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These notes concern the minimal Lipschitz extension problem and tug-of-war games.
These are two apparently very different topics. The first ostensibly belongs to the
calculus of variations, as the goal is to minimize a certain energy functional and study
the properties of minimizers. The second is a stochastic two-player game that could
be filed under game theory: two players take turns controlling a random walker in the
hopes of maximizing a pay-out function depending on its trajectory. We will see that
these two problems are connected via an elliptic partial differential operator called
the infinity Laplacian. Further, this story can be told using beautiful (and elemen-
tary) geometric and analytic arguments, which provide a nice setting for exploring
topics like the maximum principle, Markov chains, convex analysis, and the theory
of viscosity solutions.

0.1. The Minimal Lipschitz Extension Problem. Let φ be a norm in Rd. The
minimal Lipschitz extension problem can be stated as follows: given an open set U ⊆
Rd and a uniformly Lipschitz function g : ∂U → R, solve the following optimization
problem

min
{
Lipφ(v;U) | v : U → R such that ∀x ∈ ∂U v(x) = g(x)

}
,(1)

where Lipφ(v;U) is the Lipschitz seminorm defined by

Lipφ(v;U) = inf
{
C > 0 | ∀x, y ∈ U v(x)− v(y) ≤ Cφ(x− y)

}
.

A function v attaining the minimum in (1) is called a minimal Lipschitz extension of g
in U . As we will see below, there may be more than one minimal Lipschitz extension,
but there is at most one absolutely minimizing Lipschitz extension, defined next.

In the definition, we need to recall that a continuous function u : U → R is called
locally Lipschitz continuous if, for any compact set K ⊆ U ,

Lipφ(u;K) <∞.

Exercise 4 below asks you to check that the definition does not depend on the choice
of norm φ.

Let us also recall that if U and V are two open sets in Rd, we say that V is compactly
contained in U if V is bounded and V ⊆ U , where V denotes the closure of V . For
brevity, we write V ⊂⊂ U to mean that V is compactly contained in U .

Definition 1. Given any open set U ⊆ Rd, a continuous function u : U → R is called
an absolutely minimizing Lipschitz function if u is locally Lipschitz continuous in U

1



2 P.S. MORFE

and, for any open subset V ⊂⊂ U ,

Lipφ(u;V ) = min
{
Lipφ(v;V ) | v : V → R such that ∀x ∈ ∂V v(x) = u(x)

}
.

By the end of these notes, we will prove the following theorem, asserting that there
is at most one absolutely minimizing Lipschitz function with a given boundary value
in any given bounded domain.

Theorem 1. Let U ⊆ Rd be a bounded open set and fix a continuous function g :
∂U → R. Then there is a unique absolutely minimizing function u : U → R such that
u(x) = g(x) for each x ∈ ∂U . Further, if g is uniformly Lipschitz continuous in ∂U ,
then u attains the minimum in (1).

Along the way, we will see another equivalent characterization of absolutely mini-
mizing Lipschitz functions, involving a maximum principle. This will be used to prove
the uniqueness assertion of the theorem, along with certain averaging operators that
are intimately related to the tug-of-war games described next.

0.2. Tug of War (with Noise) on Zd. For our purposes, tug of twar with noise is a
stochastic two-player game, involving a stochastic process indexed by p, the intensity
of the noise. When p = 1, the process is simply the simple random walk (SRW). Recall
that this is the Markov chain (Xk)k∈N0 on Zd such that, at each time, it randomly
chooses its next position among its 2d nearest neighbors:

P{Xn+1 = y | Xn = x} =

{
1
2d
, if |y − x| = 1,
0, otherwise.

Even if we set aside probability for a moment, the SRW will be interesting for us since
it leads to the solution of a “discrete PDE,” namely, given a finite subset A ⊆ Zd and
a function F : Zd → R, study of the SRW leads to the analysis of the following linear
equation

−∆Zdu = 0 in int(A), u = F on ∂intA,(2)

where int(A) denotes the set of points in A for which all nearest neighbors are also
in A, ∂intA = A \ int(A), and ∆Zd is the linear operator given by

(∆Zdu)(x) =
1

2d

∑
y∈Zd : |y−x|=1

(u(y)− u(x)) .

We will refer to ∆Zd as the discrete Laplacian since it behaves like a discretized version
of the partial differential operator ∆. Properties of this and related “discrete PDE”
will be treated in detail in Section 1.

When p ∈ [0, 1), the stochastic process is no longer a Markov chain per se. Instead,
there are now two players, call them Max and Minnie, who get a chance to influence
the trajectory of the random walk. The simplest version of the tug-of-war game with
noise can be described informally as follows: fix a finite subset A ⊆ Zd and a function
F : ∂intA → R. At each time n, a biased coin is flipped, the probability of landing
heads being p. If it is heads, the walker moves from position Xn to Xn+1 as in the
simple random walk, choosing one of its nearest neighbors uniformly at random. If
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the coin lands on tails, though, Max and Minnie get a chance to steer the walk.
Another coin is flipped, this one unbiased. If this second coin is heads, it is Max’s
turn; otherwise, if it comes up tails, it is Minnie’s. Either way, Max or Minnie get to
move the walker from its current position Xn to any new position Xn+1 as long as it
is a nearest neighbor of Xn.
The game concludes the first time that the process X hits the boundary of A, i.e.,

Xn ∈ ∂intA. Call this (random) time τ . At time τ , the rules of the game state that
Minne has to pay Max the amount F (Xτ ). Hence Max is inclined to influence X
in such a way as to maximize the (expected) payout, that is, E[F (Xτ )]. Minnie, on
the other hand, does her best to minimize the expected payout. Now you see why
it is called tug-of-war (with noise): one player seeks to pull the walker towards the
maximum, while the other player wants to drag it back towards the minimum.

Making the discussion above rigorous requires some notation, for which you can see
Section 1, but the reader uninitiated (or uninterested) in probability can rest assured,
as there is still something to see here even neglecting the details of the game. We will
be interested in the connection between the tug-of-war and the following nonlinear
equation, which turns out to describe the expected payout:

−p∆Zdu− (1− p)∆∞
Zdu = 0 in int(A), u = F on ∂intA.(3)

Clearly, when p = 1, this is the same as (3), whereas when p < 1, we add a term
involving the discrete infinity Laplacian ∆∞

Zd , which is given by

(∆∞
Zdu)(x) =

1

2
max

y∈Zd : |y−x|=1
{u(y)− u(x)}+ 1

2
min

y∈Zd : |y−x|=1
{u(y)− u(x)}.

Notice that this is quite similar to ∆Zd in so far as it outputs a weighted average of
the differences {u(y) − u(x) | |y − x| = 1}. We will see below that (3) has unique
solutions for any p ∈ [0, 1] and we will show that the solution describes the expected
payout of the game.

0.3. Scaling Limit. We started out discussing the minimal Lipschitz extension prob-
lem, which involves functions defined in the continuum but then went on to discuss
tug-of-war games, involving functions in Zd. You may be forgiven for wondering
about the connection between the two.

If you have seen a thing or two about finite-difference methods, you may already
be anticipating what is coming next. Suppose we rescale by replacing Zd by ϵZd so
that the distance between nearest neighbors is now ϵ, and consider what happens
when ϵ is small, but A remains a fixed size. At the level of the tug-of-war game, that
means it takes many, many steps of the walker before it lands in ∂intA. Alternatively,
to account for the smaller step size, we should change our definition for the discrete
infinity Laplacian by setting

(∆∞
ϵZdu)(x) =

1

2
max

y∈ϵZd : |y−x|=ϵ
{u(y)− u(x)}+ 1

2
min

y∈ϵZd : |y−x|=ϵ
{u(y)− u(x)},

We will prove the following result about the scaling limit of (3) as the step size ϵ→ 0.
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Theorem 2. Fix a bounded open set U ⊆ Rd and a continuous function g : ∂U → R.
Let G : U → R be a continuous extension of g. For any ϵ > 0, define Uϵ ⊆ ϵZd and
Gϵ : Uϵ → R by the rule

Uϵ = {x ∈ ϵZd | x ∈ U}, Gϵ(x) = G(x)

and let uϵ be the solution of the equation

−ϵ−2∆∞
ϵZdu

ϵ = 0 in Uϵ, uϵ = Gϵ on ∂intUϵ.(4)

Then there is a continuous function u : U → R such that uϵ → u uniformly in U as
ϵ→ 0 in the following sense:

lim
δ→0

sup {|uϵ(x)− u(y)| | ϵ+ |x− y| < δ} = 0.(5)

Furthermore, u is an absolutely minimizing Lipschitz function in U with respect to
the ℓ1 (or Manhattan) norm.

A few remarks about the theorem are in order. First, the weird factor of ϵ−2 in (4)
is unnecessary since the right-hand side is zero, but it will be meaningful later so it
may be worth pondering its presence now.

Second, the strange notion of uniform convergence in (5) is necessary since uϵ and
u are defined in different sets (indeed, I should have written x ∈ Uϵ and y ∈ U , the
set depends on ϵ).
Lastly, notice that we obtained an absolutely minimizing Lipschitz function in the

limit! So there is, indeed, a connection between the two topics presented so far.
Notice, though, that it isn’t just any norm φ involved here, but the ℓ1 “Manhattan”
norm. This reflects the fact that our walk took place in Zd: if we had changed to a
different lattice, we would have gotten a different norm.

Still, this all should seem fairly unsatisfying since we started with something that
looked like a “discretized PDE” (or so I led you on), but all I have said so far is that
the limit function is an absolutely minimizing Lipschitz function. As we will see, this
is where the factor of ϵ−2 in (4) comes in handy.

Before getting too deep into the weeds, it is worth considering the more classical
case when p = 1 instead of zero. In that case, the equation of interest is

−ϵ−2∆ϵZduϵ = 0 in Uϵ, uϵ = Gϵ on ∂intUϵ.(6)

The behavior of uϵ is admittedly more delicate here: we have assume that ∂U is
“nice” in a sense that can be made precise. The result then states that uϵ → u in the
same sense as (5), and u : U → R is a continuous function, which is smooth in U ,
such that

−∆u = 0 in U, u = g on ∂U.(7)

This is quite tidy: you could say that the so-called Laplace equation −∆u = 0 is the
“limiting equation” of the discretized version (6).

Anticipating a little bit, we can rewrite the Laplace equation as −H(Du,D2u) = 0,

whereH is the functionH(p,X) = 1
d

∑d
i=1Xii taking a vector p ∈ Rd and a symmetric

matrix X ∈ Sym(d) and returning the average of the diagonal matrices of X.
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In the case p = 0 (i.e., tug-of-war without noise), we obtain something similar, but

with a twist. Analogous to H above, define two functions G∗
ℓ1 and G

ℓ1

∗ on Rd×Sym(d)
by

G∗
ℓ1(p,X) = max

i∈{1,2,...,d} : |pi|=|p|∞
Xii

Gℓ1

∗ (p,X) = min
i∈{1,2,...,d} : |pi|=|p|∞

Xii.

Above |p|∞ denotes the ℓ∞ norm of p, i.e., |p|∞ = max{|p1|, . . . , |pd|} if p = (p1, . . . , pd),

whereas the ℓ1 norm is |p|1 =
∑d

i=1 |pi|. The fact that ℓ∞ appears in the definition
even though the name involves ℓ1 will require some explanation later on. The number
Xii appearing above are the ith diagonal entry of X. Thus, if |p|∞ = |pi| for a unique
i, then G∗

ℓ1(p,X) and G∗
ℓ1(p,X) both equal the corresponding diagonal entry of X,

but, in general, they differ.
With this notation out of the way, we are prepared to state the result that gives

an alternative characterization of the limit u.

Theorem 3. Let u be the limiting function obtained in Theorem 2. Then u is the
unique continuous function such that

−G∗
ℓ1(Du,D

2u) ≤ 0 in the viscosity sense in U,

−Gℓ1

∗ (Du,D
2u) ≥ 0 in the viscosity sense in U,

u = g on ∂U.
(8)

In Section ??, I will argue that the two inequalities in (8) are the “limiting equation”
obtained from (4). We can call it the ℓ1 infinity Laplace equation, and the two

functions Gℓ1

∗ and G∗
ℓ1 together constitute the ℓ1 infinity Laplacian. There is just one

problem: emphatically unlike (7), we aren’t dealing with an equation, but instead
two inequalities. We will see below that this is unavoidable, and it necessitates some
interesting analysis.

You may still be wondering: what does it mean for a partial differential inequality
to hold in the viscosity sense? That is a question unto itself, as you could see by
consulting a reference like the infamous “User’s Guide” by Crandall, Ishii, and Lions.
A key difficulty in all this is the function u will not even be C1 in general, hence we
need to reconsider what we mean when we talk about a solution of a PDE. Yet the
two problems considered here (minimal Lipschitz extensions and tug-of-war games)
will provide a nice setting to dip our feet into this somewhat esoteric terrain. So if you
have never heard of a viscosity solution (of a PDE) or don’t know the definition, rest
assured. The problems presented above will provide a (hopefully pleasant) foretaste.

