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Abstract

Here we give a contribution intended to help working out the minimal size of Re-
stricted Boltzmann Machines (RBM’s), Deep Belief Networks(DBN’s) or Deep
Boltzmann Machines (DBM’s) which are universal approximators of visible dis-
tributions. The representational power of these objects arises from the marginal-
ization of hidden units, an operation which naturally produces mixtures of condi-
tional distributions. We present results on the representational power of mixture
models with factorizing mixture components, in particulara sharp bound on the
required and sufficient number of mixture components to represent any arbitrary
visible distribution. The methods disclose a class of visible distributions which
require the maximal number of mixture components while all mixture compo-
nents must be atoms. We derive a test of universal approximating properties and
find that an RBM with more than2n − 1 parameters is not always a universal
approximator of distributions on{0, 1}n.

1 Introduction

Lately many efforts have been put into optimizing the size ofstochastic networks which are able to
approximate arbitrary visible distributions as marginalsthrough appropiate choice of their parame-
ters, [1, 2, 3, 4]. These works are constructive, which meansthat a device is constructed which is
shown to be a universal approximator. This yields sufficiency conditions on the number of hidden
units, layers, and parameters.

We first show that ‘naive’ parameter counting yields a lower bound for the number of hidden units
or of parameters of Restricted Boltzmann Machines (RBM’s),Deep Belief Networks (DBN’s) or
Deep Boltzmann Machines (DBM’s) must have in order to be a universal approximators. In this
note we give theoretical results intended to help disclose the minimal size of an RBM’s, a DBN’s, or
a DBM’s which are universal approximators of visible distribution. We present necessary and suf-
ficient conditions for a mixture of factorizing distributions to represent arbitrary distributions. Such
conditions are relevant for understanding the representational power of DBN’s, DBM’s and RBM’s,
since mixtures are naturally produced when marginalizing the hidden units. We think also that the
ideas involved can be expanded to work out classes of distributions which are best represented by
a DBN, a DBM or an RBM. Based on conditions that we derive for mixture models, we derive
conditions for RBM’s which are universal approximators andpropose a test for checking whether
an RBM is a universal approximator.

∗http://personal-homepages.mis.mpg.de/montufar/
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Figure 1: (Taken from [4]). Left: Graph of interactions in anRBM. Middle: Interaction
graph for a DBN withn = 4 visible units (drawn brighter), Right: The interaction graph of
a DBM with 4 visible units. An arbitrary weight can be assigned to every edge. Beside this
connection weights, every node contains an individualbiasweight. Every node represents
a unit which takes value0 or 1 with a probability that depends on the weights. A RBM and
a DBN with the architectures depicted above can approximateany distributions on{0, 1}4

arbitrarily well through appropriate adjustment of parameters ([2] and [3] respectively).
In [4] was even shown that the number of hidden units in the RBMcan be halved, and the
number of hidden layers in the DBN can be roughly halved.

1.1 Deep Belief Networks, Deep Boltzmann Machines and Restricted Boltzmann Machines

A Boltzmann Machine consists of a collection of binary stochastic units, where any pair of units
may interact. The unit set is divided intovisible andhiddenunits. Correspondingly the state is
characterized by a pair(v, h) wherev denotes the state of the visible andh denotes the state of
the hidden units. One is usually interested in distributions on the visible statesv and would like to
generate these as marginals of distributions on the states(v, h). In a general Boltzmann Machine
the interaction graph is allowed to be complete.

A Restricted Boltzmann Machine (RBM) is a special type of Boltzmann Machine, where the graph
describing the interactions is bipartite: Only connections between visible and hidden units appear.
It is not allowed that two visible units or two hidden units interact with each other (see Fig. 1). The
distribution over the states of all RBM units has the form of the Boltzmann distributionp(v, h) ∝
exp(hWv+Bv+Ch), wherev is a binary vector of length equal to the number of visible units, and
h is a binary vector with length equal to the number of hidden units. The parameters of the RBM
are given by the matrixW and the two vectorsB andC.

