models - Example

Lorenz system: m = 5, p = 3
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d=10 Forecast errors:

d = 1 1.153983e-04
d = 5 7.063427e-05
d = 7 6.116494e-05
d = 10 7.397461e-05
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Polynomial models - Properties

Advantage: Easy to interprete (at least in some cases)

Disadvantage: Very often unstable — trajectory becomes unbounded,
explosion of number of parameters

How to deal with the combinatorial explosion of parameters?

Backward elimination: The program polyback removes term by term
down to a given final number of remaining terms. The terms are
removed in such a way that the onestep forecast error increases
minimally.

Note that this procedure might not find the optimal model of a
certain size (i.e. number of parameters)
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Global models — Radial Basis Functions

F (xxx) = a0 +

p∑

k=l

akΦ(||xxx − yyy i ||)

Functions Φ(r) are bellshaped, i.e. maximal at r = 0 and rapidly
decaying towards zero with increasing r .

Number and width of the functions Φ being fixed, the estimation of
the ak is a linear problem and could be estimated using least squares.

rbf in TISEAN uses Gaussians with the standard deviation of the data
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Some general remarks — Prediction

Minimizing the root mean square error was a maximum likelihood
estimator for Gaussian residuals. Here we have non-linear models with
non-Gaussian residuals in general. Thus estimated predictors are not
necessarily optimal.

Also the problem of overfitting might occur. If one has enough data,
one could use the out of sample error for model selection. Or one
could use one of the information criteria (AIC, BIC, ...) although
usually the underlying assumptions are not met.

Conceptionally appealing is minimal description length (MDL)
principle by Rissanen: The more parameters the model has the more
bits are needed to ecode the model, but the less bits are needed for
encoding the residuals. The best model is the model which leads to
the shortest encoding of the data.
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Some general remarks — Modelling

Prediction 6= Modelling. Minimizing the one-step prediction error
leads usually to good short term predictions, but not to nessecarily to
good models.

The model might be
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Some general remarks — Modelling

Prediction 6= Modelling. Minimizing the one-step prediction error
leads usually to good short term predictions, but not to nessecarily to
good models.

The model might be

Unstable, i.e. the trajectory diverges (polynom).
Converge to an attractor at different positions in the phase space.
Model shows qualitatively different behavior than the data, e.g.
periodic instead of chaotic (lzo-run)

No general scheme to find good models

One possibility: minimizing n-step prediction errors instead of only the
1-step prediction error. Minimizing the n-step prediction error is,
however, already a non-linear problem. Thus there are computational
problems and also problems of existence and uniqueness.
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How to evaluate your model?

Prediction error characterizes only short term behaviour

How to characterize the long term behaviour?

Estimate the dynamical invariants — dimension, entropies, Lyapunov
exponents — from your model and directly from the data
For noisy data: compare statistical properties of data generated by the
model with the original data, e.g. the correlation integral C (m, ǫ).
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What if the systems are not perfectly deterministic?

We distinguish two kinds of noise:

Measurement noise: Here the dynamical system is still deterministic

xxxn+1 = FFF (xxxn)

but observed via a noisy channel

yyyn = h(xxxn) + νννn .

Dynamical noise:
xxxn+1 = FFF (xxxn) + ξξξn .

Here we have a qualitative different dynamics. The noise
term can stand for high-dimensional and/or high-entropic
processes. In the following we will consider only the case of
measurement noise.
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Noise reduction

In the case of measurement noise there is a well defined noiseless
trajectory. Noise reduction means removing the noise from the data by
applying some filter to the data. In TISEAN there are several possibilities
implemented:

Wiener filter (wiener)

Savitzky-Golay filter (sav gol)

Simple nonlinear noise reduction (lazy)

Projective nonlinear noise reduction (ghkss)

The first two are linear filters, the last two non-linear ones.
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Wiener filter

Idea: contribution fo the system and of the noise are well separated in the
spectrum or are at least additive.

y(fk) = x(fk) + ν(fk)

y(fk), x(fk) and ν(fk) are the Fourier transforms of xn, yn and νn,
respectively.
The Wiener filter φk : x(fk) ≈ φky(fk) should minimze

e2 =
∑

k

(φky(fk) − x(fk))2

=
∑

k

(φk − 1)2|x(fk)|2 + φ2
k |ν(fk)|2

Thus the Wiener filter becomes

φk =
x(fk)

y(fk)
.
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Wiener filter

Idea: contribution fo the system and of the noise are well separated in the
spectrum or are at least additive.

y(fk) = x(fk) + ν(fk)

y(fk), x(fk) and ν(fk) are the Fourier transforms of xn, yn and νn,
respectively.
Thus the Wiener filter becomes

φk =
x(fk)

y(fk)
.

Problems: If both system and noise have have considerably power at the
same frequencies it is not possible to remove the noise by only adjusting
the Fourier amplitudes as it is usually done.
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Example: Quasiperiodic signal with additive noise

Data and power spectrum of the noise free, noisy and filtered signal.
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Program Wiener1 estimates y(fk). Wiener2 needs some guess for x(fk) as
input and produces then a cleaned time series x̂n
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Savitzky-Golay filter — sav gol

Smoothing filter: It fits the trajectory (nb points in backward, nf

points in forward direction) locally by a polynomial of order p.

Removes high-frequency contributions

In particular desgined to estimate temporal derivation on noisy data
(option D gives the order of the derivative)

Generally it has the form of a moving average filter

xn =

n+nf∑

k=n−nb

akyk
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Savitzky-Golay filter — sav gol

Example: Lorenz data with additive noise
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Nonlinear noise reduction

Both the Wiener and the Savitzky-Golay filter were linear filters and
they often fail in removing the noise in nonlinear systems.

In nonlinear deterministic systems we can use the underlying
deterministic structure.
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Embedding for noisy data

While the embedding theorem does not apply for the noisy data {yn},
it would apply for the noiseless observations x̃n = h(xxxn).

Thus we can assume a deterministic dynamics F̃FF for the states
x̃xxn = (x̃n, . . . , x̃n−m+1) constructed by delay embedding from the
noiseless observations.

In the following we identify this delay embedding with the original
state space.
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Simple nonlinear noise reduction — lazy

Let us consider the delay vectors yyyn = (yn, . . . , yn−m+1). Uǫ(yyyn0) is
the set of all points in the ǫ-neighbourhood of yyyn0 .

x̂n0−m/2 =
1

|Uǫ(yyyn0
)|

∑

yyyn∈Uǫ(yyyn0
)

yn0−m/2

Basically it uses the same procedure as the local constant prediction
(lzo-run) method, but not for the next point in time, but for the point
in the middle of the delay vector.

Advantages and disadvantages of this algorithm for prediction apply:
robustness and flexibility via. biased estimation for finite data sets.
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Example — Henon map with additive noise

lazy with different neighbourhood sizes r
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Projective nonlinear noise reduction

Here we try to reconstruct the lower dimensional manifold, in which
the deterministic trajectory is lying and project the noisy data points
on this manifold.

The attractor is locally approximated by a hyperplane. So this method
corresponds to the local linear model.

First published by Kostelich and Yorke (1988).

TISEAN: ghkss implements the method proposed by
Grassberger,Hegger,Kantz, Schaffrath and Schreiber, Chaos,
3(1994), 127.
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Example — Henon map with additive noise

1st,2nd,3rd and 10th iteration of ghkss
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Simple noise reduction vs. locally projective noise reduction

lazy ghkss
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