At last, of course, the analysis above could be repeated with an arbitrary p ∈ [0, 1],
and then one obtains, as you might guess, the two inequalities

−p∆u− (1− p)G∗
ℓ1(Du,D

2u) ≤ 0 in the viscosity sense in U,

−p∆u− (1− p)Gℓ1

∗ (Du,D
2u) ≥ 0 in the viscosity sense in U.

Proving this requires more machinery than is developed here, but some of the discus-
sion can be found in Section ?? below.
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0.4. Exercises.

Exercise 1. Prove that any Finsler norm is continuous.

Exercise 2. Let |·| be the Euclidean norm in Rd, i.e., |q|2 =
∑d

i=1 q
2
i if q = (q1, . . . , qd)

in the standard coordinates. Prove that if φ is a Finsler norm in Rd, then there is a
constant C ≥ 1 such that

C−1|q| ≤ φ(q) ≤ C|q|.(9)

(Hint: Use the previous exercise to deduce that min{φ(q) | |q| = 1} > 0 and
max{φ(q) | |q| = 1} <∞ and then use positive one-homogeneity.)

Exercise 3 (Requires knowledge of topology). Using the previous exercise, show that
any norm on Rd induces the same topology. That is, if φ is a norm and we define
the distance dφ(x, y) = φ(x − y), then the open sets in the metric topology of dφ are
the same as those in the standard Euclidean metric topology.

Exercise 4. Let C ⊆ Rd be a closed set and u : C → R. Using (9), prove that
Lipφ(u;C) < ∞ for some Finsler norm φ if and only if Lip|·|(u;C) < ∞. In partic-
ular, the definition of locally Lipschitz function given above does not depend on the
choice of the (Finsler) norm φ.

0.5. Problems.

Problem 1. Let U ⊆ Rd be an open set and suppose that f : U → Rd is smooth.
Given x ∈ U ∩ (ϵZd), define ∆ϵZdf(x) by

∆ϵZdf(x) =
1

2d

∑
y∈ϵZd : |y−x|=ϵ

(f(y)− f(x)) .

Show that, for any compact set K ⊆ U ,

lim
ϵ→0

sup

{∣∣∣∣ 1ϵ2∆ϵZdf(x)−∆f(x)

∣∣∣∣ | x ∈ K ∩ (ϵZd)

}
= 0.

In this sense, the operator ϵ−2∆ϵZd approximates ∆.

Problem 2. Let U ⊆ Rd be an open set and suppose that f : U → Rd is smooth.
Given x ∈ U ∩ (ϵZd), define ∆∞

ϵZdf(x) by

∆∞
ϵZdf(x) =

1

2d
max

y∈ϵZd : |y−x|=ϵ
(f(y)− f(x)) +

1

2
min

y∈ϵZd : |y−x|=ϵ
(f(y)− f(x)) .

Show that, for any compact set K ⊆ U ,

lim
ϵ→0

sup

{
1

ϵ2
∆∞

ϵZdf(x)−G∗
ℓ1(Df(x), D

2f(x)) | x ∈ K ∩ (ϵZd)

}
≤ 0,

lim
ϵ→0

inf

{
1

ϵ2
∆∞

ϵZdf(x)−Gℓ1

∗ (Df(x), D
2f(x)) | x ∈ K ∩ (ϵZd)

}
≥ 0.

In this sense, the pair of operators (G∗
ℓ1 , G

ℓ1

∗ ) describe the limit of the operator ϵ−2∆ϵZd

as ϵ→ 0.
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1. Tug of War with Noise

In this section, we discuss the stochastic two-player game called tug of war with
noise. The study of this game will lead to a finite-difference equation, basically
a discretized PDE involving a discrete analogue of the Laplacian and the infinity
Laplacian.

Toward that end, recall from the introduction that we defined ∆Zd and ∆∞
Zd for

functions defined in subsets of Zd by

∆Zdu(x) =
1

2d

∑
e∈Ed

(u(x+ e)− u(x)) ,(10)

∆∞
Zdu(x) =

1

2
max
e∈Ed

(u(x+ e)− u(x)) +
1

2
min
e∈Ed

(u(x+ e)− u(x)) .(11)

1.1. Construction of the Game. Let A be a finite subset of Zd and p ∈ [0, 1].
Recall that we denote by int(A) and ∂intA the subsets of A given by

∂intA = {x ∈ A | ∃y ∈ Zd \ A such that |y − x| = 1}, int(A) = A \ ∂intA.
Fix a function F : ∂intA→ R.
Let {Θ0,Ξ0, Z0,Θ1,Ξ1, Z1, . . . ,ΘN ,ΞN , ZN , . . . } be a family of independent random

variables such that, for any N ∈ N0,

P{ΘN = 1} = 1− P{ΘN = 0} = p,

P{ΞN = 1} = P{ΞN = 0} =
1

2
,

P{ZN = e} =
1

2d
for each e ∈ Ed.

The sequence {ΘN}N∈N0 models the biased coin that is flipped at each turn, with
ΘN = 1 indicating the outcome is heads and ΘN = 0 indicating the outcome is tails.
Similarly, {ΞN}N∈N0 models the fair coin. The random vectors {ZN}N∈N model the
random jumps occurring when the biased coin comes up heads.

We will model Max and Minnie’s decisions using strategies defined in the following
way. Define A by

A = {Q = (Qj)j∈N0 | ∀j ∈ N0 Qj : (Zd){0,1,...,j} → Ed}.
Given an x ∈ A and two strategies Q,S ∈ A, define the associated trajectory of the
game Xx,Q,S = (Xx,Q,S

j )j∈N0 in the following way:

Xx,Q,S
j = Xx,Q,S

j−1 +Θj−1Zj−1 + (1−Θj−1)Ξj−1Qj−1(X
x,Q,S
0 , . . . , Xx,Q,S

j−1 )(12)

+ (1−Θj−1)(1− Ξj−1)Sj−1(X
x,Q,S
0 , . . . , Xx,Q,S

j−1 ),

Xx,Q,S
0 = x.

We denote by τ = τx,Q,S the exit time of the walk Xx,Q,S, that is,

τ = inf
{
j ≥ 0 | Xx,Q,S

j ∈ ∂intA
}
.
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Recall that, at turn τ , Minnie has to pay Max the amount F (Xx,Q,S
τ ). Thus, Max

would like to choose his strategy Q so as to maximize the payout F , while Minnie
should choose S so as to minimize it. Since the amount Max gains is exactly equal
to the amount Minnie loses, this is a zero-sum game.

To be slightly more precise, suppose that Max takes as his goal maximizing the
expected payout E[F (Xx,Q,S

τ )], while Minnie decides to minimize it.1 It then makes
sense to consider the lower and upper value functions u, v : A→ R defined by

u(x) = sup
Q∈A

inf
S∈A

E[F (Xx,Q,S
τ )],

v(x) = inf
S∈A

sup
Q∈A

E[F (Xx,Q,S
τ )].

You can think of u as being the worst-case scenario for Max: without knowing Min-
nie’s strategy S, it is the best he can hope to gain. Similarly, v is the best-case
scenario for Minnie.

Note that u(x) ≤ v(x) for each x ∈ A by definition, hence the words “lower” and
“upper” in the name.

In the main result of this section, we prove that the upper and lower value functions
coincide, that is, u(x) = v(x) for each x ∈ A. (In game theory, one says that the
game has a value in such a case.)

Theorem 4. For any x ∈ A, we have u(x) = v(x). Furthermore, u is the unique
solution of the finite-difference equation

(13)

{
−p∆Zdu(x)− (1− p)∆∞

Zdu(x) = 0 for each x ∈ int(A),
u(x) = F (x) for each x ∈ ∂intA.

Since u and v are equal, we may as well refer to the value function and drop the
qualifiers upper and lower. It turns out that the value function can be used to infer
the optimal strategies that Max and Minnie should use. This is described in Theorem
5 below.

The proof of Theorem 4 proceeds in two steps. First, we prove that u and v are,
respectively, super- and subsolution of (13).

Proposition 1. For any x ∈ int(A),

−p∆Zdu(x)− (1− p)∆∞
Zdu(x) ≥ 0,(14)

−p∆Zdv(x)− (1− p)∆∞
Zdv(x) ≤ 0.(15)

Next, we prove a comparison principle, which we invoke to establish that the in-
equality u(x) ≥ v(x) holds for any x ∈ A.

Proposition 2. If u1, u2 : A→ R satisfy, for any x ∈ int(A),

−p∆Zdu1(x)− (1− p)∆∞
Zdu1(x) ≥ 0 ≥ −p∆Zdu2(x)− (1− p)∆∞

Zdu2(x),

then
max {u2(x)− u1(x) | x ∈ A} = max {u2(x)− u1(x) | x ∈ ∂intA} .

1This would make sense if Max and Minnie planned to play the game many times repeatedly.
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Remark 1. Due to the finite-difference inequality satisfied by u1, we say that u1 is
a supersolution of the equation −p∆Zdw − (1− p)∆∞

Zdw = 0. Symmetrically, we say
that u2 is a subsolution.

Since u(x) = v(x) = F (x) for x ∈ ∂intA, we combine Propositions 1 and 2 to deduce
that u(x) ≥ v(x) for any x ∈ A. Since we know u ≤ v by definition, this prove that
u ≡ v. Further, Proposition 2 implies that solutions of (13) are unique (see Exercise
5 below). Thus, Theorem 4 is proved as soon as we prove the two propositions.

Exercise 5. Fix F,G : ∂intA→ R. Assuming that uF , uG : A→ R satisfy

−p∆ZduF (x)− (1− p)∆∞
ZduF (x) = 0 for each x ∈ int(A),

−p∆ZduG(x)− (1− p)∆∞
ZduG(x) = 0 for each x ∈ int(A),

uF (x) = F (x) and uG(x) = G(x) for each x ∈ ∂intA,

use Proposition 2 to establish that

max {|uF (x)− uG(x)| | x ∈ A} ≤ max {|G(x)− F (x)| | x ∈ ∂intA} .

Conclude from this that there is at most one function u satisfying (13).

1.2. Proof of Proposition 1. Here we prove that u and v are super- and subsolution
of (13). This will follow from a relatively elementary Markov chain-style argument,
the crux of which is treated in the next problem.

We will need some additional notation. Given x ∈ Zd and Q ∈ A, let Q(1) =

(Q
(1)
j )j∈N0 be the strategy in A defined by

Q
(1)
j : (Zd){0,1,...,j} → Ed,

Q
(1)
j (y0, y1, . . . , yj) = Qj+1(x, y0, y1, . . . , yj).(16)

In words, Q(1) is the strategy we get from Q by fixing the initial position of the walker
at x and shifting to the next turn. The significance of this is detailed in the next
problem.

Problem 1. Fix x ∈ Zd, and let Q,S ∈ A.
(i) Fix e ∈ Ed. Prove that the law of the shifted walk (Xx,Q,S

j+1 )j∈N0 conditioned on

the event {Θ0 = 1, Z0 = e} equals the law of (Xx+e,Q(1),S(1)

j )j∈N0. More precisely, for

any M ∈ N and any y0, . . . , yM ∈ Zd, we have

P
{
Xx,Q,S

1 = y0, . . . , X
x,Q,S
M+1 = yM | Θ0 = 1, Z0 = e

}
= P

{
Xx+e,Q(1),S(1)

0 = y0, . . . , X
x+e,Q(1),S(1)

M = yM

}
.

(Hint: Use equation (12).)

(ii) Prove that the law of the shifted walk (Xx,Q,S
j+1 )j∈N0 conditioned on the event

{Θ0 = 0,Ξ0 = 1} equals the law of (X
x+Q0(x),Q(1),S(1)

j )j∈N0. More precisely, for any
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M ∈ N and any y0, . . . , yM ∈ Zd, we have

P
{
Xx,Q,S

1 = y0, . . . , X
x,Q,S
M+1 = yM | Θ0 = 0,Ξ0 = 1

}
= P

{
X

x+Q0(x),Q(1),S(1)

0 = y0, . . . , X
x+Q0(x),Q(1),S(1)

M = yM

}
.

(iii) Prove that the law of the shifted walk (Xx,Q,S
j+1 )j∈N0 conditioned on the event

{Θ0 = 0,Ξ0 = 0} equals the law of (X
x+S0(x),Q(1),S(1)

j )j∈N0. More precisely, for any

M ∈ N and any y0, . . . , yM ∈ Zd, we have

P
{
Xx,Q,S

1 = y0, . . . , X
x,Q,S
M+1 = yM | Θ0 = 0,Ξ0 = 1

}
= P

{
X

x+S0(x),Q(1),S(1)

0 = y0, . . . , X
x+S0(x),Q(1),S(1)

M = yM

}
.

In addition to the previous problem, we will also use the next result, which concerns
the existence of ϵ-optimal strategies for Max. (A similar result also applies to Minnie.)
To state it, it will be convenient to introduce the following notation. Given Q ∈ A,
let uQ : A→ R be the function

uQ(x) = inf
S∈A

E[F (Xx,Q,S
τ )].