A Deep Belief Network consists of a chain of layers of units. Only units from neighboring layers
are allowed to be connected, there are no connections withineach layer. The last two layers have
undirected connections between them, while the other layers have connections directed towards the
first layer, the visible layer. The general idea of a DBN is that the interaction structure is rather
deep than shallow, i.e. each hidden layer is not very large compared to the visible layer, as shown in
Fig. 1. Denoting byhk the state vector of the layerk, the joint distribution on the states of all units
of a DBN is of the following form:

P (h0, h1, . . . , hl) = P (hl−1, hl)
l−2
∏

k=0

P (hk|hk+1),

P (hk|hk+1) =

nk
∏

j=1

P (hk
j |hk+1),

P (hk
j |hk+1) ∝ exp

(

hk
j bk

j + hk
j

nk+1
∑

i=1

W k+1
j,i hk+1

i

)

.

A Deep Boltzmann Machine (DBM) has the same interaction structure as a DBN, but with undi-
rected connection weights. The distribution on the states of all units is a Boltzmann-Gibbs distribu-
tion with interaction structure of the form sketched in Fig.1.

An RBM, a DBN or a DBM is a universal approximator of distributions on the states ofn visible
binary units if any distributionpV on {0, 1}n can be arbitrarily well approximated by a marginal
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distribution
pV (v) =

∑

h

p(v, h), (1)

wherep is the joint distribution on the states of all units of that RBM, DBN or DBM with an
appropiate choice of the bias and connecting weights.

We will refer to a DBN that is capable of approximating any distribution on the visible states arbir-
tarily well (through appropriate choice of parameters) as auniversal DBN approximator. Similarly
we will use the denomination universal RBM approximator anduniversal DBM approximator.

1.2 Mixture Models

A probability mixture model consists of a set of distributions which can be written as convex com-
bination of distributions belonging to some further set of distributions, see for instance [5, 6, 7].

In discrete mixture models a family of distributionsE ⊆ P(X ) is given, whereP(X ) is the set of all
joint distributions ofn random variables(X1, . . . , Xn) =: X with sample spaceX = {0, 1}n (we
consider here binary variables). A natural way to understand mixture models, see [7], is to assume
that there is a hidden random variableY with state space{0, 1}m, and that for eachy ∈ {0, 1}m,
a mixture component is given by the conditional distribution of X givenY = y, py ∈ E . If the
random variableY has distributionα, then the joint distribution ofY andX is given by

Pr(Y = y, X = x) = α(y) py(x).

Since the variableY is assumed to be hidden, only the marginal distribution ofX is visible, i.e.,

Pr(X = x) =

m
∑

y=1

α(y) py(x).

Suppose for example that for anyy the mixture componentpy can be chosen exclusively but arbi-
trarily from {δx}x. Then, the convex combinations of the form

∑

y

α(y) δxy
(x)

clearly cover all visible distributions (if there are as many y asx, andα is arbitrary). This is simply
a direct parametrization of the visible distribution in terms of its values on the differentx. On the
other hand, this model has2n − 1 = |X | − 1 parameters (defining an arbitaryα) and it is clear
that a smaller number of mixture components would not sufficeto represent some distributions. Not
even to arbitrarily well approximate some distributions. More generally, a problem arises whenα
cannot be chosen arbitrarily, as is the case when it comes to approximating probability distributions
as marginals as in RBM’s. We will comment on this later.

We will focus on the situation where the mixture weightsα (distribution on the states of the hidden
units) can be chosen arbitrarily, and ask what happens when one allows more general mixture
components than{δx}, e.g. factorizing distributions, as are the conditional distributions of DBN’s
and RBM’s. How many mixture components of this kind are required and sufficient if we want to
represent any distribution? How many are required if we wantto represent only distributions from
some class?

The analysis of the representational power of general mixture models bears many difficulties. How-
ever, in the case of mixtures of factorizing distributions,appealing results can be achieved, as will
be outlined below.

