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© Introduction
© The detection of power laws

© Mechanisms for generating power laws
@ Simple mechanisms
o Preferential attachment — Yule process
@ Criticality revisited

e Power laws and complexity
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Introduction

The ubiquity of power laws

@ Observed in light from quasars, intensity of sunspots, flow of rivers
such as the Nile, stock exchange price indices

@ Distribution of wealth, city sizes, word frequencies

@ Fluctuations in physiological systems (heart rate, ...
Why are power laws interesting?

@ Heavy tails, higher probability of "untypical events”

@ Power law distributions are self-similar

@ Occur in fractals

@ Might be related to some optimality principle
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Power laws for discrete and continuous variables

@ A quantity x obeys a power lay if it is drawn from a probability
distribution

«

p(x) o< x~

@ If x is a continuous variable, we have a probability density function

(PDF) )
o= ()

o If x € N x > Xpmin, the probability of a certain value x is given by

1 —
p(x) = —x
( ) C(avxmin)
with the generalized zeta function
oo
C(avxmin) = Z(n + Xmin)ia .
n=0
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Cumulative distribution function and rank/frequency plots

@ Best way to plot power laws is to plot the cumulative distribution
function (CDF) P(x) — the probability to observe a x” that has a
value that is equal or larger than x — no binning necessary, lower
statistical fluctuations

@ In the continuous case

@ In the discrete case

C(CV, Xmin)
@ Plotting the number of x’'s which are equal or larger than x with x
being the frequency of occurrence gives the rank/frequency plot,
which corresponds to the (unnormalized) cumulative distribution

function
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Plotting power laws

Normal histogram
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Zipf's law and its relatives

@ Zipfs law: in natural langage the frequency of words is inversely
proportional to its rank in the frequency table

o George Kingsley Zipf (1902-1950), American linguist and philologist
who studied statistical occurrences in different languages.

e Vilfredo Federico Damaso Pareto (1848 - 1923) was a French-Italian
sociologist, economist and philosopher.

@ Pareto noticed that 80% of Italy’'s wealth was owned by 20% of the
population.

@ Pareto distribution: Number of people with an income larger than x.

@ Pareto index is the exponent of the cumulative distributions of
incomes
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Fitting the exponent

o Usual way: making a histogram and fitting a straight line in a log-log
plot

@ Problems: The errors are not gaussian and have not the same variance

@ Maximum likelihood estimate of the slope & such that p(a|xi, ..., xn)
becomes maximal.

@ Probability density

P(X)—Cx—a_a—1< X )-a

Xmin Xmin
@ Probability to observe a sample of data {xi,...,x,} given «
z Ta—-1/x \°
p(xl,...,xn|a):Hp(x;):H : < '. )
pale i1 Xmin Xmin
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Fitting the exponent

@ Probability to observe a sample of data {xi,...,x,} given «
4 Ta—1/(x \“
pa. - omala) = [ot) =TT %0 ()
i=1 i=1 Xmm Xmln
@ Bayes rule
p(e)
alxi, ..., xp) = p(xja) ———— .
p( | n) ( ’ )p(X17"'7X’7)
@ Assuming an uniform prior this leads to maximizing the log likelihood
L = Inp(x,...,xn«a)
n
x:
= nin(a—1) — nInXmin —aZIn d
Xmin

i=1
e Setting dL/0a = 0, one finds

-1
&:1+n<zilni)

Xmin
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Comparism with least square fit in the log-log plot

Maximum likelihood estimate: &p e = 1.5003 using all data points
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Maximum likelihood estimator of «

1
a=1+n(2,|nxf7fm)

with standard error

v—1
o4 = O‘ﬁ +0(1/n)
More precise results in Clauset at al. (2007)
A n 1
(@) = an—l_ n—1
(a-1) —
og = (a—1)——F—=
“ (n—1)v/n-2
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Estimating the lower bound X,

@ Often X;,in has been chosen by visual inspection of a plot of the
probability density function or the cumulative density function

@ Increasing xmi, means unsing less data for the fit, thus the likelihood
cannot be compared directly

@ Bayes'sches information criterion (BIC) having n points with x; > Xmin

1
In P(X|Xmin) =~ L — E(Xmi" +1)Inn.

e BIC underestimates xp;n if there is a simple (but not a power) law
also for a region below xpjn.

o Clauset et al. propose to minimize the difference between the
empirical distribution and the power law disribution using the
Kolmogorov-Smirnov (KS) statistic

D = max |S(x) — P(x, &, Xmin)|
X2 Xmin
with S(x) being the CDF of the data for the observations with value

at least xmjn.
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Testing the power law hypothesis

Two aspects:
© s the power law hypothesis compatible with the data and not ruled
out?
@ Are there other better explanations of the data?

