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Die Verleihung des akademischen Grades erfolgt mit Bestehen der
Verteidigung am 17.10.2012

mit dem Gesamtprädikat magna cum laude.





Contents

Introduction 1

Part I. Exponential Families and Mixture Models

1 Mixtures of Discrete Exponential Families 13
1.1 Exponential Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 S-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Mixtures of Hierarchical Models . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.A Proofs and Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.B Modes of Binary Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . 31
1.C Hadamard Matrices and Related Exponential Families . . . . . . . . . . . . . . 42

2 Convex Subsets, Secants, Geodesics and Convex Hulls 49
2.1 Convex Exponential and α-Families . . . . . . . . . . . . . . . . . . . . . . . 49
2.2 Secants of Exponential Families . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3 α-Geodesics and α-Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4 Convex Hulls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Part II. Restricted Boltzmann Machines and Deep Belief Networks

3 Universal Approximation Results 73
3.1 Restricted Boltzmann Machines . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 Deep Belief Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.A Lower Bounds on the Number of Parameters . . . . . . . . . . . . . . . . . . . 81
3.B A Test of Universal Approximation . . . . . . . . . . . . . . . . . . . . . . . . 83
3.C A Numerical Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Expressive Power and Approximation Errors 87
4.1 Partition Models and Restricted Mixture Models . . . . . . . . . . . . . . . . . 89
4.2 Restricted Boltzmann Machines . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3 Deep Belief Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.A A Comparison of Restricted Boltzmann Machines and Mixture Models . . . . . 101
4.B The Models RBM3,2 and RBM4,3 . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Model Design 117
5.1 Restricted Boltzmann Machines and Deep Belief Networks . . . . . . . . . . . 117
5.2 An Approach to Reduce the Parameter Space of Learning Systems . . . . . . . 120
5.A Proofs and Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Outlook 131





List of Figures

1.1 The independence model for two binary variables and a pentagonal exponential
family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Graphical representation of the mixture model of an independence model . . . 16
1.3 Factor graph representation of the mixture model of a pairwise interaction model 25
1.4 Approximation errors of Mixt3(E1

3,bin) . . . . . . . . . . . . . . . . . . . . . . 39
1.5 Bimodal mixtures of product distributions of two binary variables . . . . . . . 40

2.1 Doubly ruled, ruled, and unruled 2-dimensional exponential families . . . . . . 51
2.2 Convex support of the smallest exponential family on {1, . . . , 6} with a generic

tetra-secant line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3 Exponential geodesics approaching all point measures . . . . . . . . . . . . . . 61
2.4 Exponential families which are the graph of a convex function . . . . . . . . . 66
2.5 A two-dimensional exponential family on {1, . . . , 5} . . . . . . . . . . . . . . 68
2.6 An exponential family with sufficient statistics vectors in the boundary of its

convex support, which is not contained in the convex hull of its boundary . . . 70

3.1 Graphical representation of a Restricted Boltzmann Machine . . . . . . . . . . 73
3.2 Graphical representation of a Deep Belief Network . . . . . . . . . . . . . . . 75
3.3 Probability distributions sampled at random from RBM2,4 and DBN2,2,2 . . . . 84
3.4 Random one-dimensional submodels of RBMs and DBNs with two visible units 85
3.5 Random one-dimensional submodels of RBMs and DBNs with three visible units. 86

4.1 A small partition model and a mixture of product distributions with disjoint sup-
ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Images sampled from rI-projections into partition models with two blocks of
various cardinalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Approximation errors of small Restricted Boltzmann Machines . . . . . . . . . 96
4.4 Hyperplane arrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.5 Kullback-Leibler maps for RBM3,2 . . . . . . . . . . . . . . . . . . . . . . . 110
4.6 Histogram of the KL-divergence from random targets to RBM3,2 . . . . . . . . 111
4.7 Approximation errors of RBM3,2 and Mixt3(E1

3 ) . . . . . . . . . . . . . . . . 112
4.8 Histogram of the KL-divergence from random targets to RBM4,3 . . . . . . . . 115

