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Open questions from last lecture

1 Why are spin glasses called “glasses” and how is the “glassy” state
defined thermodynamically?

Glasses are supercooled frozen liquids
Extremely long relaxation times
Metastable states

2 What are the controversies about Jaynes maximum entropy principle?

Basically the controversy between frequentist and Bayesian, between
objective and subjective probabilities
For instance entropy: in which sense can it be an objective “physical”
property, if it does only reflect our knowledge about the system?

3 What can we really learn about the nature of temperature from the
maximum entropy approach?

(Inverse) temperature in the form of the Lagrange multiplier β has to
be determined from

Ê = 〈E 〉 = −∂ lnZ

∂β

Not a deep insight !?
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Ising Model

Schematic model for the ferromagnetic phase transition

Binary spin variable si = {−1, 1}.
In the following we assume next neighbour interaction.
To produce one pair of non-aligned neighbouring spins one needs
energy J, i.e.

E = −
∑
〈ij〉

J

2
si sj − siH

with 〈ij〉 denoting pairs of adjacent spins i , j .

We have the partition function

Z =
∑
s1,sN

eβ(
P

〈ij〉
J
2
si sj−siH)

Gibbs free energy G = − 1
β lnZ

the magnetization M = − 1
β

∂ ln Z
∂H and

the magnetic susceptibility χ = − 1
µ0β

∂2 ln Z
∂H2
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Excat results — The partition function

Nearest neighbour interaction with strength J/2.

Abbreviation:

L =
βJ

2

Partition function

Z =
∑

s1=±1

. . .
∑

sN=±1

∏
〈ij〉

exp(Lsi sj)

The identity
exp(Lsi sj) = cosh L + si sj sinh L

leads to
Z =

∑
s1=±1

. . .
∑

sN=±1

∏
〈ij〉

(cosh L + si sj sinh L)
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The 1-D Ising model

Z = (cosh L)N
∑

s1=±1

. . .
∑

sN=±1

∏
〈ij〉

(1 + si sj tanh L)

All terms with odd numbers of at least one spin variable do not
contribute in the evaluation of the product in Z.

1-D ising model with open ends — no non-vanishing contributions
from the products of spin variables, only contribution 2N from the
sum over all states.

Z = (2 cosh L)N

Periodic boundary conditions — one contribution
sNs1 · s1s2 · . . . · sN−1sN(tanh L)N :

Z = (2 cosh L)N + (2 sinh L)N
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High temperature expansion

With the abbreviation u = tanhL we have

Z = (cosh L)s
∑

s1=±1

. . .
∑

sN=±1

∏
〈ij〉

(1 + si sju)

with s the number of spin pairs dN.

Only products which corresponds to closed paths contribute to Z

With Ωn denoting the numbers of figures with n bonds composed
exclusively of polygons one gets expansions in powers of tanh βJ

2

Z = 2N (cosh L)s
(

1 +
∑
n

Ωnu
n

)
Olbrich (Leipzig) 21.12.2007 7 / 24



The low temperature expansion

Number of spin pairs s = Nd . If there are r antiparalell spin pairs and
s − r parallel spin pairs then

∑
〈ij〉 si sj = (s − r)− r = s − 2r .

Z = 2 exp(sL)

[
1 +

∑
r

ωr exp(−2Lr)

]

with ωr denoting the number of configurations with r antiparallel
spins, and the coefficient 2 comes from the contribution by intverting
all the spins.

The lower T , the higher β and therefore also L. Thus for low T only
small values of r contribute ⇒ low temperature expansion
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2-D systems — the dual lattice

Put ↑ spins at the dual lattice point inside the polygons in the figures
of n bonds and put ↓ spins outside the polygons. This produces n
antiparalle spin pairs in the dual lattice. Thus we get Ωn = ω∗

n and
also ωn = Ω∗

n.