Note that, with this notation, u(x) = supQ∈A uQ(x). The next proposition asserts
that, for any ϵ > 0, it is possible to choose a Qϵ ∈ A such that uQϵ ≥ u− ϵ pointwise
in A.

Proposition 3. For any ϵ > 0, there is a strategy Qϵ ∈ A such that

uQϵ(x) ≥ u(x)− ϵ for each x ∈ A.

Proof. By definition, for any y ∈ A, we can choose Qy ∈ A such that

uQy(y) ≥ u(y)− ϵ.

Fix a y∗ ∈ A for convenience. Define Q = (Qj)j∈N0 by the following rule:

Qj(y0, y1, . . . , yj) =

{
(Qy0)j(y0, y1, . . . , yj), if y0 ∈ A,
(Qy∗)(y0, y1, . . . , yj), otherwise.

If x ∈ A, then uQ(x) = uQx(x) ≥ u(x)− ϵ, as desired. □

Actually, it will be useful to know that the previous result still holds true if we
replace Q by Q(1). The next exercise asks you to check this.

Exercise 6. Fix x ∈ A. Prove that, for any ϵ > 0, there is a strategy Qϵ such that

u(x+Qϵ0(x)) = max
e∈Ed

u(x+ e),

u
Q

(1)
ϵ
(y) ≥ u(y)− ϵ for each y ∈ A.

(Recall that Q
(1)
ϵ is defined by (16).)

Finally, here is the proof of Proposition 1.
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Proof of Proposition 1. We will only prove that −p∆Zdu − (1 − p)∆∞
Zdu ≥ 0 holds

pointwise in int(A). The corresponding inequality for v follows by symmetrical argu-
ments.

Fix x ∈ int(A) and Q,S ∈ A. By Problem 1,

E[F (Xx,Q,S
τ )] =

p

2d

∑
e∈Ed

E[F (Xx,Q,S
τ ) | Θ0 = 1, Z0 = e]

+
1− p

2
E[F (Xx,Q,S

τ ) | Θ0 = 0,Ξ0 = 1]

+
1− p

2
E[F (Xx,Q,S

τ ) | Θ0 = 0,Ξ0 = 0]

=
p

2d

∑
e∈Ed

E[F (Xx+e,Q(1),S(1)

τ )]

+
1− p

2
E[F (Xx+Q0(x),Q(1),S(1)

τ )]

+
1− p

2
E[F (Xx+S0(x),Q(1),S(1)

τ )]

Let uQ : A → R be the function uQ(y) = infS∈A E[F (Xy,Q,S
τ )]. Taking the infimum

over S, we find

uQ(x) ≥
p

2d

∑
e∈Ed

uQ(1)(x+ e) +
1− p

2
uQ(1)(x+Q0(x))

+
1− p

2
min
e∈Ed

uQ(1)(x+ e).

At this stage, we choose ϵ > 0 and invoke Exercise 6, which allows us to fix Q ∈ A
such that

u(x+Q0(x)) = max
e∈Ed

u(x+ e) and uQ(1)(y) ≥ u(y)− ϵ for each y ∈ A.

With this choice of Q, we find

u(x) ≥ uQ(x) ≥
p

2d

∑
e∈Ed

(u(x+ e)− ϵ) +
1− p

2
max
e∈Ed

(u(x+ e)− ϵ)

+
1− p

2
min
e∈Ed

(u(x+ e)− ϵ) .

Since p
2d

∑
e∈Ed(1) +

1−p
2
(1) + 1−p

2
(1) = 1, we conclude after sending ϵ→ 0 that

u(x) ≥ p

2d

∑
e∈Ed

u(x+ e) +
1− p

2
max
e∈Ed

u(x+ e) +
1− p

2
min
e∈Ed

u(x+ e).

After rearranging, this becomes −p∆Zdu(x)− (1− p)∆∞
Zdu(x) ≥ 0 (see (11)). □
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1.3. Proof of Proposition 2. We give two different proofs of the comparison prin-
ciple, an easier one that applies when p > 0 and a slight variation when p = 0.

In both proofs, we will use the topology of Zd. Toward that end, say that an
N -tuple (x0, . . . , xN) ∈ ZdN is a path of length N if

|xi+1 − xi| = 1 for each i ∈ {0, 1, . . . , N − 1}.

We say that a set A ⊆ Zd is path connected if, for any x, y ∈ A, there is an N ∈ N0

and a path (x0, . . . , xN) such that x0 = x and xN = y. If A is not path connected,
then it can be written as a union A = ∪iAi, where each set Ai (the so-called path
components of A) are path connected and Ai ∩ Aj = ∅ if i ̸= j.
With the topological preliminaries out of the way, here is the proof of the proposi-

tion.

Proof of Proposition 2 when p > 0. Let M = max{u2(x) − u1(x) | x ∈ A} and Ã =
{x ∈ A | u2(x)− u1(x) =M}. If x ∈ Ã ∩ int(A), then

u1(x) +M = u2(x)

≤ p

2d

∑
e∈Ed

u2(x+ e) +
1− p

2
max
e∈Ed

u2(x+ e)

+
1− p

2
min
e∈Ed

u2(x+ e)

≤ p

2d

∑
e∈Ed

(u1(x+ e) +M) +
1− p

2
max
e∈Ed

(u1(x+ e) +M)

+
1− p

2
min
e∈Ed

(u1(x+ e) +M)

≤ u1(x) +M.

It follows that all inequalities invoked above are actually equalities. In particular,

0 =
1

2d

∑
e∈Ed

(u2(x+ e)− u1(x+ e) +M),

which implies, since each summand is nonpositive, that u2(x + e) = u1(x + e) +M
for each e ∈ Ed.
We proved that if x ∈ Ã∩ int(A), then {x+e | e ∈ Ed} ⊆ Ã. From this, we deduce

that if Ã intersects some path component P of A, then P ⊆ Ã. At the same time,
any path component of A necessarily intersects ∂intA. Therefore, there is a point
x ∈ Ã ∩ ∂intA, and this implies M = max{u2(x)− u1(x) | x ∈ ∂intA}. □

Proof of Proposition 2 when p = 0. Since the last proof applies otherwise, we assume
that p = 0. As in the last proof, let M = max{u2(x)− u1(x) | x ∈ A} and Ã = {x ∈
A | u2(x)− u1(x) = M}. It will be convenient to let K = max{u2(x) | x ∈ Ã} and
Ã∗ = {x ∈ Ã | u2(x) = K}.



MINIMAL LIPSCHITZ EXTENSIONS AND TUG-OF-WAR 13

If x ∈ Ã∗ ∩ int(A), then

u1(x) +M = u2(x)

≤ 1

2
max
e∈Ed

u2(x+ e) +
1

2
min
e∈Ed

u2(x+ e)

≤ 1

2
max
e∈Ed

(u1(x+ e) +M) +
1

2
min
e∈Ed

(u1(x+ e) +M)

≤ u1(x) +M.

If p = 1, we conclude as above. Otherwise, if p < 1, we instead deduce that

max
e∈Ed

u2(x+ e) = max
e∈Ed

(u1(x+ e) +M),(17)

min
e∈Ed

u2(x+ e) = min
e∈Ed

(u1(x+ e) +M).(18)

Since u2 ≤ u1 +M pointwise in A, this implies that the maximum and minimum are
both attained at points e such that x+ e ∈ Ã. At the same time, u2 is at most K in
Ã, hence from the identity

K =
1

2
max
e∈Ed

u2(x+ e) +
1

2
min
e∈Ed

u2(x+ e)

we deduce that

K =
1

2
max
e∈Ed

u2(x+ e) +
1

2
min
e∈Ed

u2(x+ e)

hence u2(x + e) = K for each e ∈ Ed. Since (17) and (18) both hold, we also know
that u1(x+ e) = K −M for each e ∈ Ed.

We conclude that if x ∈ Ã∗ ∩ int(A), then {x+ e | e ∈ Ed} ⊆ Ã∗. We deduce from
this, as before, that Ã∗ intersects ∂intA, and, thus, M = max{u2(x) − u1(x) | x ∈
∂intA}. □

1.4. Optimal Strategies. In this section, we use the value function u to determine
optimal strategies for Max and Minnie. In fact, sub- and supersolutions of (13) can
always be used to construct suboptimal strategies, as the next proposition shows.

To be precise, we will need the following construction. Given a function w : A→ R,
fix a function EQ

w : int(A) → Ed such that

w(x+ EQ
w (x)) = max{w(x+ e) | e ∈ Ed}.

Define a strategy Qw = (Qwj)j∈N ∈ A by setting

Qwj(y0, . . . , yj) =

{
EQ

w (yj), if yj ∈ int(A),
(1, 0, 0, . . . , 0), otherwise.

Similarly, fix a function ES
w : int(A) → Ed such that

w(x+ ES
w(x)) = min{w(x+ e) | e ∈ Ed}.

Let Sw ∈ A be defined analogously to Qw.
The next result shows that sub- and supersolutions of (13) can be used to control

the expected payout.
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Proposition 4. If u1, u2 : A→ R satisfy, for any x ∈ int(A),

−p∆Zdu1(x)− (1− p)∆∞
Zdu1(x) ≥ 0 ≥ −p∆Zdu2(x)− (1− p)∆∞

Zdu2(x)

and u1(x) = u2(x) = F (x) for each x ∈ ∂intA, then, for any Q,S ∈ A,

E[F (Xx,Qu2 ,S
τ )] ≥ u2(x), E[F (Xx,Q,Su1

τ )] ≤ u1(x).

Notice that the proposition says that if Max uses u2 to determine his strategy, then
his payout is at least u2(x), no matter which strategy Minnie chooses. Symmetrically,
if Minnie uses u1, then she pays out no more than u1(x), irrespective of Max’s strategy.

Proof. Fix x ∈ A and suppose that S ∈ A. Given any j ∈ N0, we compute, as in the
proof of Proposition 1,

E[u2(Xx,Q,S
j+1 )] =

p

2d

∑
e∈Ed

E[u2(Xx,Q,S
j + e)] +

1− p

2
E[u2(Xx,Q,S

j + EQ
u2
(Xx,Q,S

j ))]

+
1− p

2
E[u2(Xx,Q,S

j + Sj)]

≥ p

2d

∑
e∈Ed

E[u2(Xx,Q,S
j + e)] +

1− p

2
E[max

e∈Ed
u2(X

x,Q,S
j + e)]

+
1− p

2
E[min

e∈Ed
u2(X

x,Q,S
j + e)]

≥ E[u2(Xx,Q,S
j )].

This proves that the function j 7→ E[u2(X
x,Qu2 ,S

j )] is nondecreasing. Sending j → ∞
(and invoking Lebesgue’s dominated convergence theorem), we find

u2(x) = E[u2(x)] = E[u2(X
x,Qu2 ,S
0 )] ≤ lim

j→∞
E[u2(X

x,Qu2 ,S

j )] = E[F (Xx,Qu2 ,S
τ )].

The proof involving u1 is entirely analogous. □

In view of Theorem 4, the implication of Proposition 4 is fundamental. We know
that the value function u is both a sub- and supersolution. Hence if Max uses Qu as
his strategy, he is guaranteed a payout of at least u(x), while if Minnie uses Su as
her strategy, she will owe Max no more than u(x) at the end of the game. Further,
by definition of the upper and lower value functions, Max and Minnie can’t expect
to do any better. Therefore, Qu and Su are (loosely speaking) the optimal strategies
for Max and Minnie, and, if they both play the game optimally, the expected payout
of the game started at x is exactly u(x).
For the sake of precision, the optimality of Qu and Su is summarized in the next

theorem.

Theorem 5. If u : A → R is the value function of the game, then, for any x ∈ A
and any Q,S ∈ A,

u(x) ≤ E[F (Xx,Qu,S
τ )], E[F (Xx,Q,Su

τ )] ≤ u(x).
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In particular, if Max plays strategy Qu and Minne plays strategy Su, then the expected
payout equals u(x).

1.5. Special Case: p = 0. When p = 0, the equation −∆∞
Zdu = 0 is equivalent to

a discrete version of the Lipschitz extension problem. To see how this works, let us
first define the discrete Lipschitz seminorm LipZd by

LipZd(u;K) = inf {C > 0 | ∀x, y ∈ K u(x)− u(y) ≤ C∥x− y∥1} ,

where ∥ · ∥1 is the ℓ1 norm (i.e., if q = (q1, . . . , qd), then ∥q∥1 =
∑d

i=1 |qi|). This
is a natural generalization of the seminorm Lipφ defined for functions in Rd in the
introduction.

As in Rd, we can define absolutely minimizing Lipschitz functions.

Definition 2. A function u : A → R defined in some subset A ⊆ Zd is called
an absolutely minimizing Lipschitz function if, for any finite set K ⊆ A and any
function v : K → R such that v(x) = u(x) for each x ∈ ∂intK, we have

LipZd(u;K) ≤ LipZd(v;K).