1. Testing the power law: Clauset et al. propose a Monte Carlo procedure,
i.e. (1) generating a large number of sysnthetic data sets
drawn from the power-law distribution that best fits the
observed data, (2) fit each one individually to the power-law
model, (3) calculate the KS statistic for each one relative to
its own best-fit model, (4) count the fraction that the
resulting statistic is larger than the value D observed for the
true data. This fraction is the p-value. (5) If the p-value is
sufficiently small, the power law hypothesis can be ruled out.
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Testing the power law hypothesis

Two aspects:

© Is the power law hypothesis compatible with the data and not ruled
out?

@ Are there other better explanations of the data?

2. Testing against alternative explanations: Calculating the log likelihood

ratio
Ly ~ p1(x)
R = In— =1
" Ly " ,1;[1 p2(x;i)
= > (np(x) —Inpaxi)) = > (10 - 1)
i=1 i=1

If R is significantly larger than 0 than p; is a better fit than
po.
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Transformation method

If x is distributed according to p(x) and y is a function of x, y = f(x),
then we have

q(y)dy = p(x)dx

ot = pt) (30)

x=f~(y)
If x are uniformly distributed random numbers with (0 < x < 1), we can
ask for a function f, such that y = f(x) is distributed according to a

power law
a—-1/(y \ °
q(y) = -
Ymin Ymin

Q _ Ymin y “
dx a—1 \Ymin
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Transformation method

If x is distributed according to p(x) and y is a function of x, y = f(x),
then we have

q(y)dy = p(x)dx

a(y) = p(x) <Z>i>>:_lf1(Y)

If x are uniformly distributed random numbers with (0 < x < 1), we can
ask for a function f, such that y = f(x) is distributed according to a

and therefore

power law
a—1 y \ ¢
q(y) = .
Ymin Ymin
Thus .
Q _ ymina ya
dx a-—1
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Transformation method

Integrating

gives

1—
Q _ ymina ya
dx a-1

1—
Y d_)// _ ymina XdX/
o -1
Ymin y o 0

_ 1
y :}’min(l _X) a-l1
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Combinations of exponentials

A variant of the preceeding is the following:
@ Suppose y has an exponential distribution p(y) o e?

@ E.g. intervals between events occurring with a constant rate are
exponentially distributed

o A second quantity x = e?, then

d B 1 4.a
p(x) :p(y)d—i x e¥(1/b)e™ = 7 1+3
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Zipfs law for random texts

This can explain Zipf's like behaviour of words in random texts:

@ m letters, randomly typed, probability gs of pressing the space bar,
probability for any letter

q = (1_qs)/m

@ Frequency x of of a particular word with y letters followed by a space

_ 1—-gs g by ; —
X = gs xe” with b=In(l-gs)—Inm.
m

@ Number of distinct possible words with length y goes up
exponentially as p(y) o« m¥ = e® with a = Inm.

@ Thus p(x) cx x™* withao =1 -2

Inm ~In(l—gs) —2Inm

= ~2 forl
In(l—qgs)—Inm  In(l—gqgs)—Inm oriaree m

a=1-—
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Preferential attachment — Yule process

@ According to Newman "one of the most convincing and widely
applicable mechanisms for generating power laws”

@ First reported for the size distribution of biological taxa by Willis and
Yule 1922

@ "The rich become richer”

@ The model:

e n...time steps, generations, at each step a new entity (city, species,
...) is formed. Thus the total number of entities is n.

o py.n fraction of entities of size k at step n. The total number of
entities of size k is npy 5.

o At each step also m entities increase in size by 1 with a probability
proportional to their size k;/ >, kj. Note that >, ki = n(m + 1).

o Power law:

pr oc k=)
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Preferential attachment — Yule process

