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Abstract

Here we give a contribution intended to help working out thieimal size of Re-
stricted Boltzmann Machines (RBM’s), Deep Belief Netwo(REBN’s) or Deep
Boltzmann Machines (DBM's) which are universal approxiaratof visible dis-
tributions. The representational power of these objedsesifrom the marginal-
ization of hidden units, an operation which naturally proglmixtures of condi-
tional distributions. We present results on the represemia power of mixture
models with factorizing mixture components, in particidasharp bound on the
required and sufficient number of mixture components toasgmt any arbitrary
visible distribution. The methods disclose a class of Wsitistributions which
require the maximal number of mixture components while aktare compo-
nents must be atoms. We derive a test of universal approxighptoperties and
find that an RBM with more thag™ — 1 parameters is not always a universal
approximator of distributions of0, 1}".

1 Introduction

Lately many efforts have been put into optimizing the sizstothastic networks which are able to
approximate arbitrary visible distributions as margirtat®ugh appropiate choice of their parame-
ters, [1, 2, 3, 4]. These works are constructive, which melaatsa device is constructed which is

shown to be a universal approximator. This yields sufficgecmnditions on the number of hidden

units, layers, and parameters.

We first show that ‘naive’ parameter counting yields a loweutd for the number of hidden units
or of parameters of Restricted Boltzmann Machines (RBMXep Belief Networks (DBN's) or
Deep Boltzmann Machines (DBM's) must have in order to be aamsal approximators. In this
note we give theoretical results intended to help disclbeertinimal size of an RBM'’s, a DBN's, or
a DBM'’s which are universal approximators of visible distiion. We present necessary and suf-
ficient conditions for a mixture of factorizing distributie to represent arbitrary distributions. Such
conditions are relevant for understanding the repredentdtpower of DBN's, DBM’s and RBM’s,
since mixtures are naturally produced when marginalizirghidden units. We think also that the
ideas involved can be expanded to work out classes of disiwitis which are best represented by
a DBN, a DBM or an RBM. Based on conditions that we derive foxtome models, we derive
conditions for RBM’s which are universal approximators gmdpose a test for checking whether
an RBM is a universal approximator.

*http://personal-homepages.mis.mpg.de/montufar/



/

AW
a

./

X2

\
o
)
v;

Y,
O
Y
WA

\VA

%
W
XA
4
Jq7
0V

9
00
\\

Y
7
a

KX
WX

e

0
Y/

A
’;’»'I.
e
Y.

PR

Q¥

Figure 1: (Taken from [4]). Left: Graph of interactions in RBM. Middle: Interaction
graph for a DBN withn = 4 visible units (drawn brighter), Right: The interaction gheof

a DBM with 4 visible units. An arbitrary weight can be assigne every edge. Beside this
connection weights, every node contains an individhiggweight. Every node represents
a unit which takes valu@or 1 with a probability that depends on the weights. A RBM and
a DBN with the architectures depicted above can approxiamatalistributions o0, 1}4
arbitrarily well through appropriate adjustment of paréene ([2] and [3] respectively).
In [4] was even shown that the number of hidden units in the RBM be halved, and the
number of hidden layers in the DBN can be roughly halved.

1.1 Deep Belief Networks, Deep Boltzmann Machines and Regtted Boltzmann Machines

A Boltzmann Machine consists of a collection of binary stastic units, where any pair of units
may interact. The unit set is divided intasible and hiddenunits. Correspondingly the state is
characterized by a paiw, h) wherev denotes the state of the visible ahdlenotes the state of
the hidden units. One is usually interested in distribugion the visible states and would like to
generate these as marginals of distributions on the stajé3. In a general Boltzmann Machine
the interaction graph is allowed to be complete.