The next proposition asserts that any absolutely minimizing Lipschitz function is
a solution of the equation −∆∞

Zdu = 0.

Proposition 5. Let A ⊆ Zd. If u : A → R is an absolutely minimizing Lipschitz
function, then −∆∞

Zdu(x) = 0 for each x ∈ int(A).

In the course of the proof, it will be convenient to use the observations of the next
two exercises.

Exercise 7. Given x ∈ Zd, let K = {y ∈ Zd | |y−x| ≤ 1}. Prove that if u : K → R,
then

LipZd(u;K) = max
{
|u(x+ e)− u(x)| | e ∈ Ed

}
.

Exercise 8. Fix {a(e) | e ∈ Ed} ⊆ R and a(0) ∈ R. Show that if, for any t ∈ R,
max{|a(e)− a(0) + t| | e ∈ Ed} ≥ max{|a(e)− a(0)| | e ∈ Ed},

then a(0) = 1
2
maxe∈Ed a(e) + 1

2
mine∈Ed a(e). Further, prove that the converse also

holds.

Proof of Proposition 5. Fix x ∈ int(A) and let K = {y ∈ Zd | |y − x| ≤ 1}. Since
x ∈ int(A), we know that K ⊆ A.

For t ∈ R, consider the function vt : K → R such that vt(x) = u(x) + t and
vt(y) = u(y) if y ∈ K \ {x}. Since u is an absolutely minimizing Lipschitz function,

LipZd(u;K) ≤ LipZd(vt;K),

which, due to the definition of K and Exercise 7, implies that

max
{
|u(x+ e)− u(x)| | e ∈ Ed

}
≤ max{|u(x+ e)− t− u(x)| | e ∈ Ed}.

Thus, by Exercise 8, u(x) = 1
2
maxe∈Ed u(x+e)+ 1

2
mine∈Ed u(x+e), which is equivalent

to −∆∞
Zdu(x) = 0. □
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It is worth pointing out that the converse of Proposition 5 also holds.

Proposition 6. Let A ⊆ Zd. If u : A → R satisfies −∆∞
Zdu(x) = 0 for each

x ∈ int(A), then u is an absolutely minimizing Lipschitz function.

The proof of this result will be taken up in the problems at the end of this section.
It is worthwhile to note that Exercise 7 can be extended to certain other subsets

of Zd. Toward that end, some additional definitions will be useful.

Definition 3. An N-tuple (x0, x1, . . . , xN) ∈ ZdN is a path beginning at x0 and
terminating at xN if

|xi+1 − xi| = 1 for each i ∈ {0, 1, . . . , N − 1}.

The length of the path (x0, x1, . . . , xN) is defined to be N .
A path (x0, x1, . . . , xN) is a geodesic of length N if N = ∥xN − x0∥1, where ∥ · ∥1

is the ℓ1 norm.

The next problems determines the sets for which LipZd can be determined by max-
imizing |u(x+ e)− u(x)|.

Problem 2. Prove that if (x0, x1, . . . , xN) is a geodesic of length N , then N is the
minimal length of all paths beginning at x0 and terminating at xN .

Problem 3. Say that a set A ⊆ Zd is geodesically connected if, for any x, y ∈ A,
there exists a geodesic (x0, x1, . . . , xN) such that x0 = x, xN = y, and x0, . . . , xN ∈ A.
Prove that if A is geodesically connected and u : A→ R, then

LipZd(u;A) = max
{
|u(x+ e)− u(x)| | x ∈ int(A), e ∈ Ed

}
.

It is worth emphasizing that the identity in the previous problem has a continuum
analogue. In particular, if U ⊆ Rd is an open convex set, then, for any C1 function
f : U → R,

Lipφ(f ;U) = sup
{
φ∗(Df(x)) | x ∈ U

}
.

See Problems 14 and 15 for this identity and more.

Problem 4. Say that a set A ⊆ Zd is path connected if, for any x, y ∈ A, there is a
path (x0, x1, . . . , xN) such that x0, x1, . . . , xN ∈ A, x0 = x, and xN = y. Prove that if
A is a finite, path connected set and u : A → R, then there is a constant C(A) > 0
depending on A such that

LipZd(u;A) ≤ C(A)max{|u(x+ e)− u(x)| | x ∈ int(A), e ∈ Ed}.

Problem 5. Find an example of a set A ⊆ Zd and a function u : A→ R such that

LipZd(u;A) > max
{
|u(x+ e)− u(x)| | x ∈ int(A), e ∈ Ed

}
.
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1.6. Further Problems.

Problem 6. When p = 1, we simply obtain the equation −∆Zdu = 0. Prove that a
function u : A→ R satisfies −∆Zdu(x) = 0 for each x ∈ int(A) if and only if∑
x∈int(A)

∑
e∈Ed

(u(x+ e)− u(x))2

= min

 ∑
x∈int(A)

∑
e∈Ed

(v(x+ e)− v(x))2 | v : A→ R : ∀x ∈ ∂intA v(x) = u(x)

 .

2. Minimal Lipschitz Extensions

In this section, we study the minimal Lipschitz extension problem (1). As in the
introduction, we consider the specific class of solution called absolutely minimizing
Lipschitz functions. The main goal will be to prove that these functions are charac-
terized by another property, called comparison with cones.
Before defining the comparison-with-cones property, we enlarge the class of func-

tions φ we consider in the Lipschitz seminorm Lipφ. We will see that it is not neces-
sary to assume that the “norm” is symmetric, hence it is natural to consider so-called
Finsler norms.

2.1. Finsler Norms. It turns out that the results in these notes do not rely on the
symmetry assumption inherent in the definition of a norm. Toward that end, let us
consider not only norms but also, more generally, Finsler norms.

Definition 4. A function φ : Rd → [0,∞) is said to be a Finsler norm if it satisfies
the following three properties:

(i) (positive definiteness) φ(q) = 0 if and only if q = 0.
(ii) (positive 1-homogeneity) For any q ∈ Rd and any λ ≥ 0,

φ(λq) = λφ(q).

(iii) (subadditivity) For any q1, q2 ∈ Rd,

φ(q1 + q2) ≤ φ(q1) + φ(q2).

For the remainder of this section, we fix a Finsler norm φ. As in the introduction,
we define the φ-Lipschitz seminorm of a function g : C → R in a closed set C by

Lipφ(g;C) = inf {M > 0 | ∀x, y ∈ C g(x) ≤ g(y) +Mφ(x− y)} .(19)

Exercise 9. Prove that a Finsler norm φ is a norm if and only if, in addition to
conditions (i), (ii), and (iii) above, it also satisfies

(iv) (symmetry) φ(−q) = φ(q) for each q ∈ Rd.

Exercise 10. Fix a finite subset {v1, . . . , vN} ⊆ Rd and define φ by

φ(q) = max {⟨v1, q⟩, . . . , ⟨vN , q⟩} .
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Assume that φ(Rd) ⊆ [0,∞) and φ is positive definite: φ(q) ≥ 0 if and only if q = 0.
Prove that, in this case, φ is a Finsler norm. (See Problem 8 below for a geometric
condition on {v1, . . . , vN} that is equivalent to the positive-definiteness of φ.)

Exercise 11. Let g : C → R be a function defined in a closed set C ⊆ R. Prove that

Lipφ(g;C) = sup

{
g(x)− g(y)

φ(x− y)
| x, y ∈ C, x ̸= y

}
.

(Recall that Lipφ(g;C) is defined by (19).)

2.2. Comparison with Cones. The goal of this section will be to prove that a
function is an absolutely minimizing Lipschitz function if and only if it satisfies the
two comparison-with-cones properties, namely, comparison with cones from above
and comparison with cones from below. These are defined next.

In the next definition, we assume that some Finsler norm φ and some open set
U ⊆ Rd are given.

Definition 5. A continuous function u : U → R satisfies comparison with φ-cones
from above (with respect to φ) if, for any open V ⊂⊂ U ,2 any v ∈ Rd \ V , and any
λ > 0,

max
{
u(x)− λφ(x− q) | x ∈ V

}
= max {u(x)− λφ(x− q) | x ∈ ∂V } .

Similarly, a continuous function v : U → R satisfies comparison with φ-cones from
below (with respect to φ) if, for any V ⊂⊂ U , any v ∈ Rd \ V , and any λ > 0,

max
{
v(x) + λφ(q − x) | x ∈ V

}
= min {v(x) + λφ(q − x) | x ∈ ∂V } .

It will be useful to keep in mind another, more geometric formulation of the defi-
nition above. This is tackled in the next exercise.

Exercise 12. Suppose that u : U → R satisfies comparison with cones from above,
and assume that V ⊂⊂ U , q ∈ Rd \ {0}, λ > 0, and M ∈ R are chosen in such a way
that

u(x) ≤M + λφ(x− q) for each x ∈ ∂V.

Prove that u(x) ≤ M + λφ(x − v) must hold for each x ∈ V . Also, prove that the
converse also holds: any function with this property necessarily satisfies comparison
with cones from above.

Exercise 13. Suppose that v : U → R satisfies comparison with cones from below,
and assume that V ⊂⊂ U , q ∈ Rd \ V , λ > 0, and m ∈ R are chosen in such a way
that

v(x) ≥ m− λφ(q − x) for each x ∈ ∂V.

Prove that v(x) ≥ m − λφ(q − x) must hold for each x ∈ V . Also, prove that the
converse also holds: any functino with this property necessarily satisfies comparison
with cones from below..

2Recall that the notation V ⊂⊂ U means that V is bounded and V ⊆ U .



MINIMAL LIPSCHITZ EXTENSIONS AND TUG-OF-WAR 19

We will see that quite a lot can be said about functions satisfying the comparison-
with-cones properties, and doing so requires only relatively elementary (though clever)
arguments. The next theorem, which is the main result of this section, states that
a function is an absolutely minimizing Lipschitz extension if and only if it satisfies
both comparison-with-cones properties.

Theorem 6. Let φ be a Finsler norm in Rd and fix an open set U ⊆ Rd. Given a
continuous function u : U → R, the following are equivalent:

(i) u is a φ-absolutely minimizing Lipschitz function in U .
(ii) u satisfies comparison with φ-cones from above and below in U .

The theorem above will be useful later, in Section ??, when we prove that the
minimal Lipschitz extension problem has a unique absolute minimizer. For now, to
appreciate the connection between the comparison-with-cones properties and Lips-
chitz functions, consider the following preliminary result.

Proposition 7. Let U ⊆ Rd be an open set. If u : U → R satisfies comparison with
cones from above in U , then, for any open set V ⊂⊂ U ,

Lipφ(u;V ) = sup

{
u(y)− u(x)

φ(y − x)
| x ∈ V, y ∈ ∂V

}
.

The proof given below is what is referred to as a “maximum principle” argument
(also called a “comparison argument” or “barrier argument”).

Assume that u satisfies comparison with φ-cones from above in U . If we think of

difference quotients u(y)−u(x)
φ(y−x)

as “slopes,” then the previous proposition shows that

the maximal slope of u can always be computed using one point on the boundary and
one in the interior (and with the orientation such that the slope goes “down” into the
domain).

Proof. Let M = sup
{

u(x)−u(y)
φ(x−y)

| x ∈ U, y ∈ ∂U
}
. If M = ∞, there is nothing to

prove as then also Lipφ(u;V ) = ∞. Hence assume that M <∞ in what follows.
By definition, M ≤ Lipφ(u;V ) holds. Therefore, we only need to prove that M ≥

Lipφ(u;V ).
Suppose x ∈ V . By definition of M ,

u(y) ≤ u(x) +Mφ(y − x) for each y ∈ ∂V.

Of course, u(x) ≤ u(x) + Mφ(x − x) also holds. Therefore, the inequality u ≤
u(x)+Mφ(· − x) holds pointwise in V \ {x}. Since u satisfies comparison with cones
from above,

u(x′) ≤ u(x) +Mφ(x′ − x) for each x′ ∈ V .

Since x was arbitrary, we deduce that

u(x′) ≤ u(x) +Mφ(x′ − x) for each x, x′ ∈ V ,

and, therefore, Lipφ(u;V ) ≤M by definition. □
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It should be noted that the previous proposition already implies that the comparison-
with-cones-from-above property rules out functions with certain shapes. That is ex-
plored in the next exercise.

Exercise 14. Let U ⊆ Rd be open and assume that u : U → R satisfies comparison
with cones from above. Prove that if there is a V ⊂⊂ U and an m ∈ R such that

u(x) = m for each x ∈ ∂V, u(x) ≥ m for each x ∈ V ,

then u(x) = m for each x ∈ V .

Problem 7. Say that a function u : U → R is locally constant if, for any x ∈ U ,
there is an open set V ⊂ U such that x ∈ V and the restriction of u to V is constant.
Prove that if U is connected, u satisfies comparison with cones from above, and u has
a global maximum in U , then u is locally constant. (In particular, u is constant by
connectedness of U .)

Exercise 15. Prove the corresponding version of Proposition 7 with “comparison with
cones from above” replaced by “comparison with cones from below.” (Hint: “Slopes”
should go “up” as you go from the boundary into the domain.)

