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Introduction

“The aim of the science of self-organized criticality is to yield insight into
the fundamental question of why nature is complex, not simple, as the
laws of physics imply.”
Per Bak in “How nature works”, Springer, 1996)

Term was introduced 1987 by Per Bak, Chao Tang and Kurt
Wiesenfeld (PRL, 59, 381)

SOC was intended to explain the ubiquity of “1/f”-noise (flicker
noise) in nature

“1/f” noise: power law for temporal or spatial correlations,
self-similar, fractal structures

Observed in light from quasars, intensity of sunspots, flow of rivers
such as the Nile, stock exchange price indices
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The main ideas

General idea: In contrast to the critical point of equilibrium phase
transitions no control parameters have to be tuned to reach the
critical point. The system dynamics drives the system toward the
critical point ⇒ self-organized criticality, critical state as robust
nonequlibrium “attractor”, no fine-tuning of parameters necessary

Criticality: local (in space/time) perturbation do not decay
exponentially, but algebraically — long range/term correlations,
power law correlations of the fluctuations

Universality: Exponents independent on the details of the model

Spatial extended system: critical state consists of a network of locally
minimally stable states (i.e. a local stability condition is needed).
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The BTW sandpile model - Definition in 1-d

The Bak-Tang-Wiesenfeld (BTW) model is a cellular automaton. Consider
a one-dimensional sand pile of length N. The boundary conditions are so
that sand can leave the system at the right hand side only. The numbers
zn represent height differences zn := hn − hn+1. The dynamics is the
following:

1 A unit of sand is added at a random position n:

zn 7→ zn + 1

zn−1 7→ zn−1 − 1

2 When the height difference becomes higher than a fixed critical value
zc , one unit of sand tumbles to the lower level, i.e.

zn 7→ zn − 2

zn±1 7→ zn±1 + 1 for zn > zc
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The BTW sandpile model - Definition in 1-d

1 A unit of sand is added at a random position n:

zn 7→ zn + 1

zn−1 7→ zn−1 − 1

2 When the height difference becomes higher than a fixed critical value
zc , one unit of sand tumbles to the lower level, i.e.

zn 7→ zn − 2

zn±1 7→ zn±1 + 1 for zn > zc

3 Open boundary conditions

z0 = 0 zN 7→ ZN − 1 zN−1 7→ ZN−1 − 1 for zN > zc
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The 1-d BTW sandpile

If the sand is added randomly from an empty system, the pile will
build up, eventually reaching the point were all the height differences
zn assume the critical value z = zc . This is the minimally stable state
of the system.

Any additional sand simply falls from site to site and falls off at the
end n = N leaving the system in the minimally stable state.

The state is only critical in the sense that any small perturbation can
propagate infinitely through the system.

The correlation functions are trivial.
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The 2-d BTW sandpile

1 A unit of sand is added at a random position (x , y):

z(x − 1, y) 7→ z(x − 1, y)− 1

z(x , y − 1) 7→ z(x , y − 1)− 1

z(x , y) 7→ z(x , y) + 2

2 When the height difference z(x , y) becomes higher than a fixed
critical value zc

z(x , y) 7→ z(x , y)− 4

zx ,y±1 7→ zx ,y±1 + 1

zx±1,y 7→ zx±1,y + 1

The variable z has, however, no direct correspondence to the slope of a
sandpile anymore.
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Simplified BTW model - “height model”

1 Sand is added at a random position (x , y):

Conservative: z(x , y) 7→ z(x , y) + 4
Non-conservative: z(x , y) 7→ z(x , y) + 1

2 When the height difference z(x , y) becomes higher than a fixed
critical value zc

z(x , y) 7→ z(x , y)− 4

zx ,y±1 7→ zx ,y±1 + 1

zx±1,y 7→ zx±1,y + 1
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Criticality in the 2-d BTW model

The homogeneous minimally stable state z(x , y) = zc is not critical,
because the avalanches are amplifying, each node will render two
other nodes unstable.

BTW: “The network will become stable precisely at the point when
the network of minimally stable clusters has been broken down to the
level where the noise signal cannot be communicated through infinite
distances.”

Adding sand randomly the “slope” will be built up to the point where
stationarity is obtained, which is assumed by BTW to be a critical
state

No typical length and time scale ⇒ power law distribution of
avalanche times
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Power law distributions of avalanche sizes and lifetimes at
criticality for the 2-d BTW Sandpile

Figures from BTW, PRA 38(1988),364-374
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Experiments: Sand and rice piles

Sand piles: No critical behavior was found by Nagel (1992). The slop
oscillates between the angle of repose θr and the maximum slope θm.
The slope increases until the maximum slope is reached, then a
landslide is is induced. The avalanche persists until the slope θr is
reached.