A Restricted Boltzmann Machine (RBM) is a special type oftBmlann Machine, where the graph
describing the interactions is bipartite: Only connecibetween visible and hidden units appear.
It is not allowed that two visible units or two hidden unitséract with each other (see Fig. 1). The
distribution over the states of all RBM units has the formhe Boltzmann distributiop(v, h)
exp(hWv+ Bv+ Ch), wherev is a binary vector of length equal to the number of visiblgsrand

h is a binary vector with length equal to the number of hiddeitsuriThe parameters of the RBM
are given by the matrixi” and the two vector® andC.

A Deep Belief Network consists of a chain of layers of unitsilyQunits from neighboring layers
are allowed to be connected, there are no connections watith layer. The last two layers have
undirected connections between them, while the other $dyave connections directed towards the
first layer, the visible layer. The general idea of a DBN ist tthee interaction structure is rather
deep than shallow, i.e. each hidden layer is not very larggpewed to the visible layer, as shown in
Fig. 1. Denoting by:* the state vector of the layét the joint distribution on the states of all units
of a DBN is of the following form:
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A Deep Boltzmann Machine (DBM) has the same interactioncttine as a DBN, but with undi-
rected connection weights. The distribution on the statedl anits is a Boltzmann-Gibbs distribu-
tion with interaction structure of the form sketched in Fig.

An RBM, a DBN or a DBM is a universal approximator of distritmrts on the states of visible
binary units if any distributiomy, on {0, 1}™ can be arbitrarily well approximated by a marginal



distribution
pV(U) = Zp(va h)v (1)
h
wherep is the joint distribution on the states of all units of that RBDBN or DBM with an
appropiate choice of the bias and connecting weights.

We will refer to a DBN that is capable of approximating anytidligition on the visible states arbir-
tarily well (through appropriate choice of parameters) asigersal DBN approximator. Similarly
we will use the denomination universal RBM approximator antversal DBM approximator.

1.2 Mixture Models

A probability mixture model consists of a set of distributsowhich can be written as convex com-
bination of distributions belonging to some further setistributions, see for instance [5, 6, 7].

In discrete mixture models a family of distributiofisC P(X) is given, whereP(X) is the set of alll
joint distributions ofn random variable$X;, ..., X,,) =: X with sample spac& = {0,1}" (we
consider here binary variables). A natural way to undetstaixture models, see [7], is to assume
that there is a hidden random variahbfewith state spacg0, 1}™, and that for eacly € {0,1}™,

a mixture component is given by the conditional distribotaf X givenY = y, p, € £. If the
random variabl&” has distributiony, then the joint distribution o¥” and X is given by

Pr(Y =y, X =) = a(y) py(z).
Since the variabl&” is assumed to be hidden, only the marginal distributioX d§ visible, i.e.,

Pr(X =x)= Z a(y) py(z).

y=1

Suppose for example that for agythe mixture componern, can be chosen exclusively but arbi-
trarily from {4, }.. Then, the convex combinations of the form

> a(y) bz, (z)

Y

clearly cover all visible distributions (if there are as marasz, anda is arbitrary). This is simply
a direct parametrization of the visible distribution inrtex of its values on the different On the
other hand, this model h& — 1 = |X| — 1 parameters (defining an arbitasy and it is clear
that a smaller number of mixture components would not sufficepresent some distributions. Not
even to arbitrarily well approximate some distributionsorel generally, a problem arises when
cannot be chosen arbitrarily, as is the case when it comggpt@gimating probability distributions
as marginals as in RBM's. We will comment on this later.

We will focus on the situation where the mixture weightédistribution on the states of the hidden
units) can be chosen arbitrarily, and ask what happens whenattows more general mixture
components thafd, }, e.g. factorizing distributions, as are the conditionatritbutions of DBN'’s
and RBM’s. How many mixture components of this kind are regghiand sufficient if we want to
represent any distribution? How many are required if we viamépresent only distributions from
some class?

The analysis of the representational power of general mextwodels bears many difficulties. How-
ever, in the case of mixtures of factorizing distributioappealing results can be achieved, as will
be outlined below.

