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Overview

0 Summary: Excess entropy of temporal sequences

9 Examples
@ The logistic map

@ The henon map
@ Cellular Automata
@ Cellular Automata
© Generalization of the excess entropy for systems without a linear
ordering
@ Measuring statistical dependencies: Integration
@ Tononi, Sporns and Edelman’s (TSE) neural complexity

@ How should statistical complexity scale with system size?
@ Adding one element
o Adding a subsystem
@ Adding an independent subsystem
@ Adding a copy

Olbrich (Leipzig) 09.11.2007



Summary: Excess entropy of stationary temporal sequences

e Entropy of a subsequence H, = H(X{) = H(Xi,..., Xp,) is splitted
into a unpredictable, “random” part nh,, and a part representing the
regularities in the sequence H, ~ E 4+ n- hy. This remaining
non-extensive part was the excess entropy

E= lim Ey= lim (Hy—n-hy)  hy= H(Xo| X"} .
n—oo

@ The excess entropy is related to the rate of convergence of the

conditional entropies

E =Y kéhi Shp:=hpy—hy=MI(Xo: X_n|X_p,1) .
k=1
o If the excess entropy is finite it is equal to the “predicitive
information”

Ipred = MI(X° o : X{°) = E
@ The excess entropy is a lower bound for the amount of information
needed for an optimal prediction.
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Examples: The logistic map

The logistic map: xp+1 = rx,(1 — x,). Invariant measure:

Entropy rate equal to the Lyapunov exponent, hoo = A, if A > 0.
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Excess entropy

EMC

Fig. 1. Plot of EMC estimated to [ = 16th order, versus r-values in [3.55, 4.00] of the logistic map. Also included

in the plot we have the Lyapunov exponent 4 as a function of r, calculated with logarithms of base two [gray line)

Therefore one can identify the Feigenbaum-points. where the EMC diverges. Values of the EMC for high-entropy
data sets (mostly r > 3.85) are caleulated up 1o [ = i2th order only, owing to limitations of computer memory.

R. Giinther, B. Schapiro, P. Wagner, Complex Systems, Complexity Measures, Grammars and Model-Inferring. Chaos, Solitons

& Fractals, 4(1994),p. 635-651.
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Excess entropy and e-machine complexity

EMC
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Fig. 10. Effective measure complexity calculated for P{j*. EMC vanishes for r = 4 and is given by logp for periodic
behavior.
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Fig. 12. e-complexity calculated for P’ and for the parameter combination = 1,2, -+, 8; ) = 2la; € = 0.02,0.04,+-,0.2.

The small complexity values in the parameter range [3.80,3.83] ate caused by the relative small lengths (1, I3) of trees and
subtrees.

R. Wackerbauer, A. Witt, H. Atmanspacher, J. Kurths, H. Scheingraber, A Comparative Classification of Complexity Measures.

Chaos, Solitons & Fractals, 4(1994),p. 133-173.
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e-machine reconstruction - Fully developed chaos

r=4: Fully developed chaos.
@ Generating partition:

. 1 for x, > 0.5
"7 1 0forx, <05

@ Symbolic dynamics: Bernoulli shift — random sequence of 0’s and 1's
with p(0) = p(1) = p(1/0) = p(0[L) = 1/2.

0.5
— =
0.5 M 05 0]0.5 @ 1/0.5
0.5
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e-machine reconstruction

0

o H{16)/16 1

FIG. 2. Graph complexity € vs specific entropy H1(16)/16,
using the binary, generating partition £10,0.5),10.5,1)3, for the
logistic map at 193 parameter values » € [3.4] associated with
various period-doubling cascades. For mast, the underlying
trec was constructed from 32-cylinders and machines from 16-
cylinders. From high-entropy data sets smaller cylinders were
wsed as determined by storage. Note the phase transition
(divergence) at H*==0.28. Below H* behavior is periodic
and C,=H, =log(period). Above H*, the data are chaotic.
The lower bound C,=log(8) is attained at B— B/2 band
mergings.

