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Introduction

@ In contrast to the previous lectures we now consider the situation that
we have measured simultaneously more than one quantitiy, i.e. that
we have mutlivariate time series.

@ Most of the methods can be generalized quite straight forward. A
considerable part of the programs in TISEAN can deal with
multivariate data, e.g. d2,boxcount,lyap_spec.

@ The different observables/channels/... should be save in different
coloumns of one file. The option -c controls which columns are read.
For instance -c 1,3,4 says that the 1st,3rd and 4th column should be
used. The option -M m,d (sometime -m) controls the embedding.
The first number m specifies the number of components/channels ...
the second number d the (maximal) delay.

@ For mulitvariate data also specific questions might be asked: If the
different observables represent different physical systems we can ask
for their interaction, driver—response relationships, synchronisation.
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Correlation function

The most common quantity to characterize the dependency between two
observables is the correlation coefficient

B Cov(X,Y)
Xy v/Cov(X, X)Cov(Y,Y)

with the covariance
Cov(X,Y) = E[(X — E[X])- (Y — E[Y])] = E[XY] — E[X]E|Y] .
If there are more than two observables, say m, we get a m x m matrix
Pij = PX;,X;

which is estimated in MATLAB by the command corrcoef(X) being X a
m X n matrix with the multivariate time series.
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Principal components

By diagonalizing the covariance matrix of a multivariate random variable
X one gets a new variable Y = WX with W being the transformation
matrix. The covaraince matrix of Y is then a diagonal matrix, i.e. the
components of Y are uncorrelated and their variance is given by the
eigenvalues of Cov(X).

Principal component analysis (PCA):

@ Set of vectors X, e.g. from a time series. Then we can estimate their
sample covariance.

© Diagonalize the covariance matrix and sort the eigenvalues according
to their size.

© Select the largest k eigenvalues and estimate the projections on the
corresponding eigenvectors y;, i = 1,... k.

For highdimensional systems with a (relatively) low dimensional attractor
this might be a reasonable embedding technique, as long as k > 2Dy.
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Mutual information - the nonlinear equivalent of the

correlation coefficient

Mutual information between two random variables X and Y

MI(X:Y) = H(X)+ H(Y) = H(X,Y)
— H(X) — H(X]Y)
with
HOX) == Y plx)logp(x)  Hix) = [ dwplx)log p(x)
xeX

for discrete or continuous random variables, respectively.
Mutual information between correlated Gaussian random variables with
correlation coefficient r:

MI(X :Y) = —% log(1 — r?)
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Independent component analysis

Nonlinear pendant to the principal component analysis - find a (linear)
transformation on your data Y = W/(X) that they become pairwise
independent or minimal dependent, respectively.

MI(Y;:Y;)~0

Implemented in the free MATLAB toolbox eeglab. Applications are for
instance artefact (ECG, eye movement) removal in EEG data.

One could also think about a transformation minimizing the
multi-information or integration

I(Y) = Z H(Y:) — H(Y) .

To my knowledge not yet investigated.
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Cross-correlation function and cross-spectrum

@ Cross-correlation function

pxy (7) = Cov(X(t)Y(t+ 7))
(Cov(X, X)Cov(Y, Y))1/2

Can be estimated in TISEAN by xcor.

@ Cross-spectrum

hxy (W) = Z Cov(X(t)Y(t+7))e ™ w=2nf

T=—00

Because the cross-correlation function is not symmetric wrt 7, the
cross-spectrum is complex in general.
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@ Complex coherency is then defined as

wxy (w) = ieidC) :
[hxx (W) hyy (w)]*/2
Using the spectral representations

™

X(t) = / " etz (W) Y(t) = / e dZy (1)

—T —Tr

one gets

wiey () = ——oUdZx(w)dZy(w))
XY™ Var(dZx(w))Var(dZy ()72’

being correlation coefficient between the random coefficients of the
components in X(t) and Y(t) at frequency w, 0 < |wxy(w)| < 1.
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@ Complex coherency is then defined as

ny(w) _ hXY(w)
[hxx (w)hyy (w)]/2

@ One deontes as Coherency usually either the absolute value
|wxy (w)| or its squared value |wxy (w)|?.

e MATLAB functions cohere (old) or mscohere estimate the squared
value.
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Example: Lorenz data

Data Power spectra
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Data
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Example: Lorenz data

Cross spectra
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Example: Lorenz data

Data Coherency
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Synchronisation

In nonlinear systems correlations and/or coherence might be due to
synchronisation. Let us assume we observe two coupled systems with state
vectors X(t) and Y(t). We distinguish between

e Exact synchronisation: X(t) = Y(t).
o Generalized synchronisation: X(t) = ®(Y(t)). If the function ® is
smooth we call it strong synchronisation, if not, weak synchronisation.

