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Scaling, Renormalization and Universality

Start with some model M(xxx ,ppp) defined on some scale ε with
parameters ppp.

Now define new observable xxx ′ by coarse graining, e.g. integrating the
old ones over a certain range. Then rescale the new variables, such
that the model for the new variables is in the same space as the
original one, but usually with different parameters ppp′.

Thus we get a map (or flow) ppp 7→ ppp′ in the parameter space, with a
semigroup property, the renormalization group (RG).

Self-similar system state ⇒ fixed point of the transformation ⇒
critical states are unstable fixed points of the RG transformation.

Stable manifolds of these fixed points represent different models
showing the same critical behavior ⇒ universality

Critical exponents can be derived from the fixed point properties ⇒
they are equal in one universality class
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What can be explained by the renormalization group?

Continuous phase transitions fall into universality classes
characterized by a given value of the critical exponents.

For a given universality class there is an upper critical dimension
above which the exponents take on mean-field values.

Relations between exponents, which follows as inequalities from
thermodynamics, hold as equalities.

Critical exponents take the same value as the transition temperature
is approached from above or below.
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The renormalization group transformation

Literature: J. M. Yeomans, Statistical Mechanics of Phase Transitions,
Oxford University Press, 1992.

Starting point: reduced Hamiltonian H̄ ≡ H/kT

Renormalization group operator RRR transforms the reduced
Hamiltonian in a new one

H̄′ = RRRH̄
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The renormalization group transformation

Starting point: reduced Hamiltonian H̄ ≡ H/kT

Renormalization group operator RRR transforms the reduced
Hamiltonian in a new one

H̄′ = RRRH̄

The renormalization group operator decreases the number of degrees
of freedom from N to N ′ — either in real space by removing or
grouping spins, or in reciprocal space, by integrating out large
wavevectors, i.e. removing small wavelength. The scale factor of the
transformation, b, is defined by

bd = N/N ′

with d denoting the dimensionality of the system.
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The renormalization group transformation

Starting point: reduced Hamiltonian H̄ ≡ H/kT

Renormalization group operator RRR transforms the reduced
Hamiltonian in a new one

H̄′ = RRRH̄

Scale factor
bd = N/N ′

The essential condition to be satisfied by any renormalization group
transformation is that the partition function must not change:

ZN′(H̄′) = ZN(H̄) .
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The renormalization group transformation

Starting point: reduced Hamiltonian H̄ ≡ H/kT

Renormalization group operator RRR transforms the reduced
Hamiltonian in a new one

H̄′ = RRRH̄

Scale factor
bd = N/N ′

Partition function must not change

ZN′(H̄′) = ZN(H̄) .

Reduced free energy per spin (unit volume) f̄ = f /kT transforms as

f̄ (H̄′) = bd f̄ (H̄)
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Flows in parameter space

General reduced Hamiltonian

H̄ =
∑
α

µµµ.∫∫∫

with functions (usually products) of system variables ∫∫∫ and
conjugated fields µµµ.

E.g. in the case of the Ising model

H̄ = −
∑

i

C − h
∑

i

si − K
∑
〈ij〉

si sj − J
∑
〈ijkl〉

si sjsksl − . . .

we have ∫∫∫ = (1, si , si sj , si sjsksl , . . .),µµµ = (C , h,K , J, . . .).

Fields µµµ parametrize the reduced Hamiltonian. Application of the
renormalization operator moves the system through parameter space

µ′µ′µ′ = RRRµµµ .
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Fixed points of the renormalization operator

µ′µ′µ′ = RRRµµµ µ∗µ∗µ∗ := µµµ with µ′µ′µ′ = µµµ .

Linearization around the fixed point

µµµ = µ∗µ∗µ∗ + δµµµ

µ′µ′µ′ = µ∗µ∗µ∗ + δµ′µ′µ′

leads to
δµ′µ′µ′ = AAA(µ∗µ∗µ∗)δµµµ

with AAA being the linearization of RRR at µ∗µ∗µ∗. Being λi and vvv i the eigenvalues
and eigenvectors of AAA, respectively, we get for two successive
transformations with scaling factors b1 and b2

λi (b1)λi (b2) = λi (b1b2)

and therefore
λi (b) = byi .
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Renormalization near the fixed point

Expand the deviation from the fixed point in terms of the eigenvectors of
AAA, vvv i

µµµ = µ∗µ∗µ∗ +
∑

i

givvv i .