We denote the set of all factorizing distributions (onn binary variables) byE1, and the subset of
strictly positive distributions byE1. We consider here mixtures with components fromE1. This is
the following set:

Mixtm(E1) :=







m
∑

j=1

αjfj : αi ≥ 1,
∑

αi = 1 andfj(x1, . . . , xn) = f1
j (x1) · · · fn

j (xn)







,
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where (x1, . . . , xn) ∈ {0, 1}n =: X . The set of factorizing distributions contains all atoms
{δx}x∈X , and since these are the extremal points of the set of distributions onX , any distribu-
tion can be represented as a mixture of|X | elements, (when the mixture weights can be chosen
arbitrarily).

Does a smaller number of mixture components suffices? What isthe minimal necessary number,
and how does it depend on the number of random variablesn? As we will see it is possible to derive
conditions which also apply in the case of constrainedα. Furthermore, through this analysis we
find a class of distributions which needs the largest number of factorizing mixture components to be
represented and are hence a good choice of distributions to test whether a DBN, RBM or a DBM is
a universal approximator. We will discuss this below.

1.3 Idea for understanding the representational power of mixture models

Consider the mixtures of two factorizing distributions on two binary variables. The set of mixtures
of two fixed elements can be represented as a line connecting the two elements. If the two elements
are not fixed, the set of lines connecting points covers all ofthe probability simplex, see Fig. 2. This
reproduces the content of Theorem 2 in [8].
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Figure 2: Simplex of distributions on two binary variablesP , and the set of factorizing distributions
E1. Arbitrary mixtures of two elements inE1 are given by a straight line connecting the two points.
In the case of constrained mixture weights, only some pointson that straight line are covered by the
mixture model, and not all points onE1 are necessarily covered.

The situation becomes more complicated forn larger than 2, since the dimension of the set of fac-
torizing distributions,n, increases only as the logarithm of the dimension of the probability simplex,
2n − 1. However, a closer inspection reveals that mixtures of two elements lying in the intervals
[δ(0,1), δ(1,1)] and[δ(1,0), δ(0,0)], which in fact belong toE1, already suffice to cover all the probabil-
ity simplex. The sets of distributions described by these intervals have the special property that they
comprend all possible distributions with support sets{(0, 1), (1, 1)} and{(1, 0), (0, 0)} and that the
union of those two sets isX . That observation is elaborated in [9] for arbitraryn, where it is shown
that all distributions with support restricted to some special sets are contained in the independence
model and that2n/2 such sets cover all the state space{0, 1}n for arbitraryn. This can be directly
used to decompose arbitrary distributions as mixtures of independent distributions. We discuss those
results in Section 3.

2 Lower bound on the number of parameters

An intuitively simple, but important observation is the following:

Lemma 1. For an RBM, a DBM and a DBN to approximate any visible distribution on{0, 1}n ar-
bitrarily well, necessarily the number of parameters has tobe at least equal to2n−1, the dimension
of the set of all distributions on{0, 1}n.

This is a straight forward generalization of the result for DBN’s presented in [4]. It is only needed
that in an RBM and in a DBM the set of joint distributions on allunits is a manifold (an exponential
family), the closure of which contains all distributions arising for infinite parameters. In fact the
proof given in [4] can be seen to work for more general networks wich produces visible distributions
via marginalization, e.g. Boltzmann Machines with higher order interactions and the like.
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2.1 Lower bound on the number of layers and units

The number of free parameters in a DBN and in a DBM with layers of constant size issquare of
the width of each layer× number of hidden layers+ number of units, which for k hidden layers
of width n is k(n2 + n) + n. On the other hand, the number of parameters needed to describe all
distributions on{0, 1}n is 2n − 1. Therefore, a lower bound on the number of hidden layers of a
universal DBN approximator and a universal DBM approximator is given by2n

−1−n
n(n+1) , (which yields

2n − 1 free parameters). This makes a number of2n
−n−1
n+1 hidden units. Otherwise the number of

parameters would not be sufficient. Asymptotically, this bound is of order2
n

n2 hidden layers and2
n

n
hidden units.

An RBM with n visible units andm hidden units containsn + m + n ·m parameters. We therefore
have the conditionn + m + n · m ≥ 2n − 1 in order to have a universal approximator. This yields
m ≥ 2n

−n−1
n+1 hidden units, which is of order2

n

n
.

