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WHY IS DEPTH IMPORTANT

− Single layer MLPs are universal approximators.

− Deep models can be hard to train.

− Deep models are harder to inspect.

+ Wealth of empirical evidence for deep models performing better.

+ Intuitions on the brain and thought process.

+ Some theoretical results on the efficiency of deep models.

THIS WORK

• We evaluate the complexity of functions computable by shallow and deep feedfor-
ward neural networks with piecewise linear activations in terms of symmetries and
the number of linear regions.

• We show that deep networks are exponentially more efficient in terms of the
number of linear regions.

Figure. Decision boundary of rectifier MLPs and the number of linear regions.

COMPOSITIONAL PROPERTIES OF FEEDFORWARD NEURAL

NETWORKS

• A map F identifies two input neighborhoods S and T if it maps them to the same
output, F (S) = F (T ).

• Deep networks produce a recursive identification of input neighborhoods.

Figure. Recursive identification of input neighborhoods.

• Intuitively, each layer folds its input space onto itself.

Figure. Identification of input neighborhoods as folding.

• Computations carried out at a given layer apply to all inputs that have been identi-
fied by the previous layers.

DEEP RECTIFIER NETWORKS

Theorem 1.

• A shallow rectifier neural network with m units can compute functions with at most
this many linear regions:

O(mn0) (polynomial in m).

• A deep rectifier network with L layers of n units each can compute functions with
this many linear regions:

O

((
n

n0

)n0(L−1)
nn0

)
(exponential in the depth L).

Proof Sketch.
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Figure. A layer of rectifier units can fold its input space like a zigzag.

DEEP MAXOUT NETWORKS

Theorem 2.

• A shallow maxout network with m rank-k units can compute functions with at most
this many linear regions:

O
(
mn0k2n0

)
(polynomial in m).

• A deep maxout network with L layers of n0 rank-k units can compute functions
with this many linear regions:

O
(
k(L−1)+n0

)
(exponential in the depth L).

Proof Sketch.
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Figure. A layer of maxout units can fold its input space like a folding fan.

VISUALIZING THE BEHAVIOR OF HIDDEN UNITS IN DEEP LAYERS

• Behavior of hidden units of a rectifier MLP trained on the Toronto Faces Dataset.

• The map taking input images to activations of the individual units is piecewise
linear. For an input image I the activation of the i-th unit at the l-th layer is

I 7→ hl,i = M
(I)
l,i · I +B

(I)
l,i .
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Figure. Matrix weights M (I)
l,i of the linear maps “input image”→ “unit activation”

computed by a rectifier MLP for various inputs I and units i in different layers l.
Deep units react equally to faces from diverse input neighborhoods.

CONCLUSIONS

• Each layer is able to identify distinct regions of its input space; the composition of
layers is able to identify an exponential number of regions.

• Exponential replication of the complexity of functions computed in deeper layers.

• Deep networks can compute complicated functions with intrinsic rigidity caused
by replications; this may help generalizing to unseen samples.

• The presented framework applicable to many kinds of networks.
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