For small sand piles a power law was found by Held (1990) and later
by Rosendahl et al. (1993) for avalanches containing from s = 3 to
80 grains distributed according to P(s) ∝ s−2.5. For larger sand piles
a crossover to the oscillatory behavior was observed.

The noncritical behavior of sand piles is assumed to be an effect of
inertial effects. A growing avalanche gains kinetic energy and becomes
increasingly harder to stop affecting finally the whole sandpile.

In piles of rice of certain types (elongated grains, “Langkornreis”)
power law behavior could be found (Frette et al. 1996)
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Earthquakes

Gutenberg-Richter law: If M is the magnitude of an earthquake and
N the of earthquakes of this magnitude in a particular region and
time interval, it was found that

log N = a− bM

Magnitude of the earth quake is proportional to the released energy.
i.e. m ∝ log E and therefore

N ∝ E−b

SOC was proposed as a mechanism to explain this law

A continuous variable non-conservative version of the sandpile model
was proposed as an earthquake model by Olami, Feder and
Christensen (PRL 1992)

There have been a (still ongoing?) debate about this explanation -
see e.g. http://www.nature.com/nature/debates/earthquake/
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The OFC model

Olami, Feder and Christensen (1992) proposed a modification of the
simplified BTW model which should mimic the dynamics of sliding
tectonic sheets

Local variable Ei energy related to local stress increases continuously

Ei (t + ∆t) = Ei (t) + ν

When the local stress exceeds a threshold Ei ≥ Ec , the next neighbors
Enn(i) of i are updated according to

Ei (t + ∆t) = 0

Enn(i)(t + ∆t) = Enn(i)(t) + αEi

In earthquakes energy is dissipated — non-conservative update,
∆E = (2dα− 1)Ei
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Properties of the OFC model

The model can be related to the more realistic Burridge-Knopoff
spring-block model.

Power law behavior for avalanche frequency vs. size was found with
an exponent depending on α.

The model is definitely non-critical for α = 0. It is unclear, whether
there is a transition at finite α.

For periodic boundary conditions the critical behavior is lost and the
system synchronizes and oscillates between Ec and 0
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Evolution

Evolution of species gradually at a slow, smooth pace, or via periods
of hectic activity separated by long intervals of tranquility?

Stephen J. Gould (1977) suggested the idea of “punctuated
equilibrium” for the history of individual species scaled into geological
time

Species survive for long periods but then disappear within a relatively
short span of years

Often simultaneous extinction of many species, with greatly varying
numbers of species in this “bursts” of extinction

Idea: Avalanche-like nature of extinction: SOC
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Bak-Sneppen model - extremal dynamics

The Bak-Sneppen model is an example of extremal dynamics and
arose from the modeling of the growth of random interfaces

For the sake of simplicity again a lattice is considered, 1-d in the
simplest case

Local variable bi ∈ [0, 1) should represent a fitness barrier, i.e. how
unlikely a change of fitness is

It is assumed the it depends on the neighbors

Update algorithm:
1 Locate the site i = j with the smallest b value bj ≤ bi ∀i
2 Perform the substitutions

bj = u1 bj+1 = u2 bj−1 = u3

where ui ∈ [0, 1) are random number drawn with uniform density
3 Also the variant with random selection of neighbors exhibit criticality.
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Bak-Sneppen model - extremal dynamics

Distribution of barriers evolve toward a step function

In the limit of infinite system size, the distribution is characterized by
a single parameter bc , with p(b) = 0 for b < bc and a uniform
distribution p(b) = 1/(1− bc) for b > bc

Two point correlation function exhibits algebraic decay

G (i , j) = 〈bibi+∆〉 − 〈b2
i 〉 ∝ (∆)−ηe−∆/∆0

with η u 0.7 and where ∆0 →∞ when L →∞ (Datta, Gilhøj and
Jensen 1997)

“Avalanche sizes depending on b0 defined as t ′ with

bmin(t1,2) > b0 bmin(t) < b0 for t1 < t < t2

were found for b0 = bc to be distributed like p(t) = 1/t.
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Forest fire model

Introduced by Drossel and Schwabl (1992), not really related to forest
fires, but applied with some success to the modeling of the spreading
of measles of the isle of Bornholm and of the Faroe islands (Rhodes
and Anderson 1996; Rhodes, Jensen, and Anderson 1997)

Defined on a d-dimensional cubic lattice updated according to the
following rules

1 A site occupied by a burning tree becomes empty.
2 A green tree becomes a burning tree if one or more of its nearest

neighbors are burning trees.
3 An empty site becomes a green tree with probability p (the growth

rate).
4 A green tree catches fire spontaneously with probability f (the

lightning rate)

Periodic boundary conditions are assumed. System spanning spiral-like
fire fronts traverse the system with a period proportional to 1/p.