We denote the set of all factorizing distributions (etbinary variables) by!, and the subset of

strictly positive distributions by!. We consider here mixtures with components fréh This is
the following set:

Mixt™ (E1) := Zajfj tay > I,Zai =landf;(z1,....20) = fj(x1) - [T (zn) ¢,
j=1



where (z1,...,z,) € {0,1}" =: X. The set of factorizing distributions contains all atoms
{d.}zecx, and since these are the extremal points of the set of diitsits onX’, any distribu-
tion can be represented as a mixturel&f elements, (when the mixture weights can be chosen
arbitrarily).

Does a smaller number of mixture components suffices? Whaeisninimal necessary number,
and how does it depend on the number of random variai#ess we will see it is possible to derive
conditions which also apply in the case of constrainedFurthermore, through this analysis we
find a class of distributions which needs the largest numbfctorizing mixture components to be
represented and are hence a good choice of distributioesttavhether a DBN, RBM or a DBM is
a universal approximator. We will discuss this below.

1.3 Idea for understanding the representational power of miture models

Consider the mixtures of two factorizing distributions sotbinary variables. The set of mixtures
of two fixed elements can be represented as a line connebtrtgvd elements. If the two elements
are not fixed, the set of lines connecting points covers alheprobability simplex, see Fig. 2. This
reproduces the content of Theorem 2 in [8].
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Figure 2: Simplex of distributions on two binary variabf@sand the set of factorizing distributions
ET. Arbitrary mixtures of two elements ifi’ are given by a straight line connecting the two points.
In the case of constrained mixture weights, only some paointhat straight line are covered by the
mixture model, and not all points &t are necessarily covered.

The situation becomes more complicated-fdarger than 2, since the dimension of the set of fac-
torizing distributionsp, increases only as the logarithm of the dimension of the glvdity simplex,

2™ — 1. However, a closer inspection reveals that mixtures of tlements lying in the intervals
[6(0,1), (1,17 @and[d(10), d(0,0)], Which in fact belong t&’!, already suffice to cover all the probabil-
ity simplex. The sets of distributions described by theserirals have the special property that they
comprend all possible distributions with support §gt5 1), (1, 1)} and{(1,0), (0,0)} and that the
union of those two sets i&. That observation is elaborated in [9] for arbitrarywhere it is shown
that all distributions with support restricted to some $plesets are contained in the independence
model and tha2™ /2 such sets cover all the state spd6el }" for arbitraryn. This can be directly
used to decompose arbitrary distributions as mixturesagpendent distributions. We discuss those
results in Section 3.

2 Lower bound on the number of parameters

An intuitively simple, but important observation is theléaling:

Lemma 1. For an RBM, a DBM and a DBN to approximate any visible disttiba on{0, 1}"™ ar-
bitrarily well, necessarily the number of parameters habeat least equal t8” — 1, the dimension
of the set of all distributions 00, 1}".

This is a straight forward generalization of the result f@NDs presented in [4]. It is only needed
thatin an RBM and in a DBM the set of joint distributions onwatiits is a manifold (an exponential
family), the closure of which contains all distributionssang for infinite parameters. In fact the
proof given in [4] can be seen to work for more general netwarich produces visible distributions
via marginalization, e.g. Boltzmann Machines with highetey interactions and the like.



2.1 Lower bound on the number of layers and units

The number of free parameters in a DBN and in a DBM with laydrsomstant size isquare of
the width of each layex number of hidden layers number of unitswhich for k£ hidden layers
of width n is k(n? + n) + n. On the other hand, the number of parameters needed to loesdiri
distributions on{0,1}" is 2" — 1. Therefore, a lower bound on the number of hidden layers of a

universal DBN approximator and a universal DBM approxim&agiven by%:@}ﬁ?’ (which yields

2" — 1 free parameters). This makes a numbe?—"g;ffl—*l hidden units. Otherwise the number of

parameters would not be sufficient. Asymptotically, thisibd is of orderfl—z hidden layers anani
hidden units.