5.1 Two-dimensional exponential mixture models and deterministic functions . . . 122
5.2 Learning curves on neuromanifolds of stochastic dynamics . . . . . . . . . . . 124
5.3 Level surfaces in reward maximization on two-dimensional models . . . . . . . 125
5.4 Diagram of two simple neural networks . . . . . . . . . . . . . . . . . . . . . 125
5.5 Set of (4 × 2)-stochastic matrices generated by a standard neural network and

corresponding set for a proposed low-dimensional model . . . . . . . . . . . . 126
5.6 Histogram comparing the performance of ordinary and natural gradient learning

methods in reward maximization . . . . . . . . . . . . . . . . . . . . . . . . . 126



Figures 1.2, 1.3, 3.1, 3.2, 4.1, 4.4, and 5.4 were created using PSTricks. All other figures were
created in MATLAB and annotated in LATEX.



Introduction

Motivation and Previous Results

This thesis is about the representational power of discrete statistical models underlying artificial
learning machines. The main contribution of this work is to the estimation of the number of
variables needed to obtain sufficiently rich models and learning systems that comply prescribed
learning capabilities. An emphasis is placed on the models of type Restricted Boltzmann Ma-
chine and Deep Belief Network, which have played a key role in the quest for Artificial Intel-
ligence (AI) in the last few years. The representational power of statistical models is directly
related to goodness of fit and model complexity in model selection, and to geometric and com-
binatorial properties; such as the dimension, boundary, convex hull, and approximation errors
of the set of probability distributions that they comprise. On that account, this work follows a
geometric-combinatorial approach. The geometric-combinatorial approach to statistical models
and learning theory is notably represented by the theory of information geometry [117, 4, 8, 10]
developed by S. Amari and coworkers, and the emerging field algebraic statistics [41, 48]. It
has been applied successfully in experimental design, statistical inference, hypothesis testing,
neural networks, cognitive systems, statistical physics and computational biology.

The central goal of the machine learning research field Deep Learning is to obtain abstract
representations of data that can be used for AI-related tasks; including data analysis, classifi-
cation, pattern recognition, perception, machine vision and speech recognition. Deep neural
networks emulate cognitive processes in the human brain through several levels of non-linear
information processing and hierarchical feature extraction [115, 19]. Training deep architec-
tures is difficult; for example, exact maximum likelihood (ML) gradient methods for classical
Boltzmann Machines [2, 59, 9] require exceedingly expensive evaluation of expectation func-
tions. Several alternative learning algorithms and deep architectures have been proposed to
overcome these problems. In 2006 G. E. Hinton, S. Osindero and Y. Teh [58] proposed an effi-
cient greedy, layer-wise, unsupervised training algorithm for a new architecture: the Deep Belief
Network (DBN). Their method represented a breakthrough that boosted many results and suc-
cessful applications in a number of tasks; e.g., dimensionality reduction, information retrieval,
speech recognition, modeling, machine vision, classification. See Y. Bengio [17] for a complete
overview. The DBN has a graphical representation with visible nodes at the bottom of a network
with several layers of binary units1, where only units in subsequent layers are connected and all
connections are directed towards the visible layer, except for the connections between the deep-
est two layers, which are undirected. The DBN is inherently related to the Restricted Boltzmann
Machine (RBM) (P. Smolensky [107], Y. Freund and D. Haussler [45], G. E. Hinton [56]). The
RBM is a learning system with one hidden and one visible layer of binary stochastic units, and
a complete bipartite undirected graph of interactions between them. The RBM has an efficient
unsupervised training algorithm called Contrastive Divergence (CD) [56, 25]. The RBM and
its training algorithms are used to progressively train the parameters of a DBN [58, 18]. Train-

1Many extensions and generalizations of DBNs have been proposed, including models with continuous variables.
We focus on the standard, most important, binary DBN.
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ing is based on the conditional independence assumptions (all visible units are conditionally
independent given the state of the hidden units and vice versa) represented by the connectivity
constraints (see [84] for comments on this).