@ Phase synchronisation: This is a kind of partial synchronisation. If we
can represent the X(t) and Y(t) as having a phase and an amplitude,
physe synchronisation would mean to have synchronisaed phases, but
not amplitudes.
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Phase synchronisation

@ Define a phase: If it is not oscillatory band-pass filter the signal. The
a phase can be estimated by applying the Hilbert transform. The
analytic signal 3

X(t) = X(t) + iHX(t)
with the Hilbert transform

1 /> X(t

HX(t/) [ , ( )

t'—t

s

dt

—00

is sometimes itself called the Hilbert transform of X(t). Easy
interpretation in frequency space because convolution with 1/t
corresponds to multiplication with —isgn(w) of the Fourier transform
F(X(t)(w) = X(w) :

F(HX)(w) = —isgn(w)X(w) ,

i.e. adding the signal with a phase shift of 7/2, because i = elm/2,
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Phase synchronisation

@ Define a phase: If it is not oscillatory band-pass filter the signal. The
a phase can be estimated by applying the Hilbert transform. The
analytic signal

X(t) = X(t) + iHX(t)

with the Hilbert transform

HX(t’):}T/OO X()

ot —t

is sometimes itself called the Hilbert transform of X(t).

X(t) = coswt HX(t) =sinwt X(t) — eiwt
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Phase synchronisation

@ Define a phase: If it is not oscillatory band-pass filter the signal. The
a phase can be estimated by applying the Hilbert transform. The
analytic signal

X(t) = X(t) + iHX(t)

with the Hilbert transform

HX(t) = 71T/OO t),((_t)t dt

—00

is sometimes itself called the Hilbert transform of X(t).  Writing
X(t) = A(t)e )t

one can define an instantaneous amplitude A(t) and phase ¢(t). In
MATLAB hilbert estimates X(t).
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Phase synchronisation

@ Define a phase: If it is not oscillatory band-pass filter the signal. The
a phase can be estimated by applying the Hilbert transform.

@ Estimate the phase difference 6 = ¢x — ¢y. Or in the general setting
of m : n synchronisation 0, , = mgx — noy.

© Chosse a statistic for testing against a uniform distribution on [0, 27).
Allefeld and Kurths (2004) proposed

-1 |
C:NZCOSHJ and S:NZsinﬁj
J J
or in polar representation

R=+v(C2+52 H_:arctang.

R = 0 means no - and R = 1 perfect phase synchronisation.
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Example — Lorenz data

Data Phases
5
SR e e e e e _20 1000 2000 3000 4000 5000
oo mmmmmmeee 720 1000 2000 3000 4000 5000
e % 1000 2000 . 3000 4000 5000
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Example — Lorenz data

I_?Xy,éxy (blue), Ryz.0x, (red) and F?yz,éyz (green)
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Definition — Wiener 1958, Granger 1964, Granger 1969

@ past Xy(t—1) = (Xy(t—1),..., Xy(t — 0))
@ subprocess X_j = X\ (j}

@ o(Xa(t)[Xa(t — 1)) denotes the standard deviation of the error
predicting Xa(t) using X a(t —1).

Definition (Causality)

X; causes X;, if o(Xi(t)|Xv(t — 1)) < o(Xi(t)|X_;(t — 1)), i.e. if the
knowledge of the past values of X; will improve the prediction of X;.

Definition (Instantenous Causality)

Xj instantaneously causes Xj, if .
a(Xi(t)|Xv(t —1),X;(t)) < o(Xi(t)|X(t — 1)), i.e. if the knowledge of
the the actual value of X; will improve the prediction of X;.

v
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Definition — Granger 1980

Axiom A: The past and the present may cause the future, but the
future cannot cause the past

Axiom B: X(t) contains no redundant information, so that if some
variable Xy (t') is functionally related to one or more other
variables, in a deterministic fashion, then X(t) should be
excluded from X(t).

