
Complex Systems Methods — 11. Power laws — an
indicator of complexity?

Eckehard Olbrich

e.olbrich@gmx.de
http://personal-homepages.mis.mpg.de/olbrich/complex systems.html

Potsdam WS 2007/08

Olbrich (Leipzig) 25.01.2008 1 / 23



Overview

1 Introduction

2 The detection of power laws

3 Mechanisms for generating power laws
Simple mechanisms
Preferential attachment — Yule process
Criticality revisited

4 Power laws and complexity

Olbrich (Leipzig) 25.01.2008 2 / 23



Introduction

The ubiquity of power laws

Observed in light from quasars, intensity of sunspots, flow of rivers
such as the Nile, stock exchange price indices

Distribution of wealth, city sizes, word frequencies

Fluctuations in physiological systems (heart rate, ...

Why are power laws interesting?

Heavy tails, higher probability of “untypical events”

Power law distributions are self-similar

Occur in fractals

Might be related to some optimality principle
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Power laws for discrete and continuous variables

A quantity x obeys a power lay if it is drawn from a probability
distribution

p(x) ∝ x−α

If x is a continuous variable, we have a probability density function
(PDF)

p(x) =
α− 1

xmin

(
x

xmin

)−α

If x ∈ N x ≥ xmin, the probability of a certain value x is given by

p(x) =
1

ζ(α, xmin)
x−α

with the generalized zeta function

ζ(α, xmin) =
∞∑
n=0

(n + xmin)
−α .
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Cumulative distribution function and rank/frequency plots

Best way to plot power laws is to plot the cumulative distribution
function (CDF) P(x) — the probability to observe a x ′ that has a
value that is equal or larger than x — no binning necessary, lower
statistical fluctuations

In the continuous case

P(x) =

∫ ∞

x
p(x ′)dx =

(
x

xmin

)−α+1

In the discrete case

P(x) =
ζ(α, x)

ζ(α, xmin)

Plotting the number of x ′’s which are equal or larger than x with x
being the frequency of occurrence gives the rank/frequency plot,
which corresponds to the (unnormalized) cumulative distribution
function
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Plotting power laws
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Zipf’s law and its relatives

Zipfs law: in natural langage the frequency of words is inversely
proportional to its rank in the frequency table

George Kingsley Zipf (1902-1950), American linguist and philologist
who studied statistical occurrences in different languages.

Vilfredo Federico Damaso Pareto (1848 - 1923) was a French-Italian
sociologist, economist and philosopher.

Pareto noticed that 80% of Italy’s wealth was owned by 20% of the
population.

Pareto distribution: Number of people with an income larger than x .

Pareto index is the exponent of the cumulative distributions of
incomes
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Fitting the exponent

Usual way: making a histogram and fitting a straight line in a log-log
plot

Problems: The errors are not gaussian and have not the same variance

Maximum likelihood estimate of the slope α̂ such that p(α|x1, . . . , xn)
becomes maximal.

Probability density

p(x) = Cx−α =
α− 1

xmin

(
x

xmin

)−α

Probability to observe a sample of data {x1, . . . , xn} given α

p(x1, . . . , xn|α) =
n∏

i=1

p(xi ) =
n∏

i=1

α− 1

xmin

(
xi
xmin

)−α
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Fitting the exponent

Probability to observe a sample of data {x1, . . . , xn} given α

p(x1, . . . , xn|α) =
n∏

i=1

p(xi ) =
n∏

i=1

α− 1

xmin

(
xi
xmin

)−α

Bayes rule

p(α|x1, . . . , xn) = p(x |α) p(α)

p(x1, . . . , xn)
.

Assuming an uniform prior this leads to maximizing the log likelihood

L = ln p(x1, . . . , xn|α)

= n ln(α− 1)− n ln xmin − α

n∑
i=1

ln
xi
xmin

Setting ∂L/∂α = 0, one finds

α̂ = 1 + n
(∑

i ln
xi
xmin

)−1
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Comparism with least square fit in the log-log plot

Maximum likelihood estimate: α̂MLE = 1.5003 using all data points
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Maximum likelihood estimator of α

α̂ = 1 + n
(∑

i ln
xi
xmin

)−1

with standard error

σα̂ =
α̂− 1√

n
+ O(1/n)

More precise results in Clauset at al. (2007)

⟨α̂⟩ = α
n

n − 1
− 1

n − 1

σα̂ = (α− 1)
n

(n − 1)
√
n − 2
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Estimating the lower bound xmin

Often x̂min has been chosen by visual inspection of a plot of the
probability density function or the cumulative density function

Increasing xmin means unsing less data for the fit, thus the likelihood
cannot be compared directly

Bayes’sches information criterion (BIC) having n points with xi > xmin

lnP(x |xmin) ≃ L− 1

2
(xmin + 1) ln n .

