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WHY IS DEPTH IMPORTANT DEEP RECTIFIER NETWORKS VISUALIZING THE BEHAVIOR OF HIDDEN UNITS IN DEEP LAYERS
— Single layer MLPs are universal approximators. Theorem 1. e Behavior of hidden units of a rectifier MLP trained on the Toronto Faces Dataset.
— Deep models can be hard to train. e A shallow rectifier neural network with m units can compute functions with at most | ® The map taking mput images to activations of the individual units 1s piecewise
— Deep models are harder to inspect. this many linear regions: linear. For an input image [ the activation of the ¢-th unit at the [-th layer is
(1)
+ Wealth of empirical evidence for deep models performing better. O(m™) (polynomial in m). i

-+ Intuitions on the brain and thought process. | | | | |
o A deep rectifier network with L layers of n units each can compute functions with

-+ Some theoretical results on the efficiency of deep models.
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this many linear regions.
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Ol | — n'" (exponential in the depth L).
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e We evaluate the complexity of functions computable by shallow and deep teedfor-
ward neural networks with piecewise linear activations in terms of symmetries and | Pproof Sketch.
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the number of linear regions. w7 o7

e We show that deep networks are exponentially more efficient in terms of the

Second Layer

number of linear regions. . . .
N 4 input regions X 4 units

The network architecture

Third Layer

Figure. Decision boundary of rectifier MLPs and the number of linear regions. h; = rect(Wixo + b1) hy = rect(Wah; + by)

Figure. A layer of rectifier units can fold its input space like a zigzag. % =
COMPOSITIONAL PROPERTIES OF FEEDFORWARD NEURAL 3 g _
NETWORKS 2 Three inputs and respective matrix
DEEP MAXOUT NETWORKS 3 R e | G FECTR e weights of the 48th unit in the 3rd
o : - : o 4 input regi 7 unit 4 input regi 7 unit hidden 1 ducing th
e A map F’ identifies two input neighborhoods S and 7' if it maps them to the same tput regions </ units tNput reglons </ umts (et fayet pro fuing © Same
Theorem 2. Matrix weights Normalized weights activation ot that unit

output, ['(S) = F(T).

L , , , , e A shallow maxout network with m rank-k units can compute functions with at most
e Deep networks produce a recursive identification of input neighborhoods.

: . . I . - . e C e,
y ’ . Figure. Matrix weights M l(i) of the linear maps “input 1mage” — “unit activation
nis many Linear regions: : ’ : : C e

y 5 computed by a rectifier MLP for various inputs / and units ¢ in different layers /.
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O (mno kQ”O) (polynomial in m). Deep units react equally to faces from diverse input neighborhoods.

CONCLUSIONS

o A deep maxout network with L layers of ny rank-k units can compute functions

with this many linear regions:

e Each layer 1s able to identify distinct regions of 1ts input space; the composition of
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O ( k(L—1)+no> (exponential in the depth L). layers 1s able to 1dentify an exponential number of regions.

e Exponential replication of the complexity of functions computed 1n deeper layers.

Proof Sketch. . . e
e Deep networks can compute complicated functions with intrinsic rigidity caused
. . . . . . . mk
Figure. Recursive identification of input neighborhoods. R0 R T W by replications; this may help generalizing to unseen samples.
e Intuitively, each layer folds its input space onto itself. o R™ 5 e The presented framework applicable to many kinds of networks.
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