E.g. xj(t) = f(xk(t — m)), but also
xj(t) = f(xj(t — 1), xj(t —2),...,xj(t — m), i.e. Granger
excludes deterministic systems.

Definition

X; causes X; if p(xi(t)[xv(t — 1)) # p(xi(t)|x_j(t — 1)), i.e. X;
non-causes X; if X;(t) is conditionally independent on X; given
X_j(t = 1).
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Operationalisation: Vector autoregressive models (VAR)

@ A weakly stationary zero mean stochastic process has an
autoregressive representation

(0.9}
Za x(t — u) +€(t)
u=1

e X; is Granger non-causal to X; with respect to X, if
aj(uy=0 V u.
X; instantaneously non-causes X;, if X = (;(t)ej(t)) =0

@ Problem: Only linear dependencies!
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Transfer entropy — Information theoretic version of

Granger casuality

@ Schreiber 2000: Transfer entropy measures “directed information
flow"; originally only bivariate

Tjmi = MI(Xi(t) : X;(t — 1)|Xi(t - 1))
= H(Xi(1)[Xi(t = 1)) = H(Xi(1) | Xi(t — 1), X;(t — 1))
@ Palus 2001: Measuring conditional independence using conditional
mutual information = information theoretic formulation of the
Granger causality — X; Granger causes X; if T;_,; v > 0.
Tieiv = MIXi(2) : Xj(t — DIX_(t — 1)
= H(Xi(t)|X_;(t = 1)) = H(Xi(1)| X v(t — 1))
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General Problems of observational causality concepts

@ World description has to be causally complete in order to exclude
common causes.

@ Granger causality defined via conditional independence is purely
observational, no interventions.
= if X; and X; are synchronized no causal interaction can be detected

@ But, this case is excluded by Grangers Axiom B!
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Specific problem: State Dependence

Whether e.g. X1 Granger causes X, depends on the representation of the
rest of the world!

Xl(t) = alle(t— 1)+312X2(t— 1)+313X3(t— 1)+€1(t)
Xz(t) = azlxl(t— 1)+322X2(t— 1)+323X3(t— 1)+62(t)
X3(t) = a31X1(t — 1) + 332X2(t — 1) + 833X3(l' — 1) + 63(1’)

can be transformed into

Xl(t) = (311 — 31304)X1(t - 1) + (312 — 313ﬁ)X2(t — 1) + 313X3( ) + 61(t)
Xz(t) (321 — 32304)X1(f — 1) + (322 — 8235)X2(t — 1) + 823X3( ) + 62(1’)
%5(t) = (as— (ass + au)a) — aiza)xa(t — 1) +
(
(

as — (as3 + a12) 8 — a3 ) xe(t — 1) +
a3z — aiza — axf)X3(t — 1) + e3(t)

using X3 = x3 + axy + Bxo with o = ap1/a23 = X3 becomes independent on X
conditioned on X3.
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Specific problem: Deterministic Dynamics

@ Deterministic dynamical system:

x(t) = F(x(t - 1))

Embedding theorem: The map

x(t) — s(t) = h(x(t)) — (s(t),s(t —1),...,s(t — m+1))is an
immersion with nowhere vanishing Jacobian, if m > 2D,y with Dy the
box-counting dimension of the attractor

= state space can be reconstructed from any X;

KS-entropy hks = lim h(X(t)[X(t —1),¢€)
= IImh( i(D)IXi(t —1),¢€)

= MI(X;(t): Xj(t — 1)[X_j(t —1)) =0if hxs =0
= No Granger causality in non-chaotic deterministic systems.

But again, this situation is excluded by Axiom B!
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Example: Granger causality in a VAR(2) process

xi(t) = auxi(t—1)+ ax(t — 1)+ e(t)
Xg(t) = 321X1( 1)+222X2( 1)+62(t)

In which way implies aip > (Lbetter predictability of X7 knowing X357
Predicting Xi(t) using only X1(t — 1)
xi1(t) = auxi(t—1)+ apanx(t —2)
+arpanx(t —2) + apea(t — 1) + e1(t)
= aunxi(t — 1) + arpazixi(t — 2) + arpazazix(t — 3)
tarpasyxa(t — 3) + arpamer(t — 2) + apea(t — 1) + e1(t)