BIC underestimates xmin if there is a simple (but not a power) law
also for a region below xmin.

Clauset et al. propose to minimize the difference between the
empirical distribution and the power law disribution using the
Kolmogorov-Smirnov (KS) statistic

D = max
x≥xmin

|S(x)− P(x , α̂, xmin)|

with S(x) being the CDF of the data for the observations with value
at least xmin.
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Testing the power law hypothesis

Two aspects:

1 Is the power law hypothesis compatible with the data and not ruled
out?

2 Are there other better explanations of the data?

1. Testing the power law: Clauset et al. propose a Monte Carlo procedure,
i.e. (1) generating a large number of sysnthetic data sets
drawn from the power-law distribution that best fits the
observed data, (2) fit each one individually to the power-law
model, (3) calculate the KS statistic for each one relative to
its own best-fit model, (4) count the fraction that the
resulting statistic is larger than the value D observed for the
true data. This fraction is the p-value. (5) If the p-value is
sufficiently small, the power law hypothesis can be ruled out.
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Testing the power law hypothesis

Two aspects:

1 Is the power law hypothesis compatible with the data and not ruled
out?

2 Are there other better explanations of the data?

2. Testing against alternative explanations: Calculating the log likelihood
ratio

R = ln
L1
L2

= ln
n∏

i=1

p1(xi )

p2(xi )

=
n∑

i=1

(ln p1(xi )− ln p2(xi )) =
n∑

i=1

(
l
(1)
i − l

(2)
i

)
If R is significantly larger than 0 than p1 is a better fit than
p2.
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Transformation method

If x is distributed according to p(x) and y is a function of x , y = f (x),
then we have

q(y)dy = p(x)dx

and therefore

q(y) = p(x)

(
df

dx

)−1

x=f −1(y)

If x are uniformly distributed random numbers with (0 ≤ x < 1), we can
ask for a function f , such that y = f (x) is distributed according to a
power law

q(y) =
α− 1

ymin

(
y

ymin

)−α

.

Thus
dy

dx
=

ymin

α− 1

(
y

ymin

)α
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Transformation method

If x is distributed according to p(x) and y is a function of x , y = f (x),
then we have

q(y)dy = p(x)dx

and therefore

q(y) = p(x)

(
df

dx

)−1

x=f −1(y)

If x are uniformly distributed random numbers with (0 ≤ x < 1), we can
ask for a function f , such that y = f (x) is distributed according to a
power law

q(y) =
α− 1

ymin

(
y

ymin

)−α

.

Thus
dy

dx
=

y1−α
min

α− 1
yα
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Transformation method

dy

dx
=

y1−α
min

α− 1
yα

Integrating ∫ y

ymin

dy ′

y ′α
=

y1−α
min

α− 1

∫ x

0
dx ′

gives

y = ymin(1− x)−
1

α−1
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Combinations of exponentials

A variant of the preceeding is the following:

Suppose y has an exponential distribution p(y) ∝ eay

E.g. intervals between events occurring with a constant rate are
exponentially distributed

A second quantity x = eby , then

p(x) = p(y)
dy

dx
∝ eay (1/b)e−by =

1

b
x−1+ a

b
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Zipfs law for random texts

This can explain Zipf’s like behaviour of words in random texts:

m letters, randomly typed, probability qs of pressing the space bar,
probability for any letter

ql = (1− qs)/m

Frequency x of of a particular word with y letters followed by a space

x =

(
1− qs
m

)y

qs ∝ eby with b = ln(1− qs)− lnm.

Number of distinct possible words with length y goes up
exponentially as p(y) ∝ my = eay with a = lnm.

Thus p(x) ∝ x−α with α = 1− a
b

α = 1− lnm

ln(1− qs)− lnm
=

ln(1− qs)− 2 lnm

ln(1− qs)− lnm
≈ 2 for large m
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Preferential attachment — Yule process

According to Newman ”one of the most convincing and widely
applicable mechanisms for generating power laws”

First reported for the size distribution of biological taxa by Willis and
Yule 1922

”The rich become richer”

The model:

n . . . time steps, generations, at each step a new entity (city, species,
...) is formed. Thus the total number of entities is n.
pk,n fraction of entities of size k at step n. The total number of
entities of size k is npk,n.
At each step also m entities increase in size by 1 with a probability
proportional to their size ki/

∑
i ki . Note that

∑
i ki = n(m + 1).

