

WHY IS DEPTH IMPORTANT

- Single layer MLPs are universal approximators.
- Deep models can be hard to train.
- Deep models are harder to inspect.
- + Wealth of empirical evidence for deep models performing better.
- + Intuitions on the brain and thought process.
- + Some theoretical results on the efficiency of deep models.

THIS WORK

- We evaluate the complexity of functions computable by shallow and deep feedforward neural networks with piecewise linear activations in terms of symmetries and the number of linear regions.
- We show that deep networks are exponentially more efficient in terms of the number of linear regions.

Figure. Decision boundary of rectifier MLPs and the number of linear regions.

COMPOSITIONAL PROPERTIES OF FEEDFORWARD NEURAL NETWORKS

- A map F identifies two input neighborhoods S and T if it maps them to the same output, F(S) = F(T).
- Deep networks produce a **recursive identification** of input neighborhoods.

Figure. Recursive identification of input neighborhoods.

• Intuitively, each layer **folds** its input space onto itself.

Figure. Identification of input neighborhoods as folding. • Computations carried out at a given layer apply to all inputs that have been identified by the previous layers.

Neural Information Processing Systems, Palais des Congrès de Montréal / Convention and Exhibition Center, Montreal, Quebec, Canada, December 8–13, 2014.

On the Number of Linear Regions of Deep Neural Networks

Guido Montúfar¹

Razvan Pascau²

¹Max Planck Institute for Mathematics in the Sciences

Theorem 1.

this many linear regions:

 $O(m^{n_0})$

• A deep rectifier network with L layers of n units each can compute functions with this many linear regions:

> $n_0(L-1)$ _____ n_0

Proof Sketch.

Figure. A layer of rectifier units can fold its input space like a zigzag.

DEEP MAXOUT NETWORKS

Theorem 2.

this many linear regions:

$$O\left(m^{n_0}k^{2n_0}
ight)$$

with this many linear regions:

$$O\left(k^{(L-1)+n_0}
ight)$$

Proof Sketch.

Figure. A layer of maxout units can fold its input space like a folding fan.

Kyunghyun Cho²

²Université de Montréal

Yoshua Bengio^{2,3}

³CIFAR Senior Fellow

DEEP RECTIFIER NETWORKS

• A shallow rectifier neural network with m units can compute functions with at most

(polynomial in m).

(exponential in the depth L).

• A shallow maxout network with m rank-k units can compute functions with at most

(polynomial in m).

• A deep maxout network with L layers of n_0 rank-k units can compute functions

(exponential in the depth L).

VISUALIZING THE BEHAVIOR OF HIDDEN UNITS IN DEEP LAYERS

Figure. Matrix weights $M_{l\,i}^{(I)}$ of the linear maps "input image" \rightarrow "unit activation" computed by a rectifier MLP for various inputs I and units i in different layers l. Deep units react equally to faces from diverse input neighborhoods.

- [5] V. Nair and G. E. Hinton. Rectified linear units improve RBMs. In *Proc. 27th ICML*, 2010.
- linear activations. arXiv:1312.6098, 2013.

Université min de Montréal

• Behavior of hidden units of a rectifier MLP trained on the Toronto Faces Dataset. • The map taking input images to activations of the individual units is piecewise linear. For an input image I the activation of the *i*-th unit at the *l*-th layer is

The network architecture

Three inputs and respective matrix weights of the 48th unit in the 3rd hidden layer producing the same activation of that unit

CONCLUSIONS

• Each layer is able to identify distinct regions of its input space; the composition of layers is able to identify an exponential number of regions.

• Exponential replication of the complexity of functions computed in deeper layers. • Deep networks can compute complicated functions with intrinsic rigidity caused by replications; this may help generalizing to unseen samples.

• The presented framework applicable to many kinds of networks.

REFERENCES

[1] O. Delalleau and Y. Bengio. Shallow vs. deep sum-product networks. In NIPS, 2011

[2] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In *AISTATS*, 2011.

[3] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks. In Proc. 30th ICML, 2013. [4] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS. 201

[6] R. Pascanu, G. Montúfar, and Y. Bengio. On the number of response regions of deep feed forward networks with piece-wise

[7] J. Susskind, A. Anderson, and G. E. Hinton. The Toronto face dataset. UTML TR 2010-001, U. Toronto, 2010. [8] T. Zaslavsky. Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes. AMS, 1975. [9] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. *arXiv*:1311.2901, 2013.

N I Neural Information Processing Systems Foundation