A fundamental question is whether deep learning systems (i.e., systems involving several lay-
ers of variables) are better than shallow systems at solving AI-related tasks. This motivates the
following question: What classes of marginal probability distributions can be represented by
deep and shallow networks, respectively? For RBMs and DBNs the various notions of model
dimension, complexity, and errors are far from being fully understood. The sets of probability
distributions that can be represented by these models build intricate geometric objects depend-
ing on the number of hidden units and layers that they contain. Y. Freund and D. Haussler [45],
and N. Le Roux and Y. Bengio [72] showed that RBMs are universal approximators, provided
they have enough hidden units. Recently M. Aoyagi [11] computed bounds for the asymptotic
generalization error of RBMs (disregarding some of the model parameters and assuming the true
probability distributions are contained in the model), within S. Watanabe’s framework of singu-
lar learning theory [119]. A. Cueto, J. Morton and B. Sturmfels [31] used tropical geometry, a
newly developed method of algebraic geometry, to show that the RBM model has the expected
dimension, (i.e., it has dimension equal to the number of model parameters or to the dimension
of the ambient probability simplex, whichever is smaller), if the number of hidden units is small
enough or large enough. One of the most essential questions on DBN research has been the
following: Does a DBN exist which can approximate any distribution on the states of the visible
units through appropriate choice of parameters? Furthermore: If such DBN universal approx-
imators exist, what is their minimal size? What is the tradeoff between the size of the hidden
layers and the number of hidden layers? I. Sutskever and G. E. Hinton [110] showed that a very
deep and narrow DBN, consisting of ∼ 3 · 2n hidden layers of width (n + 1), can approximate
any distribution on {0, 1}n arbitrarily well. N. Le Roux and Y. Bengio [73] improved this bound
showing that ∼ 2n

n layers of width n suffice. In Chapter 3 we improve all bounds for RBMs and
DBNs and thereby resolve a conjecture that was posed in [73].

Given the restricted connectivities of DBNs and RBMs, universal representation of proba-
bility distributions necessarily requires a number of hidden units which is exponential in the
number of visible units, in correspondence to the dimension of the visible probability simplex
(2n − 1 for n visible binary units). In applications it is desired to represent only some parts
of the probability simplex. In particular, real world systems often confine to a relatively small
set of their state space (think of natural images or written English). Hence it is important to
understand the representational power of learning systems in terms of selected classes of prob-
ability distributions. In Chapters 4 and 5 we study submodels of RBMs and DBNs and present
suitable classes of probability distributions that can be learned by these systems depending on
the number of hidden variables that they contain. Furthermore, we bound the model approxima-
tion errors when approximating arbitrary target probability distributions and target probability
distributions from selected classes.

Models with latent variables describe probability distributions of the following form: p(v|θ) =∑
h p(v|h; θ)p(h|θ), where h is the state of the hidden variables and θ is the model parame-

ter. They can be understood as mixture distributions with mixture weights p(h|θ) and mixture
components p(·|h; θ) determined by the model parameter θ and restricted through the model as-
sumptions. In a mixture model the only restriction is that h belongs to a fixed set and all p(·|h; θ)
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belong to a common model. We exploit the relationships between latent variable models and
mixture models. The problem of representing probability distributions as mixtures with specific
properties has a long history. A prominent example is a result by de Finetti which states that infi-
nite exchangeable distributions are mixtures of independent and identically distributed Bernoulli
sequences2. Mixture models find numerous applications; e.g., modeling of heterogeneous pop-
ulations, clustering and machine learning. There is an abundant literature on the subject, for
instance [75, 80, 114, 20]. The expectation-maximization (EM) algorithms [33] provide tools
for density estimation. There is a diversity of interesting results on mixture models; e.g., disper-
sion of mixtures [104], the method of moments [92], parameter identifiability [22].