Corollary 2. A DBN and a DBM with layers of widthn+ c must have at least a number of layers of
order 2n

n2 (and 2n

n
hidden units) in order to be a universal approximator of distributions onn visible

units. An RBM must have a number of order2n

n
hidden units in order to be a universal approximator

of distributions onn visible units.

This in particular solves a problem raised by Sutskever and Hinton in [1]: Can it be shown that a deep
and narrow (with widthn + c) network of≪ 2n/n2 layers cannot approximate every distribution?

Interestingly we see that in both cases, deep and shallow architectures, the bound on the number of
hidden units is exactly the same. Minimizing the number of hidden units

∑

l nl ( nl is the number of
units in layerl) of a network with pairwise interactions between neighboring layers, while keeping
the number of parameters

∑

l nl−1nl +
∑

l nl constant to the minimal necessary value2n−1 yields
something of the form: two hidden layers of size

√
2n, (and2 ·

√
2n hidden units).

However, RBM’s and DBN’s, make important and distinctive restrictions on the way the param-
eters are used, (only pairwise interactions, interactionsonly among units in neighboring layers).
Therefore, the bound derived above is not necessarily achievable.

For a better recognition of the virtues and drawbacks of the two architectures (deep and narrow,
broad and shallow) it is necessary to understand if this theoretical bounds are actually achievable for
them.

In the remainder of this note we review mixture models from the perspective of hidden causes
(hidden units), and derive facts and obstructions in the representability of arbitrary distributions as
mixtures of factorizing distributions. As we shall see, obstructions which apply in the case of arbi-
trary mixture weights already can be used to derive obstructions in the case of constrained mixture
weights, and improve bounds for the number of hidden units and hidden layers required to have a
RBM and a DBN or DBM be a universal approximator.

3 Constructions and Mixture Models

Here we want to discuss the to date best known bounds on the minimal number of hidden units and
layers required to have a universal RBM and DBN approximatorand relations to more deep results
on mixture models.

In [2] was shown that any distribution on{0, 1}n can be arbitrarily well approximated by the
marginal distribution of an RBM. And the smallest to date known sufficient number of hidden units
is the following (given in [4] based on a refinement of [2]):

Theorem 1 in [4] (Reduced RBM’s which are universal approximators). Any distributionp on binary
vectors of lengthn can be approximated arbitrarily well by an RBM withk − 1 hidden units, where
k is the minimal number of pairs of binary vectors, such that the two vectors in each pair differ in
exactly one entry, and such that the support set ofp is contained in the union of these pairs.

This result allowed a refinement of the construction presented in [3], and the derivation of the to date
smallest universal DBN approximator:
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Theorem 3 in [4] (Reduced DBN’s which are universal approximators). Letn = 2b

2 +b, b ∈ N, b ≥
1. A DBN containing 2n

2(n−b) hidden layers of widthn is a universal approximator of distributions
on{0, 1}n.

A central tool used in the proofs of these statements is that the set of factorizing distributions on
{0, 1}n contains all distributions with support given by an arbitrary pair of vectors in{0, 1}n which
differ in exactly one entry.

The pairs of binary vectors differing in exactly one entry are in fact the only sets for which any distri-
bution with support therein is contained in the set of factorizing distributions. This is a consequence
of results in [9] which require a mathematical framework that we omit at this point.

Proposition 3. (Support sets of factorizing distributions, [9]) Y ⊆ {0, 1}n is the support set
of a factorizing distribution on{0, 1}n if and only ifY constitutes the vertices of a face of then-
dimensional unit cube. The set of factorizing distributions contains every distribution with support
Y if and only ifY has cardinality one, or consists of two binary vectors differing in exactly one
entry.

Now, a mixture of2n/2 arbitrary distributions with support on disjonit pairs of vectors differing in
exactly one entry yields any arbitrary distribution on{0, 1}n if the mixture weights can be chosen
arbitrarily, which yields the following result. See Fig. 3.