Power law:
pk ∝ k−(2+ 1

m )
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Preferential attachment — Yule process

Expected increas of entities of size k is then

mk

n(m + 1)
npk,n =

m

m + 1
kpk,n

Master equation for the new number (n + 1)pk,n+1 of entities of size
k :

(n + 1)pk,n+1 = npk,n +
m

m + 1
[(k − 1)pk−1,n − kpk,n]

with the exception of entities of size 1

(n + 1)p1,n+1 = np1,n + 1− m

m + 1
p1,n

What is the distribution in the limit n → ∞ ?

p1 =
m + 1

2m + 1
pk =

m

m + 1
[(k − 1)pk−1 − kpk ]
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Preferential attachment — Yule process

What is the distribution in the limit n → ∞ ?

p1 =
m + 1

2m + 1
pk =

m

m + 1
[(k − 1)pk−1 − kpk ]

leading to pk =
k − 1

k + 1 + 1/m
pk−1

By iteration one gets

pk =
(k − 1)(k − 2) . . . 1

(k + 1 + 1/m)(k + 1/m) . . . (3 + 1/m)
p1

which can be expressed using the gamma function
Γ(a) = (a− 1)Γ(a− 1), Γ(1) = 1

pk = (1 + 1/m)
Γ(k)Γ(2 + 1/m)

Γ(k + 2 + 1/m)

= (1 + 1/m)B(k, 2 + 1/m)
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Preferential attachment — Yule process

What is the distribution in the limit n → ∞ ?

p1 =
m + 1

2m + 1
pk =

m

m + 1
[(k − 1)pk−1 − kpk ]

pk = (1 + 1/m)
Γ(k)Γ(2 + 1/m)

Γ(k + 2 + 1/m)

= (1 + 1/m)B(k, 2 + 1/m)

B(a, b) has a power law tail a−b, thus pk ∝ k−(2+ 1
m
)
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Preferential attachment — Yule process

What is the distribution in the limit n → ∞ ?

p1 =
m + 1

2m + 1
pk =

m

m + 1
[(k − 1)pk−1 − kpk ]

B(a, b) has a power law tail a−b, thus pk ∝ k−(2+ 1
m
)

Generalizations: starting size k0 instead of 1

Attachment probability proportioanl to k + c instead of k in order to
handle also the case of k0 = 0 (e.g. citations)

Exponent

α = 2 +
k0 + c

m

Most widely accepted explanation for citations, city populations and
personal income
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Random walks

Random walks: Distribution of time intervals between zero crossings
— “Gamblers ruin”

p(τ) ∝ τ−3/2
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α̂MLE = 1.5375
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Multiplicative processes

Multiplicative random processes: the logarithm of the product is the
sum of the logarithms ⇒ the logarithm is normal distributed, the
product itself is log-normal distributed

p(ln x) =
1√
2πσ2

(
−(ln x − µ)2

2σ2

)
p(x) = p(ln x)

d ln x

dx
=

1

x
√
2πσ2

exp

(
−(ln x − µ)2

2σ2

)
The log-normal distribution is not a power law, but it can look like a
power law in the log-log plot

ln p(x) = − ln x − (ln x − µ)2

2σ2
= −(ln x)2

2σ2
+
( µ

σ2
− 1

)
ln x − µ2

2σ2
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Multiplicative processes

Multiplicative time series model

xt+1 = a(t)x(t)

with a(t) randomly drawn from some distribution gives still a
log-nomal distribution.

Kesten multiplicative process

xt+1 = a(t)x(t) + b(t)

produces a CDF for x with tails P(x) ≃ c
xµ under the following

conditions (see Sornette): a and b are i.i.d. real-valued random
variables and there exists a µ such that

1 0 < ⟨|b|µ⟩ < +∞
2 ⟨|a|µ⟩ = 1
3 ⟨|a|µ ln |a|⟩ < +∞

This can be considered as a generalization of the random walk a = 1.
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Criticality revisited

Main feature of the critical state is the divergence of the correlation
length (and/or time), which means that there is no typical length
(time) scale in the system and the system has to be scale free.

In equlibrium phase transitions power law dependencies between
control and order parameters were a consequence of the self-similarity
of the critical state.

By using the same argument (see e.g. Newman) one can show, that
e.g. size distribution of clusters at the percolation transition has to
obey a power law.

Models of SOC (also the game of life) can be related to directed
percolation or Reggeon field theory, respectively, a certain kind of
branching process.
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Power laws and complexity

The observation of a power law alone is not sufficient to call a system
“critical” or even “complex”.

There are plenty of trivial and less trivial mechanims to generate
power laws.

But, power laws are interesting: A lot of (in some sense) “complex
systems” show power laws. It might, however, not necessarily be
related to their “complexity”.
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