Obviously, we have s∗ = s.
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2-D systems — the dual lattice

Partition function of the original lattice

Z (T ) = 2N (cosh L)s
(

1 +
∑
n

Ωn(tanh L)n

)

and of the dual lattice

Z ∗(T ) = 2 exp(sL)

[
1 +

∑
n

Ωn exp(−2Ln)

]

Because the square lattice is self-dual, we have

Z (T ) = Z ∗(T ) .
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Self-duality — the critical temperature

Moreover, if we restrict ourselves to J > 0 (L > 0) we can define a
temperature T ∗(T ) with

exp(−2L∗) = tanh L T ∗ =
J

2kL∗

From this several symetric relations follow, e.g.

exp(−2L) = tanh L∗

sinh 2L sinh 2L∗ = 1

Moreover we have

Z ∗(T∗) = 2 exp(sL∗)2−N (cosh L)−s Z (T )

If there is only one singularity in Z (T ), there is also only one in
Z ∗(T ∗). Thus for T = Tc T = T ∗ and therefore

(sinh 2Lc)
2 = 1 LC ≈ 0.4407
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Transfer matrix method - 1-D Ising model

Partition function

Z =
∑

s1=±1

. . .
∑

sN=±1

∏
K (s1, s2) . . .K (sN , s1)

with

K (si , si+1) = exp

(
C

si + si+1

2
+ Lsi si+1

)
C = βH L =

βJ

2

and periodic boundary conditions sN+1 = s1.

Matrix formulation Z = tr{KN} = λN
1 + λN

2

K =

(
exp(C + L) exp(−L)
exp(−L) exp(−D + L)

)
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Transfer matrix method - 1-D Ising model

Matrix formulation Z = tr{KN} = λN
1 + λN

2

K =

(
exp(C + L) exp(−L)
exp(−L) exp(−D + L)

)
Eigenvalues

λ1,2 = exp L coshC ±
√

exp(2L) sinh2 C + exp(−2L)

For H = 0 and therfore C = 0

λ1 = 2 cosh L λ2 = 2 sinh L

Magnetization

M = − ∂

∂H
(−kT lnZ ) =

N sinhC

[exp(−4L) + sinh2 C ]1/2

Susceptibility

χ = − 1

µ0β

∂2 lnZ

∂H2
=

N

kT
exp

(
4J

kT

)
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Transfer matrix method - 2-D Ising model

Again the system is considered with periodic boundary conditions ⇒
2-D lattice on a torus.

The matrices K (si , sj) are replaced by U(sss i , sss j) with sss being the spin
vector of the ith ring.

Then again

Z = tr{UN} U(sss i , sss j) = exp [−Φ(sss i , sss j)]

In the thermodynamic limit only the largest eigenvalue is important

Z = λN
1 + λN

2 + . . .

= λN
1

[
1 +

λ2

λ1

N

+ . . .

]

In order to have long-range order, the largest eigenvalue has to be
degenerate, which is only possible in the thermodynamic limit.
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Solution of the 2-D Ising model

In a regular square lattice the partition function has the form

1

N
lnZ = ln(2 cosh 2L) +

1

2π

∫ π

0
ln

1

2
(1 +

√
1− (4κ)2 sin2 φ)dφ

with 2κ = tanh 2L
cosh 2L .

Original paper: L.Onsager, Phys.Rev. 65, 117(1944)

For the solution via high-temperature expansion see e.g.
Landau/Lifschitz Bd.5.
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Scaling, Renormalization and Universality

Start with some model M(xxx ,ppp) defined on some scale ε with
parameters ppp.

Now define new observable xxx ′ by coarse graining, e.g. integrating the
old ones over a certain range. Then rescale the new variables, such
that the model for the new variables is in the same space as the
original one, but usually with different parameters ppp′.

Thus we get a map (or flow) ppp 7→ ppp′ in the parameter space, with a
semigroup property, the renormalization group (RG).

If the system is self-similar it should be a fixed point of the
transformation ⇒ critical states are (unstable) fixed points of the RG
transformation.