Theorem 4. (Sufficient number of mixture components, [9])Any disribution on{0, 1}n can be
written as mixture of2n−1 factorizing distributions, given that the mixture weightsare not con-
strained.

This result tells us that in the case of arbitrary mixture weights, (the distribution on the hidden states
can be made arbitrary), a number of2n−1 hidden states suffices.

We now show that Theorem 4 in fact is optimal, and hence, that the representation of arbitrarily
distributions indeed requires a huge amonut of mixture components from the set of factorizing dis-
tributions:

Theorem 5. (Minimal sufficient number of mixture components, [9]) For the mixture model
with mixture components from the set of factorizing distributions to approximate any distribution
on {0, 1}n arbitrarily well, it is necessary that the number of mixturecomponents is at least2n−1.
Distributions with support given byZ, defined as the set of vertices of then-cube taking the same
color in a 2-coloring, see Fig. 3, require that the mixture contains only mixture components which
are atoms.

Proof of Theorem 5. DefineZ as the set of vertices of then-cube which are assigned the same
color in a2-coloring of the graph of then-cube. For example all vectors with an even number of
ones,Z := {x ∈ X :

∑

i xi = 2k} defines a2-coloring of then-cube, since for any edge of the
n-cube with vertices{x1, x2} we have thatx1 andx2 differ in exactly one entry, and thus no edge
is contained inZ. Clearly,|Z| = 2n/2. Furthermore, no subset ofZ of cardinality larger than one
corresponds to the vertices of a face of then-cube, and hence is not the support of a factorizing
distribution, Proposition 3. To see this regard that any such face would contain an edge, whose
vertices would be inZ, in contradiction to its definition.

Consider any distributionp with supportZ. If p is written as a mixture of factorizing distributions,
p =

∑

i αifi, then everyfi (for which αi > 0) must have support contained inZ and it must
correspond to a face of then-cube, Proposition 3. Hence,|suppfi| = 1, ∀fi for which αi > 0.
Clearly also, at least|Z| = 2n/2 components are needed.

To finish notice thatMixtm(E1) ⊇ P impliesMixtm(E1) = Mixtm(E1) = P. Hence, the repre-
sentability of all strictly positive distributions (leaving aside the not strictly positive distributions)
also requires2n/2 mixture components.

There exist distributions on{0, 1}n which cannot be written as a mixture of less than2n−1 elements
from the independence modelE1, even if the mixture weights are arbitrary.

Furthermore the components in the mixture are unique and given by atoms, i.e. distributions which
put mass one on one visible state, and mass 0 on all other visible states.
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Figure 3: The graph of the3 and4 dimensional cubes. The faces of these objects are the support sets
of factorizing distributions on{0, 1}3 and{0, 1}4. Every distribution with support in the vertices
of any edge is a factorizing distribution. These support sets are denotedS-sets. Minimal coverings
of X using disjoint edges-sets are shown. Also a setZ of elements with the same color in a 2-
coloring. Distributions with support in such a set need the maximal number of factorizing mixture
components, Theorem 5.

If the visible distribution is a mixture of independent distributions, (Pr(·|Y ) is an independent
distribution on the visible states for any value ofY ), thenY must be a variable which takes at least
2n−1 different states. In case thatY takes not more than the specified2n−1 different states it is
furthermore required that the distribution ofY can be choosen arbitrarily.

Hence we see that for a DBN or an RBM to represent or approximate distributions with support
given by aZ defined as above, all conditional visible distributions fora hidden state which occurs
with positive probabilityh, must be atoms.

The above quoted result (from [4]) about univesal RBM approximators tells us that2n−1−1 hidden
units suffice. Regard that2n−1−1 hidden units correspond to22n−1

−1 different hidden states. There
are two reasons why a universal RBM approximator requires a large amount of hidden units:

1. The distribution on the hidden states cannot be chosen arbitrarily.

2. The factorizing mixture components of the RBM share the parametersB, and differ only
throughWh, for the different statesh of the hidden units.

It seems that in the construction of the universal RBM approximator a hidden unit is used for the
generation of each mixture component. We think that understanding this issue can help improv-
ing the constructions of RBM’s and DBN’s, or showing that thepresent constructions are already
optimal.