The coefficients gi are termed the linear scaling fields. Applying RRR leads to

µ′µ′µ′ = µ∗µ∗µ∗ +
∑

i

byi givvv i or

g ′
i = byi gi respectively.

yi > 0: unstable directions, relevant scaling fields ⇒ control
parameters

yi = 0: marginal stable directions

yi < 0: stable directions, irrelevant scaling fields ⇒ critical surface,
universality
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Universality

Universality: Under renormalization (scale change) the irrelevant scaling
fields will decrease and the system will flow toward the fixed point, while
the relevant will increase, driving it away from the critical surface. As long
as the relevant fields are initially small enough the trajectory will come
close to the fixed point. Therefore its critical behavior will be determined
by the linearized transformation at the fixed point and will be independent
of the original values of the irrelevant scaling fields.
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Crossover

Crossover: If there is more than one fixed point embedded in the critical
surface crossover effects may occur. For example in a magnetic system
with weak spin anisotropy as the temperature approaches Tc , the system
exhibits Heisenberg critical behavior (A), but very close to Tc the critical
exponents change to those corresponding to an Ising system (B).
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Scaling and critical exponents

The singular part of the rescaled free energy per spin f̄ = f /KT was
transformed as

f̄ (µµµ) = b−d f̄ (µµµ′)

Near the fixed point we have

f̄ (g1, g2, g3, . . .) ∝ b−d f̄ (by1g1, b
y2g2, b

y2g2, . . .)

thus f̄ is a generalized homogeneous function.
If there are two relevant scaling field (as in the example of the Ising
model) we set g1 = t = (T − Tc)/T and g2 = h = H/kT . Thus

f̄ (t, h, g3, . . .) ∝ b−d f̄ (by1t, by2h, by3g3, . . .)

as t, h, g3 → 0.
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Scaling and critical exponents

Free energy:
f̄ (t, h, 0, . . .) ∝ b−d f̄ (by1t, by2h, 0, . . .)

Specific heat:

C ∝
(

∂2f̄

∂t2

)
h=0

≡ f̄tt(h = 0) ∝ |t|−α

leads to
f̄tt(h = 0) ∝ b−d+2y1 f̄tt(b

y
1 t, 0) .

Choosing by1 |t| = 1 gives then

f̄tt(h = 0) ∝ |t|(d−2y1)/y1 f̄tt(±1, 0)

and therefore
α = 2− d/y1
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Scaling and critical exponents

Specific heat: α = 2− d/y1

Magnetization as function of the temperature: β = (d − y2)/y1

Susceptibility: γ = (2− y2 − d)/y1

Magnetization as function of the magnetic field: δ = y2/(d − y2)

Equations:

α + 2β + γ = 2 corresponds to Rushbrooke inequality

γ = β(δ − 1) corresponds to Widom inequality

2-d Ising Model: α = 0, β = 1/8, γ = 7/4, δ = 15.
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Renormalization for the 1-dimensional Ising model

Reduced Hamiltonian

H̄ = −K
∑
〈ij〉

si sj − h
∑

i

si −
∑

i

C

Renormalization with b = 2:

Z =
∑
{s}

∏
i=2,4,6,...

exp {Ksi (si−1 + si+1) + hsi + h(si−1 + si+1)/2 + 2C}

Doing the partial trace gives

Z =
∑

s1,s3,...

∏
i=2,4,6,...

{exp [K (si−1 + si+1) + h + h(si−1 + si+1)/2 + 2C ]

+ exp [−K (si−1 + si+1)− h + h(si−1 + si+1)/2 + 2C ]}
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Renormalization for the 1-dimensional Ising model

Reduced Hamiltonian

H̄ = −K
∑
〈ij〉

si sj − h
∑

i

si −
∑

i

C

Renormalization with b = 2:

Z =
∑
{s}

∏
i=2,4,6,...

exp {Ksi (si−1 + si+1) + hsi + h(si−1 + si+1)/2 + 2C}

Relabeling the spins:

Z =
∑
{s}

∏
i

{
exp

[
(K +

h

2
)(si + si+1) + h + 2C

]

+exp

[
−(K − h

2
)(si + si+1) + h + 2C

]}
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Renormalization for the 1-dimensional Ising model

Reduced Hamiltonian

H̄ = −K
∑
〈ij〉

si sj − h
∑

i

si −
∑

i

C

Renormalization with b = 2:

Z =
∑
{s}

∏
i

{
exp

[
(K +

h

2
)(si + si+1) + h + 2C

]

+exp

[
−(K − h

2
)(si + si+1) + h + 2C

]}
=

∑
{s}

∏
i

exp(K ′si si+1 + h′si + C ′) .
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Renormalization for the 1-dimensional Ising model