2.3. McShane-Whitney Extensions. In the introduction, we claimed that the
minimal Lipschitz extension problem need not have a unique minimizer in general.
This motivated the definition of absolute minimizer (or absolutely minimizing Lips-
chitz function). In this subsection, we define the McShane-Whitney extensions, which
are useful in miriad ways, not the least being the proof of nonuniqueness of minimiz-
ers.

In what follows, given a closed set C ⊆ Rd and a function u : C → R, we say that
u is uniformly Lipschitz continuous in C if

Lipφ(u;C) <∞.

Note that, by definition, this implies that, for each x, y ∈ C,

u(y)− Lipφ(u;C)φ(y − x) ≤ u(x) ≤ u(y) + Lipφ(u;C)φ(x− y).

These inequalities motivate the following definition.

Definition 6. Given an open set U ⊆ Rd and a uniformly Lipschitz continuous
function u : U → R, the McShane-Whitney extensions of u are the functions u+ :
U → R and u− : U → R given by

u+(x) = inf
y∈∂U

{
u(y) + Lipφ(u; ∂U)φ(x− y)

}
,

u−(x) = sup
y∈∂U

{
u(y)− Lipφ(u; ∂U)φ(y − x)

}
.

We claim that u+ and u− are always minimal Lipschitz extensions, i.e., minimizers
of the variational problem (1). To see this, we begin with the following observation.
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Exercise 16. Prove that if U ⊆ Rd is an open set and u : U → R is uniformly
Lipschitz continuous, then

u+(x) = u(x) = u−(x) for each x ∈ ∂U,

Lipφ(u
+;U) = Lipφ(u; ∂U) = Lipφ(u−;U).

The result of the previous exercise shows that u+ and u− are minimal Lipschitz
extensions, as established by the next proposition.

Proposition 8. Given an open set U ⊆ Rd and a uniformly Lipschitz function u :
U → R, if v : U → R satisfies v(x) = u(x) for each x ∈ ∂U , then

Lipφ(u−;U) = Lipφ(u
+;U) ≤ Lipφ(v;U).

In particular, u+ and u− are both minimizers of the minimal Lipschitz extension
problem (1).

Proof. It suffices to observe that, since v(x) = u(x) for each x ∈ ∂U , we have

Lipφ(u; ∂U) = Lipφ(v; ∂U) ≤ Lipφ(v;U).

Thus, the desired conclusion follows from the previous exercise. □

Exercise 17. Let U ⊆ Rd be an open set and assume that u : U → R is uniformly
Lipschitz continuous. Show that v : U → R is a minimal Lipschitz extension of u if
and only if v(x) = u(x) for each x ∈ ∂U and

Lipφ(v;U) = Lipφ(v; ∂U).

Problem 10 below asks you to prove that there is a function u such that u+ ̸= u−.

2.4. One-Sided Absolute Minimizers. We defined the notion of an absolutely
miniming Lipschitz function in Section 0.1. In what follows, it will be convenient to
generalize the definition slightly. We will consider absolutely subminimizing and abso-
lutely superminimizing Lipschitz functions. These are one-sided notions of (absolute)
minimality.

Before we state the definitions, some additional notation will be helpful. Given a
function u : C → R defined in some set E ⊆ Rd, define F+

u (E) and F−
u (E) by

F+
u (E) = {v : E → R | ∀x ∈ E v(x) ≥ u(x), ∀x ∈ ∂E v(x) = u(x)} ,

F−
u (E) = {v : E → R | ∀x ∈ E v(x) ≤ u(x), ∀x ∈ ∂E v(x) = u(x)} .

Definition 7. Given an open set U ⊆ Rd, a continuous function u : U → R is
said to be an absolutely subminimizing Lipschitz function (respectively, absolutely
superminimizing Lipschitz function) in U if it is locally Lipschitz continuous in U
and, for any V ⊂⊂ U ,

Lipφ(u;V ) = min
{
Lipφ(v;V ) | v ∈ F−

u (V )
}
,(

respectively, Lipφ(u;V ) = min
{
Lipφ(v;V ) | v ∈ F+

u (V )
})

.
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We will see below that, if nothing else, these one-sided notions will help us to
organize our thoughts.

One might be tempted to conclude at this stage that a function is an absolutely
minimizing Lipschitz function if and only if it is both absolutely subminimizing and
absolutely superminimizing. This is, indeed, true, as we can see using the McShane-
Whitney extensions.

Exercise 18. Prove that a function u : U → R is absolutely minimizing if and only
if it is both absolutely subminimizing and absolutely superminimizing. (Hint: Use the
characterization established in Exercise 17.)

2.5. Cone Comparison implies Minimizing. In this subsection, we establish that
the cone comparison properties imply the one-sided absolute minimization properties.
This is a particularly simple application of Proposition 7.

Proposition 9. Let U ⊆ Rd be an open set. If u : U → R satisfies comparison
with cones from above and u is locally Lipschitz continuous in U , then u is absolutely
subminimizing.

Proof. Fix an open set V ⊂⊂ U and assume that v ∈ F−
u (V ), i.e., v : V → R satisfies

v(x) ≤ u(x) for each x ∈ V with equality for x ∈ ∂V . To see that u is absolutely
subminimizing, we need to show that Lipφ(u;V ) ≤ Lipφ(v;V ).

Toward that end, since v ≤ u, we can invoke Proposition 7 to find

Lipφ(u;V ) ≤ sup

{
v(y)− v(x)

φ(y − x)
| y ∈ ∂V, x ∈ V

}
≤ Lipφ(v;V ).

□

By completely analogous arguments, we deduce that a locally Lipschitz function
that satisfies comparison with cones from below is absolutely superminimizing.

Proposition 10. Let U ⊆ Rd be an open set. If u : U → R satisfies comparison
with φ-cones from below in U and u is locally Lipschitz continuous in U , then u is
φ-absolutely subminimizing.

Exercise 19. Prove Proposition 10 by first proving a version of Proposition 7 with
“comparison with cones from above” replaced by “comparison with cones from below”
and then mimicking the proof of Proposition 9.

There is a small wrinkle in the results above. We assumed that u was locally
Lipschitz continuous in U , as, indeed, is required in the definition of absolutely sub-
and superminimizing (Definition 7). The next result shows that this is no restriction:
if u satisfies comparison with φ-cones from above or below in U , then u is locally
Lipschitz in U .

In the result, we will use the notion of the oscillation of a function. Toward that
end, if u : A→ R for some A ⊆ Rd, then the oscillation osc(u;A) is defined by

osc(u;A) = sup{|u(x)− u(y)| | x, y ∈ A}.
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Proposition 11. Let U ⊆ Rd be an open set. If u : U → R is a continuous function
satisfying comparison with φ-cones from above in U , then, for any V ⊂⊂ V ′ ⊂⊂ U ,
there is a constant C(V, V ′) <∞ such that

Lipφ(u;V ) ≤ C(V, V ′)osc(u;V ′).

In particular, Lipφ(u;V ) ≤ 2C(V, V ′)max{|u(x)| | x ∈ V
′}, and u is locally Lipschitz

continuous in U .

Proof. Fix V ⊂⊂ V ′ ⊂⊂ U . Define C(V, V ′) > 0 by

C(V, V ′) = max

{
1

φ(x− y)
| x ∈ V, y ∈ ∂V ′

}
.

Note that C(V, V ′) <∞ since V ⊂⊂ V ′.
Fix x0 ∈ V . For any x ∈ ∂V ′, we compute

u(x)− u(x0) ≤ osc(u;V ′) ≤ C(V, V ′)osc(u;V ′)φ(x− x0).

Thus, by comparison with cones from above,

max
{
u(x)− C(V, V ′)osc(u;V ′)φ(x− x0) | x ∈ V \ {x0}

}
= max {u(x)− C(V, V ′)osc(u;V ′)φ(x− x0) | x ∈ ∂(V \ {x0})} = u(x0).

In particular, for any x ∈ V ′,

u(x) ≤ u(x0) + C(V, V ′)osc(u;V ′)φ(x− x0).

Since x0 was an arbitrary point in V , this implies

Lipφ(u;V ) ≤ C(V, V ′)osc(u;V ′).

Further, it is straightforward to check that osc(u;V ′) ≤ 2max{|u(x)| | x ∈ V ′} so
we can also say that Lipφ(u;V ) ≤ 2C(V, V ′)max{|u(x)| | x ∈ V ′}.
Finally, if K ⊆ U is a compact set contained in U , then there are open sets

V, V ′ ⊆ Rd such that V ⊂⊂ V ′ ⊂⊂ U such that K ⊆ V , and then Lipφ(u;K) ≤
Lipφ(u;V ) < ∞ by our computations above. This proves that u is locally Lipschitz
continuous in U according to the definition. □

Remark 2 (improvement of regularity). The previous result is an example of im-
provement of regularity in the theory of elliptic PDE. We see that if u is a bounded
function satisfying comparison with cones from above in U , then, for any V ⊂⊂ U ,
we have a bound

Lipφ(u;V ) ≤ C(V ) sup {|u(x)| | x ∈ U} .
Hence the map u 7→ u ↾V improves regularity from “bounded and continuous in U” to
“bounded and uniformly Lipschitz continuous in V .”

Combining Propositions 10 and 11, we conclude that if u satisfies comparison with
φ-cones from above in U , then u is a φ-absolutely subminimizing Lipschitz function
in U .
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2.6. Minimizing implies Cone Comparison. Finally, we prove that absolutely
sub- and superminimizing functions satisfy comparison with cones from above and
below, respectively.

Proposition 12. Let U ⊆ Rd be an open set. If u : U → R is φ-absolutely submini-
mizing in U , then u satisfies comparison with φ-cones from above in U .

Proof. Fix an open set V ⊂⊂ U , a q ∈ Rd \ V , and a λ > 0. We need to prove that

max
{
u(x)− λφ(x− v) | x ∈ U

}
= max {u(x)− λφ(x− v) | x ∈ ∂U} .

Let M = max {u(x)− λφ(x− v) | x ∈ ∂U}. What we wish to prove is equivalent to
establishing that

u(x) ≤M + λφ(x− v) for each x ∈ V .

Toward this end, let W = {x ∈ V | u(x) > M + λφ(x − v)}. We need to show
that W is empty. Notice that W is open and W ⊂⊂ U . Let w(x) = M + λφ(x− v)
and notice that w ∈ F−

u (W ). Thus, since u is absolutely subminimizing,

Lipφ(u;W ) ≤ Lipφ(w;W ).(20)

We claim that (20) implies that W is empty. Indeed, if W were not empty, then
we could let x0 ∈ W . Since v /∈ W and x0 ∈ W , we can find µ ∈ [0, 1) such that

v + µ(x0 − v) ∈ ∂W.

Since φ is a Finsler norm and µ ≥ 0,

φ(x0 − v) = µφ(x0 − v) + (1− µ)φ(x0 − v)

= φ(µ(x0 − v)) + φ((1− µ)(x0 − v))

= φ(µ(x0 − v)) + φ({x0 − v} − {µ(x0 − v}).

In particular, in terms of w,

w(x0) = w(v + µ(x0 − v)) + λφ({x0 − v} − {µ(x0 − v)})

and, thus,

Lipφ(u;W ) ≥ u(x0)− u(v + µ(x0 − v))

φ({x0 − v} − {µ(x0 − v)})
>

w(x0)− w(v + µ(x0 − v))

φ({x0 − v} − {µ(x0 − v)})
= λ.

Combining this with (20), we deduce that Lipφ(w;W ) > λ, but the definition of w

readily implies Lipφ(w;W ) ≤ λ. This contradiction forces us to conclude that W is
empty. □

2.7. Further Exercises.

Exercise 20. Fix an open set U ⊆ Rd \ {0}. Prove that the Finsler norm φ is itself
a φ-absolutely minimizing function in U . (Multiple proofs are possible.)
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2.8. Problems.

Problem 8. Fix a finite set {v1, . . . , vN} ⊆ Rd. Define φ : Rd → R by

φ(q) = max{⟨v1, q⟩, . . . , ⟨vN , q⟩}.
(i) Prove that φ(Rd) ⊆ [0,∞) if and only if the convex hull of {v1, . . . , vN} contains

the origin.
(ii) Assume that the convex hull of {v1, . . . , vN} contains the origin. Prove that φ

is positive definite (i.e., φ(q) = 0 if and only if q = 0) if and only if the convex hull
of {v1, . . . , vN} contains the origin in its interior.

Problem 9. Using the comparison-with-cones properties, prove that if u : U → R is
a φ-absolutely minimizing Lipschitz function in U and V ⊂⊂ U , then

Lipφ(u;V ) = sup

{
u(y1)− u(y2)

φ(y1 − y2)
| y1, y2 ∈ ∂V

}
= Lipφ(u; ∂V ).

(Hint: Mimic the proof of Proposition 7.) Compare to Exercise 17.

Problem 10. Provide an example of a bounded open set U ⊆ Rd and a uniformly
Lipschitz function u : U → R such that u+ ̸= u−.