FIG, 1. Topolegical e-machinc /[-digraphs for the lo- J.P.Crutchfield, K. Young, Inferring Statistical Complexity,
gistic map at {a) the first period-doubling accumulation
re=3.569945671..., (b) the band merging i -1g
=3.67859.__, (e} the “typical” chaotic value r =37, and (d) PRL 63(1989), 105.
the mast chaotic value r=4, (a) and (c) show approximations
of infinite s-machines. The start vertex is indicated by a dou-
ble circles all states are accepting; otherwise, see Ref. 11
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e-machine at the period-doubling onset of chaos

Figure 7 (a) Approximation of the critical e-machine at the period-doubling onset of chaos. (Afier [24].) (b) The dedecorated
version of the machine in (). Here the deterministic state chains have been replaced by their equivalent strings. (Afier [56].)

J.P.Crutchfield, The Calculi of Emergence: Computation, Dynamics and Induction, Physica D 75(1994), 11-54.
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The henon map

Extension of the logistic map to
make it invertible:

Xpp1 = 1-— ax,% + by,

Yn+1 = Xpn

Fig. 2. Hénon map fora = 1.4, b = 0.3, The heavy lines are
the unstable manifold and coincide with the attractor, The
open dot is an unstable fixed point, and the light lines are
part of its stable manifold. The heavy dots are the “principal”
tangent points between stable and unstable manifolds. The
dashed line connecting them forms the division line between
the two sets of the partition.

o Kantz/Grassberger (1985): h, — hoo ox €7 7" with v ~ 0.19 for the
standard parameter a = 1.4 and b = 0.3.
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Cellular Automata — Rules 18 and 22

111 110 101 100 011 010 001 000 111 110 101 100 011 010 001
0 0 0 1 0 0 1 0 0 0 0 1 0 1 1
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Cellular Automata — Rules 18 and 22

osf
4 0.4f
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0.4}
02f
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o

Rule 18: conditional entropies h, decay exponentially, ho, > 0
= “Chaotic”

Rule 22: h, decay with a power law — Grassberger (1986): temporal
decay oc 7098 spatial decay o< n=918 h o — 0
= “Complex”
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Generalization of the excess entropy — the setting

In the case of temporal sequences we considered unpredictability from the
past as “randomness”. For a general joint probability distribution of n
random variables with no particular ordering, there is a priori no restriction,
which variables should be used to “predict” the others. Thus we consider
in the following as randomness the sum of the remaining uncertainties of
each random variable assuming the knowledge of all others.

e “World": aset V of 1 < N < oo elements (agents, nodes) with state

sets X, ve V.
@ Given a finite subset A C V' we write X instead of x,_ X,

@ Given a probability vector p on X\, we get random variables Xj4.
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Integration or Multi-information

The integration is a generalization of the mutual information for more
than two random variables. The integration of the system X\, with respect
to its nodes is defined as

I(Xv): = Y H(Xpy) — H(Xv)

veVv

- D <p(xV)|r I1 m(xw))

veV

It is the difference between the sum of the variety of the elements and the
variety of the system as a whole.

It becomes zero if and only if the probability distribution p has the product
structure

p(xv) = J] pv(xy)

veV
where each py,} denotes the marginal distribution of the Xj,.
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Does the integration measure complexity?

I(Xv) == H(X(y) — H(Xv)

veVv
Pro:

@ The integration vanishes in the case of complete randomness, because
of the indepedence of the elements:

H(Xv) =Y H(Xqy)

vev

@ /(Xy) vanishes in the case of complete determinism, given by a
distribution that is concentrated in one configuration:

H(Xv) = H(X{y) =0

Olbrich (Leipzig) 09.11.2007 15 /



Does the integration measure complexity?

I(Xv) == H(Xy) — H(Xv)
vev

Contra:

@ The integration maximal in the case of “synchronization”
H(Xv) = H(X{y) = I(Xv) = (N —=1)H(Xy)

i.e. in an "ordered” state.
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Does the integration measure complexity?

I(Xv) =Y H(Xpy) — H(Xv)

veVv
Conclusion:

@ Multi-information measures all statistical dependencies in a system,
also redundant ones.