Stable manifolds of these fixed points represent different models
showing the same critical behaviour ⇒ universality

Critical exponents can be derived from the fixed point properties ⇒
they are equal in one universality class
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Characteristic function of a probability density

Characteristic function

p̂(k) =

∫ ∞

−∞
dx exp(ikx) p(x)

or inversely

p(x) =
1

2π

∫ ∞

−∞
dk exp(−ikx) p̂(k)

Moments of a probability density

mn = 〈xn〉 =

∫ ∞

−∞
dx xn p(x)

Then the moments are given by

mn = (−i)n
dn

dkn
p̂(k)

∣∣∣∣
k=0

p̂(k) =
∞∑

n=0

mn

n!
(ik)n

Olbrich (Leipzig) 21.12.2007 17 / 24



Cumulants

The cumulants cn of a pdf are defined as the derivatives of the
logarithm of its characteristic function:

cn = (−i)n
dn

dkn
ln p̂(k)

∣∣∣∣
k=0

p̂(k) = exp

[ ∞∑
n=0

cn

n!
(ik)n

]
The cumulants can be expressed by the moments:

c1 = µ1 mean

c2 = µ2 variance

c3 = µ3 ∝ skewness

c4 = µ4 − 3µ2
2 ∝ excess kurtosis

c5 = µ5 − 10µ2µ3

with the central moments µn

µn = 〈xn〉 =

∫ ∞

−∞
dx (x −m1)

n p(x)
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Sum of two independent random variables

Random variable X with x = x1 + x2. Then

p(x) =

∫ ∞

−∞
dx1p1(x1)

∫ ∞

−∞
dx2p2(x2)δ(x − x1 − x2)

p(x) =

∫ ∞

−∞
dx1p1(x1)p2(x − x2)

Caracteristic function

p̂(k) = p̂1(k)p̂2(k)

Cumulants
cn = c

(1)
n + c

(2)
n
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Renormalization

1 Coarse graining:

p̂(n+1)(k) =
[
p̂(n)(k)

]2
c

(n+1)
l = 2c

(n)
l

2 Rescaling: x
(n)
i = (x

(n)
j + x

(n)
j+1)/2α

leads to

c
(n+1)
k = 21−kαc

(n)
k

3 Preserve variance:

c
(n+1)
2 = 21−2αc

(n)
2

⇒ α =
1

2
.
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Central limit theorem

Probability distribution characterized by its cumulants

p(c1, . . . , cl , . . .)

Distribution p(m) of X (m) with N = 2m is then

p(m) = p(2m(1−α)c1, 2
m(1−2α)c1, 2

m(1−3α)c3, . . .)

and with α = 1/2 and N →∞

p(∞) = p(c1

√
N, c2, c3 = 0, . . . , cl = 0, . . .)

which is a Gaussian distribution.

Gaussian distribution corresponds to the attractive fixed point of the
renormalization process.
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Stable Distributions

Given two random variables X1 and X2 distributed according to the
probability density p. p is called stable, if there are constant a, b and
c such that X = aX1 + bX2 + c is again distributed according to p.

Examples for stable distributions are the Gaussian or Normal
distribution

ρ(x) =
1√
2πσ

exp

(
−(x − µ)2

2σ2

)
the Cauchy-distribution

ρ(x) =
1

π

γ

γ2 + (x − δ)2

the Levy-distribution (δ < x < ∞)

ρ(x) =

√
γ

2π

1

(x − δ)3/2
exp(− γ

2(x − δ)
)

There are more stable distributions, but without closed form
expressions.
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Period doubling transition to chaos

Starting point: unimodal map f (x , a) on the unit interval [0, 1]
depends on a parameter a. Fixed point x∗ = f (x∗, a). Stability
|f ′(x∗(a), a)| < 1. Fixed point becomes unstable for |f ′(x∗(a), a)| = 1.

The a period 2 orbit becomes stable, which is a fixed point of
f 2(x , a) = f (f (x , a)). If there is a transformation that
T [f (x , a)] = f 2(x , a′) in the vicinity of the fixed point, and more
generally a transformation

T [f n(x , a)] = f n+1(x , a′)

this induces a transformation Ta : an 7→ an+1 for the values of a
where the corresponding fixed points lose their stability.

The fixed point of this transformation is the Feigenbaum point a∞,
the point of the transition to chaos.
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Outlook

(Renormalization group for the Ising Model)

Self-organized criticality

Power laws — mechanims and detection

Computation at the edge of chaos
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