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Overview

@ Exact results for the Ising model
@ Exact solution of the 1-D Ising model
@ High- and low temperature expansion
@ The dual lattice
@ Transfer matrix method

© Scaling, Renormalization and Universality
@ Stable Distributions
@ Period doubling transition to chaos
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Open questions from last lecture

© Why are spin glasses called “glasses” and how is the “glassy” state
defined thermodynamically?
o Glasses are supercooled frozen liquids
o Extremely long relaxation times
o Metastable states
@ What are the controversies about Jaynes maximum entropy principle?

o Basically the controversy between frequentist and Bayesian, between
objective and subjective probabilities
e For instance entropy: in which sense can it be an objective “physical”
property, if it does only reflect our knowledge about the system?
© What can we really learn about the nature of temperature from the
maximum entropy approach?
o (Inverse) temperature in the form of the Lagrange multiplier 5 has to

be determined from
OlnZ

op

E=(F) =

Not a deep insight 1?7
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Ising Model

Schematic model for the ferromagnetic phase transition

Binary spin variable s; = {—1,1}.

In the following we assume next neighbour interaction.

To produce one pair of non-aligned neighbouring spins one needs
energy J, i.e.

E= —ng,-sj—s,-H
(i)

with (ij) denoting pairs of adjacent spins i, .
We have the partition function

Z = Z (i 3sisi—siH)

S1,SN
Gibbs free energy G = —% InZ
the magnetization M = —%‘9{')’,‘_’,2 and

: . 2
the magnetic susceptibility y = _uTlﬁaalHn2Z
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Excat results — The partition function

o Nearest neighbour interaction with strength J/2.

@ Abbreviation:
pJ

L=
2

@ Partition function

7 = Z Z Hexp Ls,sJ

s1==+1 sy==1(

@ The identity
exp(Ls;jsj) = cosh L + s;sjsinh L

Z= Z Z HcoshL+s,s,JS|nhL)

s;==+1 sy==1 {(

leads to
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The 1-D Ising model

Z = (cosh L) Z Z H 1+ sjsjtanh L)

S1= ==+1 SN= il

@ All terms with odd numbers of at least one spin variable do not
contribute in the evaluation of the product in Z.

@ 1-D ising model with open ends — no non-vanishing contributions
from the products of spin variables, only contribution 2V from the

sum over all states.
Z = (2cosh L)V

@ Periodic boundary conditions — one contribution
SNS1-S1S2 ... SN,lsN(tanh L)NZ

Z = (2cosh L)V + (2sinh L)V
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High temperature expansion

@ With the abbreviation u = tanhL we have

Z = (cosh L)® Z Z H(l—i—s,sj

s1= ==+1 SN= il

with s the number of spin pairs dN.
@ Only products which corresponds to closed paths contribute to Z

H H

Fig. 413. An example of spin pairs

Fig. 412. An example
whose contribution does not vanish

o With Q, denoting the numbers of figures with n bonds composed
exclusively of polygons one gets expansions in powers of tanh %

Z = 2N (cosh L)* <1+ZQ u)
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The low temperature expansion

@ Number of spin pairs s = Nd. If there are r antiparalell spin pairs and

s — r parallel spin pairs then .y sisj = (s —r) —r =s—2r.

Z =2exp(sL) |1+ Z wr exp(—2Lr)]

with w, denoting the number of configurations with r antiparallel
spins, and the coefficient 2 comes from the contribution by intverting
all the spins.

@ The lower T, the higher 3 and therefore also L. Thus for low T only
small values of r contribute = low temperature expansion
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2-D systems — the dual lattice

(a) (b)

Fig. 4.14 a,b. Dual lattices. (a) A square lattice < a square lattice; (b) a honeycomb lattice «» 2
triangular lattice

@ Put 7 spins at the dual lattice point inside the polygons in the figures
of n bonds and put | spins outside the polygons. This produces n
antiparalle spin pairs in the dual lattice. Thus we get Q, = w} and

also w, = Q7.
@ Obviously, we have s* = s.
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2-D systems — the dual lattice

@ Partition function of the original lattice
Z(T) =2V (cosh L)* (1 + ) Qp(tanh L)”)
and of the dual lattice

Z*(T)=2exp(sL) |1+ Z Q, exp(—2Ln)]

@ Because the square lattice is self-dual, we have

Z(T) = z*(T).
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Self-duality — the critical temperature

@ Moreover, if we restrict ourselves to J >0 (L > 0) we can define a
temperature T*(T) with

- J
- 2kL*

@ From this several symetric relations follow, e.g.

exp(—2L") =tanh L T

exp(—2L) = tanh L*
sinh2Lsinh2L* =1

@ Moreover we have
Z*(T*) = 2exp(sL*)27N (cosh L)™° Z(T)

@ If there is only one singularity in Z(T), there is also only one in
Z*(T*). Thus for T =T, T = T* and therefore

(sinh2L)> =1 Lc ~0.4407
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Transfer matrix method - 1-D Ising model

@ Partition function

Z = Z Z HK(Sl,Sz)...K(SN,S]_)

s1==+1 sy==1

with
K(si,si+1) = exp (CSI—;S'H + L5i5i+1>
C=BH L= %

and periodic boundary conditions sy41 = s1.
o Matrix formulation Z = tr{ KN} = AN + \Y

_ < exp(C+L)  exp(—L) )
exp(—L) exp(—D + L)
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Transfer matrix method - 1-D Ising model

o Matrix formulation Z = tr{KN} = AN + AN

_ [ ep(C+L)  exp(-L)
= ( exp(—L) exp(=D+1L) )

Eigenvalues

A2 =exp Lcosh C £ \/exp(2L) sinh? C + exp(—2L)
@ For H =10 and therfore C =0
A1 = 2cosh L A> = 2sinh L

Magnetization
M=—2 (kTihz)= Nsinh €
[exp(—4L) + sinh® C]1/2

OH

Susceptibility

kT TP kT

1 &mZ N 4J
XT Tl 9H2 T kT
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Transfer matrix method - 2-D Ising model

@ Again the system is considered with periodic boundary conditions =
2-D lattice on a torus.