2.9. Supplementary Material. In the next exercises, we will use the so-called dual
norm φ∗ associated with a given Finsler norm φ. In what follows, we denote by
⟨·, ·⟩ : Rd × Rd → R the Euclidean inner product, hence ⟨v, w⟩ =

∑d
i=1 viwi if v =

(v1, . . . , vd) and w = (w1, . . . , wd).

Definition 8. Given a Finsler norm φ∗, the dual norm φ∗ of φ is the function φ∗

given by

φ∗(p) = sup

{
⟨q, p⟩
φ(q)

| q ∈ Rd \ {0}
}
.

Exercise 21. Prove that if φ is a Finsler norm, then so is φ∗.

Exercise 22. Prove that if φ is the ℓ2 norm, φ(q) =
(∑d

i=1 q
2
i

) 1
2
, then φ∗ = φ.

Exercise 23. Prove that ⟨p, q⟩ ≤ φ(q)φ∗(p) for any p, q ∈ Rd.

Exercise 24. Prove that if φ and ψ are two Finsler norms and if ⟨p, q⟩ ≤ φ(q)ψ(p)
for any p, q ∈ Rd, then φ∗ ≤ ψ.

Problem 11. Prove that if φ∗ = φ, then φ equals the ℓ2 norm.

Problem 12. Let φ be a Finsler norm and γ : [0, T ] → Rd be a smooth curve. Prove
that, for any smooth function f defined in a neighborhood of {γ(s) | s ∈ [0, T ]},

f(γ(T ))− f(γ(0)) ≤ max{φ∗(Df(γ̇(s))) | s ∈ [0, T ]}
ˆ T

0

φ(γ̇(s)) ds.

Deduce from the above that if f is defined and smooth in an open set U ⊆ Rd

containing the line segment between two points x, y ∈ Rd, then

f(x)− f(y) ≤ sup {φ∗(Df(x′)) | x′ ∈ U}φ(x− y).
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Problem 13. Prove that if γ : [0, T ] → Rd is a C1 function, then

φ(γ(T )− γ(0)) ≤
ˆ T

0

φ(γ̇(t)) dt.

Problem 14. Prove that if U ⊆ Rd is an open convex set and if f : U → R is C1,
then

Lipφ(f ;U) = sup {φ∗(Df(x′)) | x′ ∈ U} .

Problem 15 (requires measure theory). Prove that if U ⊆ Rd is an open convex set
and u : U → R is any function such that Lipφ(u;U) <∞, then

Lipφ(u;U) = ∥φ∗(Du)∥L∞(U),

where ∥ · ∥L∞(U) denotes the L
∞-norm with respect to the Lebesgue measure in U .

The previous problem should be compared to Problem 3 above.

3. Uniqueness of Absolutely Minimizing Lipschitz Extensions and the
(Finsler) Infinity Laplacian

In this section, there are three goals. First, we prove that absolutely minimizing
Lipschitz extensions are unique. Second, we prove that they exist. Finally, we uncover
a PDE (or, actually, two partial differential inequalities) that they solve.

To start with, let us be slightly more precise about what we mean by an absolutely
minimizing Lipschitz extension. The definition does not make reference to our original
motivation, the variational problem (1), but we will prove that it gives a solution to
the problem in Corollary 1.

As in the last section, we fix a Finsler norm φ without further comment.

Definition 9. Given an open set U ⊆ Rd and a continuous function g : ∂U → R,
we say that a function u : U → R is an absolutely minimizing Lipschitz extension
of g if u(x) = g(x) for each x ∈ ∂U and the restriction of u to U is an absolutely
minimizing Lipschitz function.

The next theorem asserts that, in a bounded domain U , there is an absolutely
minimizing Lipschitz extension ug corresponding to any boundary condition g.

Theorem 7. If U ⊆ Rd is a bounded open set and g : ∂U → R is continuous, then
there is a unique absolutely minimizing Lipschitz extension ug : U → R of g.

In the next corollary, we prove that if g is uniformly Lipschitz on the boundary
∂U , then ug is a minimal Lipschitz extension in the sense of (1).

Corollary 1. If U ⊆ Rd is a bounded open set and g : ∂U → R is uniformly Lipschitz
continuous on ∂U , then

Lipφ(u;U) = Lipφ(g; ∂U).

In particular, u attains the minimum in (1).
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It will take some time to describe the PDE (or partial differential inequalities)
satisfied by absolutely minimizing Lipschitz functions, and, indeed, even the sense in
which the PDE is solved will require some explanation. Nonetheless, at this stage,
let us at least state the result.

Recall that, as in the introduction, we write Sym(d) to denote the space of all
symmetric, d× d matrices.

Theorem 8. There are functions G∗
φ, G

φ
∗ : Rd × Sym(d) → R such that if u : U → R

is an absolutely minimizing Lipschitz function (with respect to φ) in some open set
U ⊆ Rd, then

−Gφ
∗ (Du,D

2u) ≥ 0 in the viscosity sense in U,(21)

−G∗
φ(Du,D

2u) ≤ 0 in the viscosity sense in U.(22)

Of course, now a natural question might occur to you: do the partial differential
inequalities (21) and (22) also characterize absolutely minimizing Lipschitz functions?
I claim that the answer is yes, but now we are getting ahead of ourselves, and the
proof goes beyond the scope of these notes.

3.1. Convexity Properties. In preparation for the proof of Theorem 7, we will give
a fundamental property of absolutely minimizing Lipschitz functions.

Toward that end, some additional notation will be convenient. Define the “forward”
and “backward” open balls Bφ

r (x) and B
r
φ(x) for x ∈ Rd and r ≥ 0 by

Bφ
r (x) = {y ∈ Rd | φ(y − x) < r}, Br

φ(x) = {y ∈ Rd | φ(x− y) < r}.

Similarly, let B̄φ
r (x) and B̄

r
φ(x) be the closed balls, defined analogously to Bφ

r (x) and
Br

φ(x), but with “< r” replaced by “≤ r.” We need both notions of balls since φ is
only assumed to be a Finsler norm (hence is not necessarily symmetric).

Given a function u and an x in the domain of u, define the function Mφ
x by

Mφ
x (r) = max

{
u(y) | y ∈ B̄φ

r (x)
}
,

at least for those r for which the above supremum makes sense. The next result shows
that if u is an absolutely minimizing Lipschitz function (with respect to φ), then Mφ

x

is a convex function in its interval of definition.

Proposition 13. Let U ⊆ R and fix a continuous function u : U → R. Fix x ∈ U
and let R(x) = sup{r > 0 | B̄φ

r (x) ⊆ U}. If u is φ-absolutely subminimizing, then
Mφ

x is a convex function in [0, R(x)).

Proof. Fix r1, r2 ∈ [0, R) and λ ∈ [0, 1]. By definition, we know that

u(y) ≤Mφ
x (r1) if y ∈ B̄φ

r (x),

u(y) ≤Mφ
x (r2) if y ∈ B̄φ

r (x).

At the same time, observe that we can fix A ∈ R and B > 0 such that the function
f : Rd → R given by

f(y) = A+Bφ(y − x)
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satisfies f(y) =Mφ
x (r1) if y ∈ ∂Bφ

r1
(x) and f(y) =Mφ

x (r2) if y ∈ ∂Bφ
r2
(x).

Since u is φ-absolutely subminimizing, Theorem ?? says that u satisfies comparison
with cones from above. Therefore,

max{u(y)− f(y) | y ∈ B̄φ
r2
\Bφ

r1
(x)} ≤ 0.

Finally, notice that if φ(y− x) = (1− λ)r1 + λr2, then we can fix y1 and y2 such that
(1− λ)y1 + λy2 = y and φ(yi − x) = ri for i ∈ {1, 2}. Therefore, by convexity of φ,

u(y) ≤ f(y) = A+Bφ(y − x) ≤ (1− λ)(A+Bφ(y1 − x)) + λ(A+Bφ(y2 − x))

= (1− λ)Mφ
x (r1) + λMφ

x (r2).

This proves that

max
{
u(y) | y ∈ ∂B(1−λ)r1+λr2(x)

}
≤ (1− λ)Mφ

x (r1) + λMφ
x (r2).

Therefore, since the maximum occurs on the boundary (Exercise ??),

Mφ
x ((1− λ)r1 + λr2) ≤ (1− λ)Mφ

x (r1) + λMφ
x (r2).

This proves Mφ
x is convex in [0, R(x)). □

Symmetrically, if we define mφ
x by

mφ
x(r) = min

{
v(y) | y ∈ B̄r

φ(x)
}
,

then mφ
x is a concave function whenever v is φ-absolutely superminimizing.

Proposition 14. Let U ⊆ Rd be an open set and fix x ∈ U . If v : U → R is φ-
absolutely superminimizing and R(x) = sup{r > 0 | B̄r

φ(x) ⊆ U}, then the function
mφ

x : [0, R(x)) → R is concave.

Exercise 25. Prove the previous proposition (e.g., by mimicking that of Proposition
13).

3.2. Finite-Differences, Revisited. In this subsection, I recount the elementary
uniqueness argument of Armstrong and Smart. Finite-difference operators like those
dealt with in Section 1 reappear at this stage of the discussion.

The crux of the matter is the following observation. Suppose that u is a φ-absolutely
subminimizing Lipschitz function in some open set U ⊆ Rd. Given r > 0, let Ur be
the subdomain

Ur = {x ∈ U | B̄φ
r (x) ⊆ U and B̄r

φ(x) ⊆ U}.
and define the function uφr by

uφr (x) = max
{
u(y) | y ∈ B̄φ

r (x) ∩ U
}
.(23)

The next result asserts that uφr is a subsolution of a finite-difference equation that
will look familiar if perused Section 1.

Lemma 1. If u : U → R is a φ-absolutely subminimizing Lipschitz function in U ,
then, for each x ∈ U2r, u

φ
r satisfies

(24)

−1

2
sup

{
uφr (y)− uφr (x) | x ∈ B̄φ

r (x)
}
− 1

2
inf

{
uφr (y)− uφr (x) | y ∈ B̄r

φ(x)
}
≤ 0.
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It is worth observing at this stage that uφr relates to the function Mφ
r defined in

the last section via the formula

uφr (x) =Mφ
x (r).

It turns out that the convexity property of Mφ
x (r) readily implies the conclusion of

the lemma.

Proof. Fix x ∈ Ur. Since R 7→Mφ
x (R) is convex by Proposition 13, we know that

uφr (x) =Mφ
x (r)

≤ 1

2
Mφ

x (0) +
1

2
Mφ

x (2r)

=
1

2
u(x) +

1

2
max

{
u(y) | y ∈ B̄φ

2r(x)
}
.

Notice that, by definition of uφr and the triangle inequality satisfied by φ (see Defini-
tion 4),

max
{
u(y) | y ∈ B̄φ

2r(x)
}
= max

{
uφr (y) | y ∈ B̄φ

r (x)
}
.

At the same time, if y ∈ B̄r
φ(x), that is, if φ(x − y) ≤ r, then u(x) ≤ uφr (y) by

definition, hence

u(x) ≤ min
{
ur(y) | y ∈ B̄r

φ(x)
}
.

This leads us to conclude that

uφr (x) ≤
1

2
max

{
uφr (y) | y ∈ B̄φ

r (x)
}
+

1

2
min

{
uφr (y) | y ∈ B̄r

φ(x)
}
.

□

A completely analogous property is satisfied by φ-absolutely superminimizing Lip-
schitz functions.

Lemma 2. If v : U → R is a φ-absolutely superminimizing Lipschitz function in U ,
then the function vrφ : Ur → R given by

vrφ(x) = min
{
v(y) | y ∈ B̄r

φ(x) ∩ U
}

(25)

satisfies, for each x ∈ U2r,
(26)

−1

2
sup

{
vrφ(y)− vrφ(x) | x ∈ B̄φ

r (x)
}
− 1

2
inf

{
urφ(y)− urφ(x) | y ∈ B̄r

φ(x)
}
≥ 0.

Exercise 26. Using Proposition 14, prove Lemma 2.

3.3. Comparison Principle. At this stage, the goal is to use the finite-difference
inequalities (24) and (26) to prove a comparison principle for φ-absolutely minimizing
Lipschitz functions analogous to Proposition 2 in Section 1. Precisely, we prove the
following result:
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Theorem 9. Let U ⊆ Rd be a bounded open set. If u is a φ-absolutely subminimizing
function in U and v is a φ-absolutely superminimizing function in U , both of which
extend to continuous functions in the closure U , then

max
{
u(x)− v(x) | x ∈ U

}
= max {u(x)− v(x) | x ∈ ∂U} .

The proof use the functions uφr and vrφ defined above. First, we prove a result
analogous to Proposition 2. Before we state the result, we need to define the notion
of upper and lower semicontinuous functions.
Recall that, given a closed set C ⊆ Rd, a function u : C → R is called upper

semicontinuous if, for any α ∈ R,
{x ∈ C | u(x) ≥ α} is a closed subset of C.