An RBM with n visible units andn hidden units contains -+ m + n - m parameters. We therefore
have the conditiom + m + n - m > 2" — 1 in order to have a universal approximator. This yields
m > £=n=1 hidden units, which is of orde;.

Corollary 2. A DBN and a DBM with layers of width+ ¢ must have at least a number of layers of
orderi—z (and% hidden units) in order to be a universal approximator of digitions onn visible

units. An RBM must have a number of orénérhidden units in order to be a universal approximator
of distributions om visible units.

This in particular solves a problem raised by Sutskever antbH in [1]: Can it be shown that a deep
and narrow (with widthn + ¢) network of< 2" /n? layers cannot approximate every distribution?

Interestingly we see that in both cases, deep and shalldvitectures, the bound on the number of
hidden units is exactly the same. Minimizing the number dflen unitsy _, n; (n; is the number of
units in layer!) of a network with pairwise interactions between neighbgtayers, while keeping
the number of paramete}s, n;_1n; + ), n; constant to the minimal necessary valiie- 1 yields

something of the form: two hidden layers of sig@€", (and2 - v/2" hidden units).

However, RBM’s and DBN'’s, make important and distinctivetrietions on the way the param-
eters are used, (only pairwise interactions, interactmmyg among units in neighboring layers).
Therefore, the bound derived above is not necessarily eaiblie.

For a better recognition of the virtues and drawbacks of W drchitectures (deep and narrow,
broad and shallow) it is necessary to understand if thisrdteal bounds are actually achievable for
them.

In the remainder of this note we review mixture models from pgerspective of hidden causes
(hidden units), and derive facts and obstructions in theessmtability of arbitrary distributions as
mixtures of factorizing distributions. As we shall see, tobstions which apply in the case of arbi-
trary mixture weights already can be used to derive obstmgtin the case of constrained mixture
weights, and improve bounds for the number of hidden unitstddden layers required to have a
RBM and a DBN or DBM be a universal approximator.

3 Constructions and Mixture Models

Here we want to discuss the to date best known bounds on thmalinumber of hidden units and
layers required to have a universal RBM and DBN approximaibak relations to more deep results
on mixture models.

In [2] was shown that any distribution ofD, 1}™ can be arbitrarily well approximated by the
marginal distribution of an RBM. And the smallest to date wncsufficient number of hidden units
is the following (given in [4] based on a refinement of [2]):

Theorem 1in [4] (Reduced RBM’s which are universal approximato#shy distributionp on binary
vectors of lengt can be approximated arbitrarily well by an RBM with— 1 hidden units, where
k is the minimal number of pairs of binary vectors, such thattihio vectors in each pair differ in
exactly one entry, and such that the support setigfcontained in the union of these pairs.

This result allowed a refinement of the construction pressbimt [3], and the derivation of the to date
smallest universal DBN approximator:



Theorem 3in [4] (Reduced DBN’s which are universal approximatoisgtn = 22—b +b,beN,b>
1. ?ODf}N containingQ(fL—_b) hidden layers of widtu is a universal approximator of distributions
on{0,1}™.

A central tool used in the proofs of these statements is tteaset of factorizing distributions on
{0, 1}" contains all distributions with support given by an arbigrpair of vectors in{0, 1}" which
differ in exactly one entry.

The pairs of binary vectors differing in exactly one entrg mrfact the only sets for which any distri-
bution with support therein is contained in the set of fazing distributions. This is a consequence
of results in [9] which require a mathematical framework tva omit at this point.

Proposition 3. (Support sets of factorizing distributions [9]) Y C {0,1}" is the support set
of a factorizing distribution o{0,1}" if and only if ) constitutes the vertices of a face of the
dimensional unit cube. The set of factorizing distributi@ontains every distribution with support
Y if and only if Y has cardinality one, or consists of two binary vectors diffg in exactly one
entry.

Now, a mixture of2™ /2 arbitrary distributions with support on disjonit pairs afotors differing in
exactly one entry yields any arbitrary distribution fi 1}™ if the mixture weights can be chosen
arbitrarily, which yields the following result. See Fig. 3.