@ The matrices K(s;,s;) are replaced by U(s;,s;) with s being the spin
vector of the ith ring.
@ Then again

Z = tl’{UN} U(S,‘,SJ') = exp [—CD(S,',SJ')]
@ In the thermodynamic limit only the largest eigenvalue is important
Z = Y+ N+

:)\Q’

@ In order to have long-range order, the largest eigenvalue has to be
degenerate, which is only possible in the thermodynamic limit.
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Solution of the 2-D Ising model

@ In a regular square lattice the partition function has the form

L InZ =In(2cosh2L) + 1/ In 1(1 +4/1 — (4K)2sin? ¢)do
N or Jo "2

. __ tanh2L
with 2k = TR

@ Original paper: L.Onsager, Phys.Rev. 65, 117(1944)

@ For the solution via high-temperature expansion see e.g.
Landau/Lifschitz Bd.5.
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Scaling, Renormalization and Universality

e Start with some model M(x, p) defined on some scale € with
parameters p.

@ Now define new observable x” by coarse graining, e.g. integrating the
old ones over a certain range. Then rescale the new variables, such
that the model for the new variables is in the same space as the
original one, but usually with different parameters p’.

@ Thus we get a map (or flow) p — p’ in the parameter space, with a
semigroup property, the renormalization group (RG).

@ If the system is self-similar it should be a fixed point of the
transformation = critical states are (unstable) fixed points of the RG
transformation.

@ Stable manifolds of these fixed points represent different models
showing the same critical behaviour = universality

o Critical exponents can be derived from the fixed point properties =
they are equal in one universality class
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Characteristic function of a probability density

@ Characteristic function

o0 = [ " e exp(ik) p(x)

o0

or inversely

p) = o [k exp(—ike) plK)

— 00

@ Moments of a probability density

n=0
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Cumulants

@ The cumulants ¢, of a pdf are defined as the derivatives of the
logarithm of its characteristic function:

i ﬁ%%wwb:jW4

cn = (—i)"
dkn !
n=0

Inp(k)

k=0

@ The cumulants can be expressed by the moments:

T = M1 mean

0 = W variance

G = U3 o skewness

= g — 343 o excess kurtosis
s = ps— 10puop3

with the central moments i,

o= = [ (= i) bl

—00
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Sum of two independent random variables

@ Random variable X with x = x; + x2. Then

p(x) = /OO XmPl(Xl)/Oo dxapa(x2)d(x — x1 — x2)

—00 —00

p(x) = /°° dx1p1(x1)p2(x — x2)

—00

@ Caracteristic function

@ Cumulants
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Renormalization

@ Coarse graining:

2
P = [P (k)]
LR X X (1) 9
P ) I = 29
. \,/, @ Rescaling: x,-(") = (x; (4 x J+1)/2°‘
X1 + X2 leads to
\/ C/(<n+1) _ 21_kaC£n)
X;” © Preserve variance:
Cén-i—l) _ 2172aC§n)
N 1
a = 3.
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Central limit theorem

@ Probability distribution characterized by its cumulants
p(ct,...,cpy...)
e Distribution p(™ of X(™ with N = 2™ is then
p(m) = p(2m(1*a)c1, 2’"(1*20‘)c1, 2’"(1*36“)(:3, oY)
@ and with « =1/2 and N — ¢
p(>) :p(cl\/N,cz,q =0,...,=0,...)

which is a Gaussian distribution.

@ Gaussian distribution corresponds to the attractive fixed point of the
renormalization process.
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Stable Distributions

Given two random variables X; and X, distributed according to the
probability density p. p is called stable, if there are constant a, b and
¢ such that X = aXj + bX, + c is again distributed according to p.
Examples for stable distributions are the Gaussian or Normal

distribution ( 2
1 X —
p(x) = o exp <—M>

the Cauchy-distribution

oy
pix) = T2+ (x — 0)?

the Levy-distribution (§ < x < o0)

v 1 v
p(x) = \/;()(_5)3/2 eXP(—m)

There are more stable distributions, but without closed form
expressions.
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Period doubling transition to chaos

e Starting point: unimodal map f(x, a) on the unit interval [0, 1]
depends on a parameter a. Fixed point x* = f(x*, a). Stability
|f'(x*(a),a)| < 1. Fixed point becomes unstable for |f'(x*(a),a)| = 1.

@ The a period 2 orbit becomes stable, which is a fixed point of
f2(x,a) = f(f(x,a)). If there is a transformation that
T[f(x,a)] = f3(x, ") in the vicinity of the fixed point, and more
generally a transformation

T[f"(x,a)] = f™(x,a")

this induces a transformation T, : a, — a1 for the values of a
where the corresponding fixed points lose their stability.

@ The fixed point of this transformation is the Feigenbaum point a..,
the point of the transition to chaos.
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(Renormalization group for the Ising Model)
Self-organized criticality

Power laws — mechanims and detection

Computation at the edge of chaos
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