Similarly, a function v : C → R is called lower semicontinuous if, for any λ > 0,

{x ∈ C | v(x) ≤ α} is a closed subset of C.

For our purposes, we only need to know that (i) the functions uφr and vrφ defined
above are, respectively, upper and lower semicontinuous and (ii) upper semicontinu-
ous functions attain their maximum in any compact set (and lower semicontinuous
functions attain their minimum in any compact set).

Exercise 27. (i) Let U ⊆ Rd be an open set and assume that u : U → R is any
function. Show that the function uφr defined by the formula (23) is an upper semicon-
tinuous function in Ur.
(ii) Let U ⊆ Rd be an open set and assume that v : U → R is any function. Show

that the function vrφ defined by the formula (25) is a lower semicontinuous function

in U r.

Exercise 28. (i) Let C ⊆ Rd be a closed set and assume that u : C → R is upper
semicontinuous. Prove that if K ⊆ C is compact, then there is an x ∈ K such that
u(x) = sup{u(y) | y ∈ K}.
(ii) Let C ⊆ Rd be a closed set and assume that v : C → R is lower semicontinuous.

Prove that if K ⊆ C is compact, then there is an x ∈ K such that v(x) = inf{v(y) |
y ∈ K}.

Remark 3. Indeed, in the previous exercise, C did not need to be a closed subset
of Rd. Our definition of upper and lower semicontinuous extends to any topological
space, and then one can show that an upper (resp. lower) semicontinuous function
attains its maximum (resp. minimum) in any compact set.

Proposition 15. Let U ⊆ Rd be a bounded open set and fix r > 0. Suppose that
ur : U → R is upper semicontinuous in U and vr : U → R is lower semicontinuous
in U . If, for each x ∈ Ur, the following inequalities hold

−1

2
sup

{
ur(y)− ur(x) | y ∈ B̄φ

r (x)
}
− 1

2
inf

{
ur(y)− ur(x) | y ∈ B̄r

φ(x)
}
≤ 0,

−1

2
sup

{
vr(y)− vr(x) | y ∈ B̄φ

r (x)
}
− 1

2
inf

{
vr(y)− vr(x) | y ∈ B̄r

φ(x)
}
≥ 0,
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then

max
{
ur(x)− vr(x) | x ∈ U

}
= max

{
ur(x)− vr(x) | U \ Ur

}
.

Problem 16. Prove Proposition 15 by following the same strategy as in the proof of
Proposition 2.

Finally, we know that uφr → u and vrφ → v as r → 0, hence we can use Proposition
15 to conclude the proof of Theorem 9.

Proof of Theorem 9. Define uφr and vrφ as in (23) and (25). By Proposition 15,

max
{
uφr (x)− vrφ(x) | x ∈ U

}
= max

{
uφr (x)− vrφ(x) | x ∈ U \ U2r

}
.

Since u and v are continuous in U , we know that

lim
r→0+

sup
{
|uφr (x)− u(x)|+ |vrφ(x)− v(x)| | x ∈ U

}
= 0.

This leads us to conclude that

max
{
u(x)− v(x) | x ∈ U

}
= lim

r→0+
max

{
uφr (x)− vrφ(x) | x ∈ U \ U2r

}
= max {u(x)− v(x) | x ∈ ∂U} .

□

3.4. Existence. Now that we know that absolutely minimizing Lipschitz functions
are uniquely determined by their boundary values, it remains to prove that such a
function exists for any given choice of boundary value.

Proposition 16. Let U ⊆ Rd be a bounded open set. Given any continuous function
g : ∂U → R, there is continuous function u : U → R such that u(x) = g(x) for
x ∈ ∂U and u is a φ-absolutely minimizing Lipschitz function in U .

We will prove the proposition using the comparison-with-cones properties and Per-
ron’s method.

3.5. The Finsler Infinity Laplacian. The finite-difference equations can be used
to prove that φ-absolutely sub- and superminimizing Lipschitz functions are sub- and
supersolutions, respectively, of a certain partial differential inclusion. Specifically,
this equation takes the form

−⟨D2u · ∂φ∗(Du), ∂φ∗(Du)⟩ ∋ 0 in U.(27)

Above ∂φ∗ is the subdifferential of the dual norm φ∗ (defined in Definition 8 above)
and ⟨·, ·⟩ is the Euclidean inner product.

To make this precise, let us define the subdifferential ∂ψ of a Finsler norm ψ.

Definition 10. Given a Finsler norm ψ : Rd → [0,∞), the subdifferential ∂ψ is the
set-valued function in Rd given by

∂ψ(q) =
{
p ∈ Rd | ψ∗(p) ≤ 1, ⟨p, q⟩ = ψ(q)

}
.
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On the one hand, if q = 0, then the subdifferential ∂ψ(0) simply equals the closed
unit ball {p ∈ Rd | ψ∗(p) ≤ 1}.

On the other hand, recall that, for any Finsler norm ψ, ⟨p, q⟩ ≤ ψ(q)ψ∗(p) for any
p, q ∈ Rd. Thus, if q ̸= 0, then the subdifferential ∂ψ(q) consists precisely of those
vectors p for which equality holds in this inequality, normalized so that ψ∗(p) = 1.

The subdifferential ∂ψ(q) is always nonempty, as you are asked to prove in Problem
17 below.

Exercise 29. Prove that if ψ is a Finsler norm in Rd and q ∈ Rd, then ∂ψ(q) is a
closed, convex subset of Rd.

Exercise 30. Prove that if ψ is a Finsler norm in Rd, then ψ is not differentiable at
zero. (Hint: First, consider the case of the Euclidean norm.)

Exercise 31. Prove that if ψ is a Finsler norm in Rd and ψ is differentiable at some
point q ∈ Rd \ {0}, then

∂ψ(q) = {Dψ(q)}.
(The converse is also true: if ∂ψ(q) = {p} for some p ∈ Rd, then ψ is differentiable
at q and Dψ(q) = p.)

Problem 17. Prove that if ψ is a Finsler norm in Rd and q ∈ Rd, then ∂ψ(q) is
nonempty.

To appreciate the relevance of (27), it is useful to consider that uφr ≈ urφ ≈ u for
small r, hence, for any x ∈ U ,

−1

2
max

{
u(y)− u(x) | y ∈ B̄φ

r (x)
}
− 1

2
min

{
u(y)− u(x) | y ∈ B̄r

φ(x)
}
≈ 0,

at least for small r > 0. Now we would like to understand what happens in this
expression in the limit r → 0+. Toward that end, we may as well assume that u is
smooth in a neighborhood of x (the best case scenario if we want to see a partial
differential equation of some sort).

Lemma 3. If f is a smooth function defined in a neighborhood of some point x ∈ Rd

and (xr)r>0 ⊆ Rd satisfies limr→0+ xr = x, then

1

2
G∗

φ(Df(x), D
2f(x)) ≥

lim sup
r→0+

(
1

2r2
max

{
f(y)− f(xr) | y ∈ B̄φ

r (xr)
}
+

1

2r2
min

{
f(y)− f(xr) | y ∈ B̄r

φ(xr)
})

,

1

2
Gφ

∗ (Df(x), D
2f(x)) ≤

lim inf
r→0+

{
1

2r2
max

{
f(y)− f(xr) | y ∈ B̄φ

r (xr)
}
+

1

2r2
min

{
f(y)− f(xr) | y ∈ B̄r

φ(xr)
})

,

where Gφ
∗ , G

∗
φ : Rd × Sym(d) → R are the functions defined by

G∗
φ(p,X) = max {⟨Xq, q⟩ | q ∈ ∂φ∗(p)} ,

Gφ
∗ (p,X) = min {⟨Xq, q⟩ | q ∈ ∂φ∗(p)} .
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Proof. The factors of r2 in the denominator suggest that we are interested in the
behavior of f very close to x. Therefore, it makes sense to try a blow-up argument.
Toward that end, consider the functions (Fr)r>0 defined by Fr(ξ) = r−1(f(xr + rξ)−
f(xr)).

For any r > 0 small enough, let ξ+r and ξ−r be points such that φ(ξ+r ), φ(ξ
−
r ) ≤ 1

and

f(xr + rξ+r ) = max
{
f(y) | y ∈ B̄φ

r (xr)
}
,

f(xr − rξ−r ) = min
{
f(y) | y ∈ B̄r

φ(xr)
}
.

This means that

Fr(ξ
+
r ) = max {Fr(ξ) | φ(ξ) ≤ 1} ,

Fr(−ξ−r ) = min {Fr(−ξ) | φ(ξ) ≤ 1} .

Since f is smooth close to x, we know that

lim
r→0

sup
{∣∣∣Fr(ξ)− ⟨Df(xr), ξ⟩ −

r

2
⟨Df(xr)ξ, ξ⟩

∣∣∣ | ξ ∈ B̄φ
1 (0) ∪ B̄1

φ(0)
}
= 0.(28)

By compactness, we can fix a subsequence (rj)j∈N ⊆ (0,∞) and points ξ+, ξ− ∈ Rd

such that rj → 0 as j → ∞ and

lim
j→∞

ξ+rj = ξ+, lim
j→∞

ξ−rj = ξ−.

By the choice of ξ+r and ξ−r , we know that

⟨Df(x), ξ+⟩ = max {⟨Df(x), ξ⟩ | φ(ξ) ≤ 1} ,
⟨Df(x),−ξ−⟩ = min {⟨Df(x), (−ξ)⟩ | φ(ξ) ≤ 1}

= min {⟨(−Df(x)), ξ⟩ | φ(ξ) ≤ 1}
= −max {⟨Df(x), ξ⟩ | φ(ξ) ≤ 1} .

Thus, {ξ+, ξ−} ⊆ ∂φ∗(Df(x)) by Definition 10.
Finally, by (28),

lim sup
r→0+

(
1

2r
max {Fr(ξ) | φ(ξ) ≤ 1}+ 1

2r
min {Fr(−ξ) | φ(ξ) ≤ 1}

)
≤ lim

r→0+

(
1

2r
⟨Df(xr), ξ+r ⟩+

1

4
⟨D2f(xr)ξ

+
r , ξ

+
r ⟩ −

1

2r
⟨Df(xr), ξ+r ⟩

+
1

4
⟨D2f(xr)ξ

+
r , ξ

+
r ⟩

)
=

1

2
⟨D2f(x)ξ+, ξ+⟩ ≤ 1

2
G∗

φ(Df(x), D
2f(x)).
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Similarly,

lim inf
r→0+

(
1

2r
max {Fr(ξ) | φ(ξ) ≤ 1}+ 1

2r
min {Fr(−ξ) | φ(ξ) ≤ 1}

)
≥ lim

r→0+

(
1

2r
⟨Df(xr), ξ−r ⟩+

1

4
⟨D2f(xr)ξ

−
r , ξ

−
r ⟩ −

1

2r
⟨Df(xr), ξ−r ⟩

+
1

4
⟨D2f(xr), ξ

−
r , ξ

−
r ⟩

)
=

1

2
⟨D2f(x)ξ−, ξ−⟩ ≥ 1

2
Gφ

∗ (Df(x), D
2f(x)).

In view of the definition of (Fr)r>0, this completes the proof. □

In the next section, we will show that if u is a φ-absolutely minimizing Lipschitz
function in some open set U ⊆ Rd, then

−G∗
φ(Du,D

2u) ≤ 0 ≤ −Gφ
∗ (Du,D

2u) in the viscosity sense in U.

Along the way, we will need to define what “in the viscosity sense” means.

3.6. Viscosity Solutions. In the previous section, we saw that the two operators
(Gφ

∗ , G
∗
φ) emerge as the limit of the finite-difference inequalities (24) and (26) when

r → 0+. This was the observation of Lemma 3, but there we had to work with smooth
functions.

In general, a φ-absolutely minimizing Lipschitz function will not be smooth, or even
C1. Hence we need a notion of solution of a PDE (or partial differential inclusion)
applicable to functions that are merely continuous. This is the purpose of the theory
of viscosity solutions.

Definition 11. An upper semicontinuous function u : U → R defined in an open
set U ⊆ Rd is said to satisfy the partial differential inequality −G∗

φ(Du,D
2u) ≤ 0 in

the viscosity sense in U if, for any x ∈ Rd and any smooth function f defined in a
neighborhood of U for which the difference u− f has a local maximum at x,

−Gφ
∗ (Df(x), D

2f(x)) ≤ 0.

Similarly, a lower semicontinuous function v : U → R is said to satisfy the partial
differential inequality −Gφ

∗ (Dv,D
2v) ≥ 0 in the viscosity sense in U if, for any x ∈ Rd

and any smooth function f defined in a neighborhood of U for which the difference
u− f has a local minimum at x,

−Gφ
∗ (Df(x), D

2f(x)) ≥ 0.

A function u satisfying −G∗
φ(Du,D

2u) ≤ 0 in the viscosity sense is called a vis-

cosity subsolution of the equation −G∗
φ(Du,D

2u) = 0, while a function v satisfying

−Gφ
∗ (Dv,D

2v) ≥ 0 in the viscosity sense is called a viscosity supersolution of the
equation −Gφ

∗ (Dv,D
2v) = 0.