The expressive power of mixture models is not sufficiently well understood and continues to
be an extremely active field of research. How many mixture components from a discrete expo-
nential family (log-linear model) are required to represent or to approximate distributions from
a more complicated family? How many latent states are required in order to explain a stochastic
experiment? This problem can be formulated as follows: Let Mixtm(M) denote the set of con-
vex combinations of any m elements from the setM and let conv(M) denote the convex hull
ofM. Given two exponential families E and E ′ with a finite state space X and E ′ ⊆ conv(E),
find the natural number f = f(E , E ′) that satisfies the relation Mixtm(E) ⊇ E ′ if and only if
m ≥ f . In convex analysis the number f is referred to as the Carathéodory number of E ′ with
respect to E . The case where E ′ equals the entire set of probability distributions P(X ) corre-
sponds to finding the smallest m (if there is any) for which the mixture model is a universal
approximator. An associated problem is to find the Carathéodory number of E , i.e., the smallest
m for which Mixtm(E) = conv(E). If E is the set of product distributions of n variables, then
f(E , E ′) is the maximum non-negative outer-product rank of the n-way tables of probabilities
(tensors) described by E ′. For the set of product distributions with two variables E1(X1×X2), it
is well known that m ≥ min{|X1|, |X2|} implies Mixtm(E1(X1×X2)) = P , see [103, 7]. This
observation is equivalent to stating that every non-negative k × l matrix can be written as the
non-negative sum of at most min{k, l} rank-one matrices. It is also known that if |X1|, |X2| > 2,
then Mixt2(E1(X1 × X2)) 6= P , see [50]. Hence min{|X1|, |X2|} ≥ f(E1(X1 × X2),P) > 2
when |X1|, |X2| > 2. In Chapter 1 we generalize these results; for instance, we provide exact
values for f(E1(X × · · · × X ),P).

The boundary of an exponential family is a union of exponential families supported by charac-
teristic subsets of its state space. Computing the support sets is a difficult combinatorial problem
equivalent to describing the face lattice of the convex support polytope [16] and has interesting
relations to oriented matroids and coding theory, see [64, 96]. If an entire face of the probability
simplex is contained in a statistical model, we call the support of that face an S-set of the model
(S for simplex). The S-sets of exponential families are simplex faces of their convex supports.
Hence the Carathéodory number is bounded from above by the cardinality of a covering of the
vertices of the convex support polytope by simplex faces. In Chapter 1 we derive results for
this kind of coverings for marginal polytopes of hierarchical models. An important idea in this
thesis is to investigate models arising from mixing distributions supported by extreme points
(sets) of exponential families, in analogy to Choquet theory. The analysis of extreme points is a
powerful tool to the study convex geometric objects (think of ergodic decompositions of station-
ary processes, pure states in quantum mechanics, deterministic policies, or just Carathéodory’s

2P. Diaconis [36] shows approximation results in the case of finite exchangeable sequences.
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theorem). In Chapter 2 we investigate a variety of related topics, and Chapters 3 and 4 deal
with mixtures of product distributions with disjoint supports, which are mixtures based at the
boundary of an independence model.

Main Results and Outline

In the following we give an informal description of the main results of this thesis.

Part I. Exponential Families and Mixture Models

Chapter 1 (Mixtures of Discrete Exponential Families). A combinatorial approach to the rep-
resentational power of mixtures of discrete multivariate exponential families is proposed based
on combinatorics of convex polytopes and coding theory. We introduce a special class of sup-
port sets of statistical models, the S-sets, and relate the Carathéodory numbers to coverings and
packings of support sets.

The problem of finding the minimal number of mixture components from an exponential fam-
ily needed to represent any probability distribution is intrinsically related to the geometry of the
exponential family. In particular, the dimension of the set of mixtures must equal the dimension
of the ambient probability simplex. The most important special case is the mixture of product
distributions. Until recently it was a long standing problem whether the set of mixtures of m
products of n binary distributions had the expected dimension min{n ·m+ (m−1), 2n−1} for
all m and n. M. Catalisano, A. Geramita, and A. Gimigliano [26] proved that this model has the
expected dimension, unless n = 4 and m = 3. For mixtures of non-binary product distributions
the problem is still open.

In the main results of this chapter we find bounds on the Carathéodory numbers of hierarchical
models expressed in terms of the number of variables and the cardinality of their state spaces.
For product distributions we establish the following:

The smallest m for which any probability distribution on {1, . . . , q}n can be represented as the
mixture of m product distributions is qn−1 (where q is any prime power).