The system becomes critical only in the limit p → 0 and f /p → 0.
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Forest fire model

Defined on a d-dimensional cubic lattice updated according to the
following rules

1 A site occupied by a burning tree becomes empty.
2 A green tree becomes a burning tree if one or more of its nearest

neighbors are burning trees.
3 An empty site becomes a green tree with probability p (the growth

rate).
4 A green tree catches fire spontaneously with probability f (the

lightning rate)

Periodic boundary conditions are assumed. System spanning spiral-like
fire fronts traverse the system with a period proportional to 1/p.

The system becomes critical only in the limit p → 0 and f /p → 0.

The model is considered to be not self-organized critical, because the
parameters have to be tuned.
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Forest fire model
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Game of Life

Invented 1970 by the British mathematician John Conway

2-dimensional cellular automaton with a simple rule: two states
(living and dead), 8 neighbors, if 2 or 3 neighbors are living, the cell
survives, otherwise it dies. If it is dead and has 3 living neighbors it
becomes living.

Starting from a random initial condition it relaxes to a stationary
state of constant or periodic patterns.

There are moving patterns — best known are the “gliders”.

Perturbing the stationary state by a random perturbation produces
transient activity - an avalanche

Bak and others studied the duration and size of these avalanches and
found power laws

As in other models there was also here a controversy, whether the
game of life is really critical or if there is a crossover to an exponential
distribution for large system sizes.
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What is SOC good for?

Jensen (1998) casts this question into four more specific ones:

1 Can we identify SOC as a well defined distinct phenomenon different
from any other category of behavior?

2 Can we identify a certain construction that can be called a theory of
self-organized critical systems?

3 Has SOC taught us anything about the world that we did not know
prior to BTW’s seminal paper 1987?

4 Is there any predictive power in SOC — that is, can we state the
necessary and sufficient conditions a system must fulfill in order to
exhibit SOC? And, if we are able to establish that a system belongs to
the category of SOC systems, does that then actually help us to
understand the behavior of the system?

Olbrich (Leipzig) 18.01.2007 21 / 25



The main ingredients of SOC (according to Jensen)

Interaction dominated — the local dynamics is essentially affected
by interactions

Time scale separation: The time scale of the external driving force
has to be much slower than the time scale of the response of the
system. i.e. the internal relaxation process (avalanches); without this
time scale separation the dynamics would be dominated by the
external drive

Existence of thresholds allows a large number of metastable static
configurations

Subset of this metastable states are the minimally stable states of
BTW; these minimally stable states are the critical states

We can expect SOC in slowly driven, interaction-dominated
threshold (SDIDT) - systems
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Criticality without tuning?

One of the main objection to SOC was, that also the SOC models produce
criticality only in certain parameter regions. E.g exact criticality of the
BTW model is only reached if the input rate goes to zero.

It turned out that SOC is less general and universal than originally
claimed by BTW. There are several examples of candidate systems,
which not develop into a critical state, e.g. the real sandpile. Jensen
tried to formulate some of the probably necessary (but clearly not
sufficient) conditions by his notion of SDIDT systems.

Some of the requirements to meet the theoretical definition of
criticality are of theoretical nature, i.e. can not and need not to be
fulfilled for real systems — think of the thermodynamical limit for
equilibrium phase transitions

Relation to evolution seems to be (for me) an open question
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Power laws

Jensens proposal to characterize SOC as phenomenon in SDIDT systems is
called by himself a constructive definition and contrasted with the
phenomenological definition, which mainly relies on the identification of
power law distributions in the fluctuations. The phenomenological
approach has the problem that:

1 Not all systems exhibiting power laws in their fluctuations are SOC.

2 There are also trivial ways to produce power laws.

3 There are alternative theories to explain the ubiquity of power laws in
evolved systems, e.g. highly optimized tolerance (HOT)

Olbrich (Leipzig) 18.01.2007 24 / 25



Conclusions

SOC (alone) is certainly not “How nature works”

But, SOC has been established as a subfield of nonequilibrium
statistical mechanics

SOC has called attention to thresholds, metastability and its relation
to large fluctuations in the spatio-temporal behavior in a large class of
many-body systems
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