In effect, as we will see in the next theorem, the definition of viscosity sub- and
supersolutions proceeds by passing the derivatives onto a smooth test function using
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the maximum principle. This will become more-or-less apparent in the proof of the
next theorem.

Theorem 10. If u is a φ-absolutely subminimizing Lipschitz function in some open
set U ⊆ Rd, then −G∗

φ(Du,D
2u) ≤ 0 in the viscosity sense in U . Similarly, if v is

a φ-absolutely superminimizing Lipschitz function in U , then −Gφ
∗ (Dv,D

2v) ≥ 0 in
the viscosity sense in U .

Proof. We only give the proof for a subminimizer u since the proof for a supermini-
mizer v is analogous.

Suppose that x ∈ U and f is a smooth function defined in a neighborhood of x for
which the difference u − f has a local maximum at x. In particular, we can fix an
open ball B ⊂⊂ U centered at x such that f is defined in the closure B̄ and

u(x)− f(x) = max
{
u(y)− f(y) | y ∈ B̄

}
.

We need to show that −G∗
φ(Df(x), D

2f(x)) ≤ 0. Since adding a constant does
not change the derivatives of f , there is no loss of generality in assuming that the
maximum is zero, that is, u(x) = f(x) and u(y) ≤ f(y) for y ∈ B̄.
It is convenient to make x a strict maximum of u− f . Toward that end, define fϵ

by

fϵ(y) = f(y) +
ϵ

2
|y − x|2,

where | · | is the Euclidean norm. Notice that u(x) = fϵ(x) and u(y) < fϵ(y) if
y ∈ B̄ \ {x}.
Consider the approximation uφr defined by (23). Since uφr is upper semicontinuous

(Exercises 27 and 28), we can fix a point xr ∈ B̄ for which

uφr (xr)− fϵ(xr) = max
{
uφr (y)− fϵ(y) | y ∈ B̄

}
.

Fix a subsequence (rj)j∈N ⊆ (0,∞) and a point y0 ∈ B̄ such that limj→∞ rj = 0 and
limj→∞ xrj = y0. Since u

φ
r → u as r → 0+, we know that

u(y0)− fϵ(y0) = lim
j→∞

max
{
uφrj(y)− fϵ(y) | y ∈ B̄

}
= max

{
u(y)− fϵ(y) | y ∈ B̄

}
.

It follows that y0 = x. Since the subsequence was chosen arbitrarily, we deduce from
this that xr → x as r → 0+.

Finally, since x ∈ B and xr → x as r → 0+, there is an r∗ > 0 such that B̄φ
r (xr) ∪

B̄r
φ(xr) ⊆ B̄ if r ∈ (0, r∗). Thus, since u

φ
r − fϵ is maximized at xr, for any r ∈ (0, r∗),

we can write

− 1

2
sup

{
uφr (y)− uφr (xr) | y ∈ B̄φ

r (xr)
}
− 1

2
inf

{
uφr (y)− uφr (xr) | y ∈ B̄r

φ(xr)
}

≥ −1

2
max

{
fϵ(y)− fϵ(xr) | y ∈ B̄φ

r (xr)
}
− 1

2
min

{
fϵ(y)− fϵ(xr) | y ∈ B̄r

φ(xr)
}
.

Therefore, by Lemmas 1 and 3, in the limit r → 0+, we find

0 ≥ −1

2
G∗

φ(Dfϵ(x), D
2fϵ(x)).
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Finally, we know that Dfϵ(x) = Df(x) and D2fϵ(x) = D2f(x) + ϵId. Thus, since
the function G∗

φ is upper semicontinuous, in the limit ϵ→ 0+, we find

0 ≥ −G∗
φ(Df(x), D

2f(x)).

□

It is worth reflecting on what we have proved thus far. At first, I claimed that the
PDE, really a partial differential inclusion, should be

−⟨D2u · ∂φ∗(Du), ∂φ∗(Du)⟩ ∋ 0 in U.(29)

Above, since ∂φ∗ is set-valued (Definition 10), the right-hand side is a set. Notice,
however, that if p ∈ Rd and X ∈ Sym(d) are such that

{⟨Xq, q⟩ | q ∈ ∂φ∗(p)} = ⟨X∂φ∗(p), ∂φ∗(p)⟩ ∋ 0,

then, since ∂φ∗(p) is a connected set by Exercise 29,

max {⟨Xq, q⟩ | q ∈ ∂φ∗(p)} ≥ 0 ≥ min {⟨Xq, q⟩ | q ∈ ∂φ∗(p)} .

Thus, a natural way to interpret the partial differential inclusion (29) is to simply ask
that the partial differential inequalities −G∗

φ(Du,D
2u) ≤ 0 ≤ −Gφ

∗ (Du,D
2u) hold

in U . We just proved that if u is a φ-absolutely minimizing Lipschitz function, then
these inequalities do hold (in the viscosity sense).

3.7. Further Exercises.

3.8. Problems.

Problem 18. Prove that if h is a smooth function defined in some open set U ⊆ Rd

such that

−G∗
φ(Dh(x), D

2h(x)) ≤ 0 for each x ∈ U,

then h satisfies −G∗
φ(Dh,D

2h) ≤ 0 in the viscosity sense in U . (Hint: If h − f has
a local maximum at some point x ∈ U , use the second derivative test to deduce that
−G∗

φ(Dh(x), D
2h(x)) ≤ 0.)

Problem 19. Say that a continuous function u : U → R satisfies φ∗(Du) ≤M in the
viscosity sense if for any x ∈ U and any smooth function f defined in a neighborhood
of x for which u − f has a local maximum, we have φ∗(Df(x)) ≤ M . Prove that if
u extends to a continuous function in Ū and Lipφ(u;U) ≤ M , then φ∗(Du) ≤ M in
the viscosity sense. (The converse is also true, but it is not so easy to prove.)

4. Scaling Limit of the Value Function

In this section, we prove Theorems 2 and 3.
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4.1. Rescaled Value Function. Let U ⊆ Rd be a bounded open set and g : ∂U → R
be continuous. Fix a continuous function G : U → R such that G(x) = g(x) for each
x ∈ ∂U .

It will be convenient to assume for a while that G is uniformly Lipschitz in U :

Lipℓ1(G;U) <∞.

In what follows, let Uϵ = U ∩ (ϵZd). Since U is bounded, the set Uϵ is finite.
Therefore, by Proposition ??, there is a unique function uϵ : ϵ

−1Uϵ → R such that

−∆∞
Zduϵ(x) = 0 for each x ∈ int(ϵ−1Uϵ),

uϵ(x) = ϵ−1G(ϵx) for each x ∈ ∂int(ϵ
−1Uϵ).

Furthermore, the next proposition shows that

max{uϵ(x) | x ∈ ϵ−1Uϵ} ≤ ϵ−1max
{
|G(x)| | x ∈ U

}
,

LipZd(uϵ; ϵ
−1Uϵ) ≤ Lipℓ1(G;U).

Proposition 17. Let A ⊆ Zd be a finite set. If u : A → R satisfies −∆∞
Zdu(x) = 0

for each x ∈ int(A), then

max{u(x) | x ∈ A} = max{u(x) | x ∈ ∂intA},
LipZd(u;A) = LipZd(u; ∂intA).

Proof. First, notice that the constant function v(x) = 0 satisfies −∆∞
Zdv(x) = 0

for each x ∈ int(A). Therefore, by the comparison principle (Proposition 2), the
maximum of u in A is achieved on ∂intA. Similarly, replacing u by −u, we see that
the minimum is achieved on the boundary as well.

Next, notice that if y ∈ Zd \ int(A) and λ > 0, then the function v(x) = λ∥x− y∥1
satisfies −∆∞

Zdv(x) = 0 for each x ∈ int(A). Thus, setting λ = LipZd(u; ∂intA) and
using the comparison principle (Proposition 2) as in Proposition 7 (see also Problem
9), we find

LipZd(u;A) = LipZd(u; ∂intA).

□

Define the rescaled functions (ũϵ)ϵ>0 by

ũϵ(x) = ϵu(ϵ−1x) for each x ∈ Uϵ.

What we just proved can be rephrased as

max{|ũϵ(x)| | x ∈ Uϵ} ≤ max
{
|G(x)| | x ∈ U

}
,

sup

{
ũϵ(x)− ũϵ(y)

∥x− y∥1
| x, y ∈ Uϵ

}
≤ Lipℓ1(G;U).

By mimicking the proof of the Arzelà-Ascoli Theorem, we can prove the following
compactness result:
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Proposition 18. For any sequence (ϵj)j∈N ⊆ (0,∞) such that ϵj → 0 as j → ∞,
there is a subsequence (jk)k∈N ⊆ N such that jk → ∞ as k → ∞ and a continuous
function ũ : U → R such that

lim
δ→0+

sup

{
|ũϵjk (y)− ũ(x)| | 1

k
+ |x− y| < δ

}
= 0.(30)

Furthermore, ũ(x) = G(x) = g(x) for each x ∈ ∂U and

max{|ũ(x)| | x ∈ U} ≤ max
{
|G(x)| | x ∈ U

}
,

Lipℓ1(ũ;U) ≤ Lipℓ1(G;U).

Problem 20. Prove Proposition 18 by mimicking the proof of the Arzelà-Ascoli The-
orem.

Next, we prove that the limit ũ is uniquely determined as the ℓ1-absolutely mini-
mizing Lipschitz function that coincides with G on ∂U .

Proposition 19. If ũ is a subsequential limit of (ũϵ)ϵ>0 as in (30), then ũ is the
ℓ1-absolutely minimizing Lipschitz function that equals g on ∂U .

Proof. Assume that (ϵj)j∈N ⊆ (0,∞) satisfies limj→∞ ϵj = 0 and (30). We begin by
proving that ũ satisfies comparison with φ-cones from above and below in U . By
Theorem ??, this implies that ũ is a φ-absolutely minimizing Lipschitz function in U .

Fix V ⊂⊂ U , q ∈ Rd \ V , and λ > 0. We want to show that

max
{
ũ(x)− λ∥x− q∥1 | x ∈ V

}
= max {ũ(x)− λ∥x− q∥1 | x ∈ ∂V } ,

min
{
ũ(x)− λ∥x− q∥1 | x ∈ V

}
= min {ũ(x)− λ∥x− q∥1 | x ∈ ∂V } .

To avoid needless repetition, we only prove the identity involving maxima.
Let Vϵ = V ∩ (ϵZd). Since q /∈ V , the function v(x) = λ∥x− q∥1 satisfies

−1

2
max
e∈Ed

(v(x+ ϵe)− v(x))− 1

2
min
e∈Ed

(v(x+ ϵe)− v(x)) = 0 for each x ∈ int(Vϵ).

Thus, by the comparison principle (Proposition 2),

max
{
ũϵj(x)− λ∥x− q∥1 | x ∈ Vϵj

}
= max

{
ũϵj(x)− λ∥x− q∥1 | x ∈ ∂intVϵj

}
.

Since ũϵj → ũ in the sense of (30), we conclude that

max
{
ũ(x)− λ∥x− q∥1 | x ∈ V

}
= max {ũ(x)− λ∥x− q∥1 | x ∈ ∂V } .

Finally, it only remains to prove that ũ(x) = G(x) = g(x) for x ∈ ∂U . Indeed, let
us fix an x ∈ ∂U and observe that there are points (xj)j∈N ⊆ U such that xj ∈ ∂intUϵj

for each j ∈ N and limj→∞ xj = x. Using (30), we find

ũ(x) = lim
j→∞

ũϵj(xj) = lim
j→∞

G(xj) = G(x) = g(x).

□
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We have already seen in Section ?? that if u is ℓ1-absolutely minimizing Lipschitz
function, then −G∗

ℓ1(Du,D
2u) ≤ 0 ≤ −Gφ

∗ (Du,D
2u). Here we give a direct proof

involving the discrete infinity Laplacian −∆∞
Zd . We will use the following lemma,

which is analogous to Lemma 3.

Lemma 4. Fix x ∈ Rd and let f be a smooth function defined in a neighborhood of
x. If (ϵj)j∈N ⊆ (0,∞) and (xj)j∈N ⊆ Rd satisfy limj→∞ ϵj = 0 and limj→∞ xj = x,
then

1

2
G∗

ℓ1(Df(x), D
2f(x))

≥ lim sup
j→∞

{
1

2ϵ2j
max
e∈Ed

(f(xj + ϵje)− f(xj)) +
1

2ϵ2j
min
e∈Ed

(f(xj + ϵje)− f(xj))

}
,

1

2
Gℓ1

∗ (Df(x), D
2f(x))

≤ lim inf
j→∞

{
1

2ϵ2j
max
e∈Ed

(f(xj + ϵje)− f(xj)) +
1

2ϵ2j
min
e∈Ed

(f(xj + ϵje)− f(xj))

}
.

Problem 21. Prove Lemma 4 by mimicking the proof of Lemma 3.

Proposition 20. If ũ is the limit of (ũϵ)ϵ>0
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