@ Expected increas of entities of size k is then

mk
)npk,n =

™k
n(m+1 m+ 1 Phn

@ Master equation for the new number (n+ 1)py 41 of entities of size
k:

m
(n + 1)pk,n+1 = NPk.n + m (k - 1)pk—1,n - kpk,n]

with the exception of entities of size 1

(n+1)pipr1=np1p+1-— mpl,n

@ What is the distribution in the limit n — oo ?

m+1
2m+1

m
p1= pk = — [(k — 1)pk—1 — kp«]

C om+1
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Preferential attachment — Yule process

@ What is the distribution in the limit n — o0 ?

m+1 m
= = ——[(k—1)px—1 — Kk
p1 5 1 Pk 1[( )Pk—1 Px]
leading t = k-1
o] = Pk
eading Pk 1 1/ Pk—1

o By iteration one gets
(k—1)(k—-2)...1
Pk = P1
(k+1+1/m)(k+1/m)...(3+1/m)

which can be expressed using the gamma function
Ma)=(a—1)M(a—1), (1) =1

B F(k)F(2+1/m)
P = L m) )
= (1+1/m)B(k,2+1/m)
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Preferential attachment — Yule process

@ What is the distribution in the limit n — 0o ?

m+1 m
PL= Pk—7m+1[(k_1)Pk—1_kPk]
MKIr2+1/m
po = (1+1/mrEELm)

MNk+2+4+1/m)
= (1+1/mB(k,2+1/m)

e B(a, b) has a power law tail a=?, thus pj o k=(2+3)
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Preferential attachment — Yule process

@ What is the distribution in the limit n — o0 ?

m+1
2m+1

Pk = —— [(k — 1)pk—1 — kp]

PL= C m+1

B(a, b) has a power law tail a=®, thus pj o k=(2+5)

Generalizations: starting size kg instead of 1

Attachment probability proportioanl to k + c instead of k in order to
handle also the case of kg = 0 (e.g. citations)

@ Exponent
ko + ¢
a=2+ o+
m
@ Most widely accepted explanation for citations, city populations and

personal income
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Random walks

@ Random walks: Distribution of time intervals between zero crossings
— “Gamblers ruin”

p(r) o 73/
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Multiplicative processes

@ Multiplicative random processes: the logarithm of the product is the
sum of the logarithms = the logarithm is normal distributed, the
product itself is log-normal distributed

i) = o (<)

nx nx — u)?
p(x) = p(Inx)dclix :X\/217r7exp <_(|202“)>

The log-normal distribution is not a power law, but it can look like a
power law in the log-log plot

2

(Inx—p)*>  (nx)*  /n p
|nP(X):_|nX_T:— 252 —l—(;—l)lnx—@

Olbrich (Leipzig) 25.01.2008 21/23



Multiplicative processes

o Multiplicative time series model
xer1 = a(t)x(t)

with a(t) randomly drawn from some distribution gives still a
log-nomal distribution.

o Kesten multiplicative process

xer1 = a(t)x(t) + b(t)

produces a CDF for x with tails P(x) ~ -5 under the following
conditions (see Sornette): a and b are i.i.d. real-valued random
variables and there exists a u such that

Q 0< (|b") < +0

Q (|la") =1

Q (Jaj*In]al) < +o0
This can be considered as a generalization of the random walk a = 1.
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Criticality revisited

@ Main feature of the critical state is the divergence of the correlation
length (and/or time), which means that there is no typical length
(time) scale in the system and the system has to be scale free.

@ In equlibrium phase transitions power law dependencies between
control and order parameters were a consequence of the self-similarity
of the critical state.

@ By using the same argument (see e.g. Newman) one can show, that
e.g. size distribution of clusters at the percolation transition has to
obey a power law.

@ Models of SOC (also the game of life) can be related to directed
percolation or Reggeon field theory, respectively, a certain kind of
branching process.
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Power laws and complexity

@ The observation of a power law alone is not sufficient to call a system
“critical” or even “complex”.

@ There are plenty of trivial and less trivial mechanims to generate
power laws.

e But, power laws are interesting: A lot of (in some sense) “complex
systems” show power laws. It might, however, not necessarily be
related to their “complexity”.
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