Theorem 4. (Sufficient number of mixture components, [9])Any disribution on{0, 1}"™ can be
written as mixture oR”~! factorizing distributions, given that the mixture weighai® not con-
strained.

This result tells us that in the case of arbitrary mixturegi#s, (the distribution on the hidden states
can be made arbitrary), a number23f-! hidden states suffices.

We now show that Theorem 4 in fact is optimal, and hence, timtrépresentation of arbitrarily
distributions indeed requires a huge amonut of mixture aomepts from the set of factorizing dis-
tributions:

Theorem 5. (Minimal sufficient number of mixture components [9]) For the mixture model
with mixture components from the set of factorizing distitins to approximate any distribution
on {0, 1} arbitrarily well, it is necessary that the number of mixtw@mponents is at leagt'—*.
Distributions with support given by, defined as the set of vertices of theube taking the same
color in a 2-coloring, see Fig. 3, require that the mixturentains only mixture components which
are atoms.

Proof of Theorem 5. Define Z as the set of vertices of the-cube which are assigned the same
color in a2-coloring of the graph of the-cube. For example all vectors with an even number of
ones,Z := {z € X : ) . x; = 2k} defines &-coloring of then-cube, since for any edge of the
n-cube with verticeqx;, x2} we have thatr; andz, differ in exactly one entry, and thus no edge
is contained inZ. Clearly,|Z| = 2™ /2. Furthermore, no subset &f of cardinality larger than one
corresponds to the vertices of a face of theube, and hence is not the support of a factorizing
distribution, Proposition 3. To see this regard that anyhsiace would contain an edge, whose
vertices would be irZ, in contradiction to its definition.

Consider any distributiop with supportZ. If p is written as a mixture of factorizing distributions,
p = >, a;fi, then everyf; (for which a; > 0) must have support contained i and it must
correspond to a face of thecube, Proposition 3. Henceguppf;| = 1,Vf; for which «;; > 0.
Clearly also, at leastZ| = 2" /2 components are needed.

To finish notice thaMixt™ (£') D P implies Mixt™(£1) = Mixt™(£1) = P. Hence, the repre-
sentability of all strictly positive distributions (leayg aside the not strictly positive distributions)
also require€™ /2 mixture components. O

There exist distributions off), 1}" which cannot be written as a mixture of less th&n! elements
from the independence modgl, even if the mixture weights are arbitrary.

Furthermore the components in the mixture are unique arehdiy atoms, i.e. distributions which
put mass one on one visible state, and mass 0 on all othelevidides.
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Figure 3: The graph of theand4 dimensional cubes. The faces of these objects are the dugepor
of factorizing distributions o{0, 1} and {0, 1}*. Every distribution with support in the vertices
of any edge is a factorizing distribution. These suppos ae¢ denoted-sets. Minimal coverings
of X using disjoint edges-sets are shown. Also a%aedf elements with the same color in a 2-
coloring. Distributions with support in such a set need tleximal number of factorizing mixture
components, Theorem 5.

If the visible distribution is a mixture of independent disttions, Pr(-|Y") is an independent
distribution on the visible states for any valuelof, thenY must be a variable which takes at least
27— different states. In case th&t takes not more than the specifieti—! different states it is
furthermore required that the distribution Bfcan be choosen arbitrarily.

Hence we see that for a DBN or an RBM to represent or approgimigtributions with support
given by aZ defined as above, all conditional visible distributionsddnidden state which occurs
with positive probabilityh, must be atoms.

The above quoted result (from [4]) about univesal RBM apjmators tells us tha?™~! — 1 hidden

units suffice. Regard that—! —1 hidden units correspond 88" '~ different hidden states. There
are two reasons why a universal RBM approximator requirasgelamount of hidden units:

1. The distribution on the hidden states cannot be chosétnaaity.

2. The factorizing mixture components of the RBM share thapeters3, and differ only
throughW h, for the different states of the hidden units.

