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INTRODUCTION

• It is an interesting question how the representational power of deep artificial
neural networks compares with that of shallow neural networks.

• Furthermore, it is interesting how the representational power of layered networks
compares in the cases of undirected and directed connections.

• A basic question in this respect is whether a given network type can reach any
degree of representation accuracy, when endowed with sufficiently many units.

• Universal approximation has been verified for many types of neural networks,
but has remained an open problem for deep narrow Boltzmann machines.
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Figure. Restricted Boltzmann machine (RBM), deep belief network (DBN), and
deep Boltzmann machine (DBM).

Definition. A deep Boltzmann machine with n0 visible units and L hidden layers of
n1, . . . , nL units is a model of probability distributions of the form

pW,b(x0) =
∑

x1...,xL

1

Z(W,b)
exp(

L−1∑
l=0

x>l Wlxl+1 +
L∑
l=0

x>l bl).

The model is narrow, when all layers have about the same number of units.

OVERVIEW

• At an intuitive level, undirected networks are expected to be more powerful than
directed networks, since “they allow information to flow both ways.”

• This intuition is not straightforward to verify. Feedforward networks can be nat-
urally studied in a sequential way, but undirected networks are more subtle.

• We develop a method to study undirected architectures in a sequential way.

SEQUENTIAL ANALYSIS

• Express the visible probability distribution of a DBM in terms of the distribu-
tions of two smaller DBMs.
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Figure. Composition of two DBMs to form a compound DBM.
Here (r ∗ s) denotes the renormalized entrywise product of r and s.

• The bottom marginal p(x0) is the feedforward pass of the intermediate marginal
(r ∗ s)(x1) by the feedforward map

qW0,b0
(x0|x1) =

1

Z(W0x1 + b0)
exp(x>0 W0x1 + x>0 b0).

• Problem: shared parameters of intermediate marginal and feedforward map.

• Solution: restrict attention to special marginals s from the top DBM to obtain
independent parameters for the feedforward maps.

• In this way, with each additional layer we can transform the visible distribution
by an independent feedforward map.

UNIVERSAL APPROXIMATION

Theorem. A deep and narrow Boltzmann machine with a visible layer of n units and
L hidden layers of n units each is a universal approximator of probability distribu-
tions on the states of the visible layer, provided L is large enough.

• Sufficient condition:

L ≥ 2n
′

2(n′ − log2(n
′)− 1)

,

for any n′ = 2k + k + 1 ≥ n, k ∈ N.

• Necessary condition:

L ≥ 2n − (n + 1)

n(n + 1)
.

• For universal approximation, the first hidden layer must have at least as many
units as the visible layer (minus one).

• Similar results for discriminative and multinomial models.

CONCLUSIONS

• We investigated the compositional structure of DBMs and presented a trick to
separate the activities on the upper part of the network from those on the lower
part of the network.

• Within certain parameter regions, deep Boltzmann machines can be studied as
feedforward networks.

• We showed that deep narrow Boltzmann machines are universal approximators,
and provided upper and lower bounds on the sufficient depth and width.

• In a specific sense, deep narrow Boltzmann machines are at least as powerful as
narrow sigmoid belief networks and restricted Boltzmann machines.

• The methods appear valuable for studying the effects of training undirected net-
works sequentially, from layer to layer.
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