Reduced Hamiltonian

H̄ = −K
∑
〈ij〉

si sj − h
∑

i

si −
∑

i

C

Renormalization with b = 2:

exp(K ′si si+1 + h′si + C ′) = exp

[
(K +

h

2
)(si + si+1) + h + 2C

]
+exp

[
−(K − h

2
)(si + si+1) + h + 2C

]
leads to

si = si+1 = 1 : eK ′+h′+C ′
= e2K+2h+2C + e−2K+2C

si = si+1 = 1 : eK ′−h′+C ′
= e2K−2h+2C + e−2K+2C

si = −si+1 = ±1 : e−K ′+C ′
= eh+2C + e−h+2C
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Renormalization equations

si = si+1 = 1 : eK ′+h′+C ′
= e2K+2h+2C + e−2K+2C

si = si+1 = 1 : eK ′−h′+C ′
= e2K−2h+2C + e−2K+2C

si = −si+1 = ±1 : e−K ′+C ′
= eh+2C + e−h+2C

leads to

e2h′
= (e2h + e−4K )(e−2h + e−4K )−1

e4C ′
= e8Ce4K (e2h + e−4K )(e−2h + e−4K )e2h(1 + e−2h)2

e4K ′
= e4K (e2h + e−4K )(e−2h + e−4K )e−2h(1 + e−2h)−2
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Renormalization equations

e2h′
= (e2h + e−4K )(e−2h + e−4K )−1

e4C ′
= e8Ce4K (e2h + e−4K )(e−2h + e−4K )e2h(1 + e−2h)2

e4K ′
= e4K (e2h + e−4K )(e−2h + e−4K )e−2h(1 + e−2h)−2

and with x = e−4K ,y = e−2h and ω = e−4C

ω′ =
ω2xy2

(1 + xy)(x + y)(1 + y)2

x ′ =
x(1 + y)2

(1 + xy)(x + y)

y ′ =
y(x + y)

1 + yx
.

Olbrich (Leipzig) 11.01.2007 16 / 21



Fixed points

x ′ =
x(1 + y)2

(1 + xy)(x + y)

y ′ =
y(x + y)

1 + yx

Fixed points for ferromagnetic coupling
K > 0.
High temperature: x = 1 0 ≤ y ≤
1 — infinite temperature, paramagnetic
fixed point, attracting
Low temperature and infinite field: x = 0
and y = 0 — fully aligned configuration
Ferromagnetic fixed point: x = 0 and
y = 1
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Scaling at the ferromagnetic fixed point

Linearizing the low equations around the fixed point (x , y) = (0, 1) gives

δx ′ = 4δx δy ′ = 2δy .

Hence the eigenvalues of the linearized transformation are

λ1 = 4 λ2 = 2

and because of the scale factor b = 2 we have

y1 =
lnλ1

ln b
= 2 y2 = 1 .

Problem: Tc = 0, thus t = (T − Tc)/Tc = ∞ and the usual critical
exponents are not defined.
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Higher dimensions — the 2D-Ising model

If s denoting the remaining and t the spins that are integrated out one has
to consider terms such as

expKs00(t01 + t0−1 + t10 + t−10)

Taking the trace over s00 gives

2 cosh K (t01 + t0−1 + t10 + t−10)

which can be rewritten as

exp {a(K ) + b(K )(t−10t01 + t10t01 + t10t0−1

+t−10t0−1 + t−10t10 + t0−1t01) + c(K )t−10t01t10t0−1}
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Higher dimensions — the 2D-Ising model

If s denoting the remaining and t the spins that are integrated out one has
to consider terms such as

expKs00(t01 + t0−1 + t10 + t−10)

Taking the trace over s00 gives

exp {a(K ) + b(K )(t−10t01 + t10t01 + t10t0−1

+t−10t0−1 + t−10t10 + t0−1t01) + c(K )t−10t01t10t0−1}

a(K ) = ln 2 + (ln cosh 4K + 4 ln cosh 2K )/8

b(K ) = (ln cosh 4K )/8

c(K ) = (ln cosh 4K − 4 ln cosh 2K )/8
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Higher dimensions — the 2D-Ising model

If s denoting the remaining and t the spins that are integrated out one has
to consider terms such as

expKs00(t01 + t0−1 + t10 + t−10)

Taking the trace over s00 gives

exp {a(K ) + b(K )(t−10t01 + t10t01 + t10t0−1

+t−10t0−1 + t−10t10 + t0−1t01) + c(K )t−10t01t10t0−1}

H̄′ = 2b(K )
∑
〈ij〉

ti tj + b(K )
∑
[ij]

ti tj + c(K )
∑
sq

ti tj tktl

with [ij ] denoting second neighbors and sq neighbors around a elementary
square on the renormlized lattice.
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Higher Dimensions

Starting from next nearest interaction the renormalization procedure
generates new (longer range) interaction terms.

In the case of the 2D-Ising model already the second step of the real
space renormalization cannot be made straight forward.

in general no exact derivation of the renormalization equations
possible.

Approximations are necessary, e.g. Kadanoffs block spin procedure

ε-expansion with respect to the dimension d = 4− ε in cases where 4
is the upper critical dimension is carried out in k-space

Numerical methods: Monte-Carlo renormalization group
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Outlook: Self-organized criticality (SOC)

Up to now we only considered the partition function, i.e. no dynamics.

Dimension of the unstable manifold of the critical fixed point of the
renormalization flow — number of control parameters that have to be
adjusted to reach the critical state

SOC: Dynamical system which involves the control parameters and
drives them to the critical point
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