@ No general measure of statistical complexity, but might be used in
special cases.
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Excess entropy for a system without a linear order

time series finite system

o Ey = Z,{V:l(h,‘ — hy—1) depends on the order of the elements,
because of hy_; defines the “randomness”.
@ Order independent possibility

E(Xv) = H(Xv) = > H(Xp31 X)) -
veVv
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Excess entropy - Randomness

o Entropy rate replaced by H(X;,}|Xv\(v})

o H(X{,1|X\\{v}) quantifies the amount to which the state of a single
element cannot be explained by dependencies in the system and is
therefore considered as random.

09.11.2007
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Excess entropy - Randomness

o Entropy rate replaced by H(X(,}|Xv\(v})

o H(X{,1|X\\{v}) quantifies the amount to which the state of a single
element cannot be explained by dependencies in the system and is
therefore considered as random.

@ The excess entropy is then the difference between the uncertainty of
the state of the whole system and the sum of the unreducible
uncertainties of the state of the elements using all information
available in the system

E(Xv) = H(Xv) = > HXp31 X)) -
vev

@ It quantifies the “explainable” part of the variety of the system.
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Tononi, Sporns and Edelmans (TSE) neural complexity

@ Introduced as “neural
. . 12
complexity” by Tononi,
Sporns and Edelman (1994) 10
@ Should optimize between = 8 I(N) ]
high entropy and high $6
integration 4t
@ Integration formally: 2
I(Xv) = G
ey HX) = H(XY) L
N k
Xy): = H(k,N) — —H(N
Craelv): = 3 (kM) — GH(N)
A L
H(k,N) = ( k) > H(Xy)
‘Ylgv
Y|=k

Olbrich (Leipzig) 09.11.2007 18 /29



Tononi, Sporns and Edelmans (TSE) neural complexity

@ Introduced as “neural
o . 12t
complexity” by Tononi,
Sporns and Edelman (1994) 10
@ Should optimize between = 8 I(N) ]
high entropy and high ¥ 6
integration 4t
@ Integration formally: 2
I(Xv) = G
>vev H(Xy) = H(Xv) L A

@ Attempt to measure the potential ability of a neural system to
produce consciousness based on the intuition that a neural state
corresponding conscious experience should contain a large amount of
information, i.e. high entropy, which, however, is strongly integrated,
i.e. also a large multi-information on the system level.
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Excess entropy and TSE-complexity

8 IN) |
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Excess entropy and TSE-complexity

@ Excess entropy relates the system level to the level of elements, the
TSE-complexity considers also the level in between. Excess entropy
depends on the system level entropy and its growth at the last step
from N — 1 to N, the TSE is governed by the growing behaviour at
all levels.

@ Even if the Excess entropy remains constant for growing k, the
TSE-complexity will grow extensively.

@ It can be shown that (exercise)
E(Xy),

i.e. the TSE-complexity is proportional to the sum over the mean
excess entropies averaged over all subsets of the same size.

) 09.11.2007 19 / 29



How should statistical complexity scale with system size?

Three special cases:

A) Adding an independent element: The element has no structure itself,
so it has no own complexity. Because it is independent on
the rest of the system the complexity should not change.

B) Adding an independent subsystem: Because there are no dependencies
between the two systems the complexity of the union should
be simply the sum of the complexities of the subsystems.

C) Adding an identical copy: Because there is no need for additional
information to describe the second system one could argue
that the complexity should be equal to the complexity of
one system. One has, however, to include the fact in the
description that the second system is a copy of the first one.
At least this part should be not extensive with respect to the
system size.
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Excess entropy: Adding one element v/

E(Xvuguy) = EXXV) + Y MIX(y - Xy X vy)
veVvV

@ excess entropy increases monotonically with system size

o if there are no statistical dependencies between Xy and X,/ then

M/(X\/ : X{V/}) = M/(X{V/} : XV\{V}) + M/(X{V} : X{v’}|XV\{v})
= 0
= M/(X{V} : X{v’}‘XV\{v}) =0

o Thus E(Xyyg,y) = E(Xy) for an independent v'.
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Adding a subsystem

@ The excess entropy of a system consisting of two subsystems A and B
is always larger than the mutual information between these two
subsystems:

E(Xaug) > 1(Xa : XB) .