Special case ay, =0

Xl(t) = 311X1(t—1)+312321X1(t—2)+312€2(t—1)—|—€1(t)
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Transfer entropy and effective noise level

@ Granger causality: Improving predictability = Reducing noise level
@ Stochastic dynamics for X;(t):

xi(t) = F(xi(t —1),&(1) (&i(1)*) =1

o Differential entropy H(X) = — [ dx p(x) log p(x) transforms for
invertible function y = f(x) according to

HOY) = HX) + [ o plx) tog] ()

because
p(x)dx =gq(y)dy = aqly)= d’;(/);)x i)
Applying this we get '
OO~ 1) = HG) + (in| 52
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Transfer entropy and effective noise level

e Using only the dynamics for X;(t) we got

of

h(xi(t)[xi(t — 1)) = H(&) + (In 96

).

@ Stochastic dynamics for X;(t) and X;(t):

xi(t) = g(Xi(t = 1),%;(t = 1),;(1))  (€5()*) =

@ Same reasoning gives

h(xi(t)|xi(t — 1), x;(t — 1)) = H(&;;) + (In ‘ggj ).
@ Therefore
Ty = (&) — (&) + (n | 5Ly n | ZE |
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Estimating “causal” relationships

@ Linear: Fitting a VAR(m) model to the data, e.g. using least square
estimation (e.g. ar-model in TISEAN) and then testing the
coefficients aj; against zero.

@ Non-linear: Estimating the conditional mutual informations (transfer
entropy) — Partitioning the data (if continous variables) and
estimating the entropies H(X;(t)|X_;(t —1),¢€) and
H(Xi(t)|Xv(t —1),€).

@ Note that the result depends on the state space, e.g. on the
embedding dimensions m;, m; in the Transfer entropy

Tji(mj, mi, €)
= MI(Xi(t) : Xj(t = 1),..., X;(t —m;j + )| Xi(t — 1),..., Xi(t — m; + 1);¢€)
@ The result might depend on €. But, for stochastic systems the
conditional mutual information should converge for ¢ — 0 to the
value for differential entropies!
@ You have to correct for finite sample effects. Finite sample effects lead

to overestimation.
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Dependence on the resolution €

A. Kaiser and T. Schreiber, Information transfer in continuous proces-

T. Schreiber, Measuring Information Transfer, PRL 85(2000),461-464.

) “J
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ses,

Physica D 166(2002),43-62.
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G. 3. Bivariate time series of the breath rate (upper) and
instantaneous heart rate (lower) of a sleeping human. The data
is sampled at 2 Hz. Both traces have been normalized to zero
mean and unit variance.
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Correcting for finite sample effects - effective transfer

entropy

R. Marschinski and H. Kantz, Analysing the information flow between financial time series. An improved estimator for transfer entropy. Eur. Phys. J B
30(2002),275-281.
o Effective transfer entropy: Difference between the usual transfer
entropy and the transfer entropy between X;(t) and a shuffled version
of X;j(t).

— Tj shuffled—i(mi, m;)

)
10000 20000 30000 40000 50000 60000
‘Sample length N
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Application: DAX and Dow Jones

[ e e m e s
s TE DJ=> DAX (logreturns)

[ #— TE DJ=> DAX; DJ shuffled Il 1 S L e B e B L
| 0.03 ¥~ ETE Dow Jones== DAX (log-retums) -+

0.16 - A~ ETE DAX=> Dow Jones (log=retums)
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Fig. 2. Transfer entropy measuring the information fAow from Block length m in series | [min]

Dow Jones to DAX series, using various partitions of § = 2, . . . . .
. 5 symbols (bottom to top). Upper lines have been cal- Fig. 3. Effective transfer entropy measuring the information

\:ulated on the log-returns of DJ and DAX, for the lower ones flow between Dow Jones and DAX Se"ies and vice versa, nsing
(triangles) the log-returns of the DJ series have previously been four different partitions of § = 2, 3, 4, 5 symbols (bottom to
shuffled. top).
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@ Granger causality asks for interdependencies between stochastic
processes

@ It can be expressed using conditional mutual information (Transfer
entropy)

o If we consider only linear interdependencies it can be studied with
vector autoregressive(VAR)-models

@ One has to be careful with causal interpretations because it is an
purely observational measure.
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