4 Test of universal approximating properties

The distributions with support setZ as defined above (vertices of the graph of then-dimensional
unit cube which are assigned the same color in a 2-coloring) are particularily difficult to represent
as mixtures of independent distributions. We have seen thatany representation of these distributions
as mixtures of factorizing distributions must consist of mixture components which are atoms, and
hence that2n/2 components are required.

It is therefore appealing that testing the representability of distributions with supportZ is a good
way to show that a stochastic network is not a universal approximator.

Here we test the representability of distributions with supportZ for different sizes of an RBM. To
do so first observe that the marginal visible distribution ofa RBM with parametersW, B, C is given
by

pV =
∑

h

exp(hWv + Bv + Ch)/
∑

v,h

exp(hWv + Bv + Ch). (2)

From the results of the last section we have that ifpV is requested to be a distribution with support
Z, then for any fixedh the function onv exp(hWv + Bv + Ch) must be proportional to an atom,
i.e.:

hWv + Bv + Ch =

{

λv′ , v = v′

−∞, v 6= v′.
(3)
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This yields that in order to have the right hand side representing distributions with support onZ a
series of equations onW, B, C must be solvable:

(h|1)

(

W C
B 0

)(

v
1

)

!
=







−∞ −∞ · · ·
λ1,1 −∞ · · ·
−∞ λ2,1 −∞
λ1,k1 −∞ · · ·






=: λ, (4)

whereh =







h1

...
h2m






is a list of all states of the hidden units, andv =







v1

...
v2n







T

is a list of all visible

states. The matrix in the RHS has2n columns, (each one corresponding to a visible state vector),
and2m rows, (each one corresponding to a hidden state vector). In each row only one value may be
different from−∞, (since all mixture components must be atoms, corresponding to eq. 3), and the
sum of the values differing from−∞ in the columni sums up toλi, whereexp(

∑

l λi,l) ∝ pv(vi).

This equation can be reformulated as a usual linear equationon the variables contained inW, B, C
using properties of matrix equations:

(

(

v
1

)T

⊗ (h|1)

)

vec

(

W C
B 0

)

= vecλ, (5)

wherevecM is the vector which arises putting all columns ofM in a single column, and⊗ denotes
the usual Kronecker product of matrices.

Preliminary results

For simplicity we tested whether the left hand side of eq. 5 can produce a RHS of the form ofλ for
the special case where allλi,k are set to0, and all other values are only required to be different from
0 and have common sign. This is a problem of linear programmingwhich we treated with Matlab
and found the following preliminary results on small systems:

n 2 2 3 4 3 3 4 4
m 2 3 2 2 3 4 3 5

satisfies parameter boundyes yes yes no yes yes yes yes
equation is solvable yes yes no no yes yes yes yes

In the case of3 visible and2 hidden units we have3 + 2 + 6 = 11 parameters. The lower bound on
the number of parameters derived in the first section is23 − 1 = 7. Hence we see that although that
bound is satisfied, the RBM fails to be a universal approximator.

5 Conclusion

Parameter counting can be used to compute lower bounds on thenumber of hidden units and layers of
universal DBN approximators, universal RBM approximators, and universal DBM approximators.
We provided insights on mixture models which allow to analyze the representational power DBN’s
and RBM’s. Using this we showed that the bounds derived by parameter counting are not allways
achievable.

We showed that a property of the set of factorizing distributions (that it contains all distributions
with support given by any pair of vectors differing in exactly one entry) used in the derivation of the
smallest to date known universal RBM approximators and universal DBN approximators [4] cannot
be further enlarged.

We found a similarity between the sufficient number of mixture components in the mixture model of
factorizing distributions, and the sufficient number of hidden for a RBM and a DBN to be a univesal
approximator, which is worth to be further investigated. Wealso presented necessary numbers for
the mixutre model, which could imply necessary numbers for RBM’s and DBN’s.

A natural next step is to derive results for more general mixture models, e.g. for the case when the
mixture weights belong to a certain model.
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