@ The excess entropy of the union of two subsystems is always larger

than the excess entropy of one of the subsystems.

E(Xaug) = E(Xa)  E(Xaus) = E(Xg)

© In general the sum of the excess entropies of the subsystems is neither
a lower nor an upper bound for the excess entropy of the whole

system.
E(Xaug) = E(Xa)+E(X) + D 1(Xy 1 XalXaypuy) +
vEA
+ Z /(X{V} : XA|XB\{V}) —1(Xa: Xg) .

VEXB
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Excess entropy: Adding an independent subsystem

@ Two independent subsystems A and B, thus
MI(XA : XB) =0 = H(XAUB) = H(XA) + H(XB)
@ Moreover

MI(X{VA} . XB’XA\{VA}) = H(X{VA}’XA\{VA}) — H(X{VA}|X57XA\{VA})
= 0 WAcA (same for v € B)

@ Thus
E(Xaug) = E(Xa) + E(XB) .

Olbrich (Leipzig) 09.11.2007 23 /29



Excess entropy: Adding a copy

@ Two copies X4 = Xg. Thus
H(Xaug) = H(Xa)  H(X,alX(a\v4)u8) =0

because IvB € B with X 4 = X,5.

@ The excess entropy of the two copies is equal to the entropy of one
subsystem.

E(Xaug) = H(Xa) > E(Xa) -

@ Problem: The “complexity” of two identical copies measured by the
excess entropy is independent of the complexity of the single system
which is clearly counterintuitive and shows a severe limitation of the
excess entropy as a complexity measure for finite systems.

@ Note: This problem does not occur for the excess entropy for time
series.
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Two identical time series

*********

********* ENEEE

tl me
@ Excess entropy for time series:

E= lim (H(X1,.... Xu)=Nhs) hoe = lim H(X|Xeo1,.... Xe-n)
— 00

N—oo

@ Only conditioning on the past allowed.

@ Causal Explanation
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TSE complexity: Adding one element v’

1
Crse(Xvugvy) (1+ N+1)CTSE(XV)
N+
N+1
< . > > MIX(y s Xyl Xy)
k=1 Vise

@ Ctsg increases monotonically with system size
o Thus Crse(Xvugvy) = (1+ ﬁ)CTSE(XV) for an independent v'.
@ Suggests to use a normalized TSE-complexity

Crse(Xv) = Crse(Xv)

N+1
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TSE-complexity: Two independent subsystems

e Using E(Xaug) = E(Xa) + E(Xg) we have for an arbitrary subset
YCAUB
E(Xy) = E(Xyna) + E(Xvng) -
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TSE-complexity: Two independent subsystems

e Using E(Xaug) = E(Xa) + E(Xg) we have for an arbitrary subset
YCAUB
E(Xy) = E(Xyna) + E(Xvng) -
@ By using this property and Crse(Xv) = 5 EYCV W )E(Xy)
could show that

NA+NB+1
NB—l-]_

NA+NB+1

X
Natl Crse(Xg)

Crse(Xaug) = Crse(Xa) +

or
Crse(Xaus) = Crse(Xa) + Crse(Xp)
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TSE-Complexity: Two copies

@ Using a reasoning similar to the case of the two independent
subsystems one finally arrives at

2NA+1

Crse(XauB) = Natl Crse(Xa) +

-1
2 2 (!YA|+\YB,> H(Xys|Xy,)

YACA YgCA

@ This leads to a very reasonable lower bound for the normalized
TSE-complexity N y
Crse(Xaug) > Crse(Xa) -

@ But, a similar problem as in the case of the excess entropy can occur.
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@ The TSE-complexity is closely related to the excess entopy: it is
proportional to the mean subset excess entropy averaged over all
subsets.

@ Both the excess entropy and the normalized TSE-complexity seems to
be reasonable but not ideal complexity measures.

@ The case of two copies indicated a certain limitation of the studied
complexity measures for finite systems, which is not present in the
time series case: One has to be more careful about what is explained
using which information from the system.

@ More specific complexity measures, e.g. restricted on causal
explanations
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