It seems that in the construction of the universal RBM apjnaxor a hidden unit is used for the

generation of each mixture component. We think that undeding this issue can help improv-

ing the constructions of RBM’s and DBN's, or showing that firesent constructions are already
optimal.

4 Test of universal approximating properties

The distributions with support sef as defined above (vertices of the graph of thdimensional
unit cube which are assigned the same color in a 2-colorirgparticularily difficult to represent
as mixtures of independent distributions. We have seerathatepresentation of these distributions
as mixtures of factorizing distributions must consist oktare components which are atoms, and
hence tha2™ /2 components are required.

It is therefore appealing that testing the representgtfitdistributions with supporf is a good
way to show that a stochastic network is not a universal apprator.

Here we test the representability of distributions withson 2 for different sizes of an RBM. To
do so first observe that the marginal visible distributiom &®BM with parameter®/, B, C' is given
by
py = Z exp(hWv + Bv+ Ch)/ Z exp(hWov + Bv + Ch). (2)
h v,h

From the results of the last section we have thatifis requested to be a distribution with support
Z, then for any fixedh the function orw exp(hWwv + Bv + C'h) must be proportional to an atom,
ie.

Ao, 0 =10

th+Bv+Ch{ (3

—00,v # v,



This yields that in order to have the right hand side repr@sgistributions with support o a
series of equations div, B, C' must be solvable:

—00 —00 .-
w Cc\ (v | M —oc0 .-
)\Lkl —00 e
hq (% T
whereh = : is a list of all states of the hidden units, and- : is a list of all visible
hgm Van

states. The matrix in the RHS ha% columns, (each one corresponding to a visible state vector)
and2™ rows, (each one corresponding to a hidden state vectoradim ®w only one value may be
different from—oo, (since all mixture components must be atoms, correspgndirg. 3), and the
sum of the values differing from oo in the columni sums up to\;, whereexp(>, Ai ;) o< p, (v;).

This equation can be reformulated as a usual linear equatidhe variables contained Iy, B, C
using properties of matrix equations:

((%)T ® (mn)) vec (g %) = vec\, (5)

wherevec M is the vector which arises putting all columnsidfin a single column, ang denotes
the usual Kronecker product of matrices.

Preliminary results

For simplicity we tested whether the left hand side of eq.rbmaduce a RHS of the form of for

the special case where all* are set td), and all other values are only required to be different from
0 and have common sign. This is a problem of linear programminigh we treated with Matlab
and found the following preliminary results on small syssem

n 2 2 3 4 3 3 4 4

m 2 3 2 2 3 4 3 5

satisfies parameter boundyes yes yes no yes yes yes yes
equationissolvable | yes yes no no yes yes yes VYEs

In the case 08 visible and2 hidden units we havg+ 2 4+ 6 = 11 parameters. The lower bound on
the number of parameters derived in the first secti@t is 1 = 7. Hence we see that although that
bound is satisfied, the RBM fails to be a universal approximat

5 Conclusion

Parameter counting can be used to compute lower bounds anmhiger of hidden units and layers of
universal DBN approximators, universal RBM approximatarsd universal DBM approximators.
We provided insights on mixture models which allow to analtze representational power DBN'’s
and RBM’s. Using this we showed that the bounds derived bgrpater counting are not allways
achievable.

We showed that a property of the set of factorizing distidng (that it contains all distributions
with support given by any pair of vectors differing in exgathe entry) used in the derivation of the
smallest to date known universal RBM approximators andersal DBN approximators [4] cannot
be further enlarged.

We found a similarity between the sufficient number of migtaomponents in the mixture model of
factorizing distributions, and the sufficient number ofded for a RBM and a DBN to be a univesal
approximator, which is worth to be further investigated. 8i&o0 presented necessary numbers for
the mixutre model, which could imply necessary numbers Bk and DBN'’s.

A natural next step is to derive results for more general m&models, e.g. for the case when the
mixture weights belong to a certain model.
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