The specified number qn−1 is larger than expected; in the binary case the mixture model has
the same dimension as the probability simplex when m ≥ 2n

(n+1) , but universal approximation
requires m ≥ 2n−1 and at least (n+ 1)2n−1 − 1 parameters. Mixtures of binary product distri-
butions are important in our analysis of RBMs and DBNs in Chapters 3 and 4.

For probability distributions involving interactions among any k variables we show that:

The smallest m for which any probability distribution on {0, 1}n can be represented as the
mixture of m distributions from the k-interaction model is not more than 2n−(k+1)(1 + 1

(2k−1)
).

This result is derived from coverings of the vertex set of the convex support of k-interaction
models by simplex faces. A full characterization of the simplex faces and the computation of the
smallest packing for general k and for non-binary variables remains a challenging problem. The
mixture models of k-interaction models have a hierarchical representation with a latent variable.
This allows us to define a stochastic dynamics on the states of its variables. By our result, it is
possible to control the expressive power of such generalized stochastic networks which include

4



higher-order interactions.

In addition to the results outlined above, we derive bounds for the minimal number of mix-
tures of binary product distributions needed to represent k-interaction models. Furthermore,
we study the number of modes of mixtures of binary product distributions (in the graph of the
n-hypercube), derive inequality constraints for these models, and bound the volume of their
complement in the probability simplex from below.

Chapter 2 (Convex Subsets, Secants, Geodesics and Convex Hulls). We explore geometric
properties of exponential families motivated by the following problem: Find the smallest m for
which Mixtm(E) = conv(E). This problem gives rise to numerous related questions, including
the following: How much do we learn about mixtures of exponential families when we study
only the mixtures with basis points at the boundary of the exponential families? What is the
maximal dimension of a convex subset of an exponential family? Many interesting topics arose
in the process of developing tools to solve the just motivated questions. This chapter contains a
variety of individual results. The implications of some results to the main subject of this thesis
are not fully elaborated at this moment and should be understood as a basis for future research.
In Section 2.1 we elaborate on convex subsets of exponential families and relate them to the
convex supports. Furthermore, we characterize convex α-families, extending previous results
by F. Matúš and N. Ay for exponential families. Section 2.2 studies secant lines of exponential
families and shows that:

The intersections of lines and exponential families encode portions of their support set lattices
and their convex subfamilies.

These results imply, in particular, that an intersection index encodes the existence of convex
decompositions of exponential families (more precisely, foliations into simplices of a certain
dimension), and that an exponential family which intersects a generic line at (d + 1) points
contains every bd2c-dimensional face of the probability simplex (or equals the full probability
simplex). For example, any binary independence model intersects a line at either 0, 1, 2 or ∞
points and is an n-ruled manifold. Furthermore, the 2-bit independence model is not a minimal
surface.

In Section 2.4 we use these new methods to compute the Carathéodory number of some classes
of non-hierarchical exponential families, derive sufficient and necessary conditions for exponen-
tial families to be contained in the convex hull of their boundaries, and analyze the convex hulls
of α-geodesics. We investigate α-mixtures of exponential families targeting an interpolation
between exponential families and their mixture models.

Part II. Restricted Boltzmann Machines and Deep Belief Networks

Chapter 3 (Universal Approximation Results for RBMs and DBNs). This chapter studies the
problem of universal approximation of probability distributions by neural networks of type Re-
stricted Boltzmann Machine and Deep Belief Network. We show that:

An RBM with 2n

2 − 1 hidden units is capable of approximating any distribution on {0, 1}n
arbitrarily well as its marginal visible distribution.

5
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This RBM has (n + 1)2n−1 − 1 parameters. This result improves the previously known upper
bounds for the minimal size of an RBM universal approximator [72, 73]. Furthermore, we show:

A DBN with 2n

2(n−log2(n)) hidden layers of size n is capable of approximating any distribution on
{0, 1}n arbitrarily well as its marginal visible distribution.

Such a DBN contains roughly (n + 1)2n−1 parameters. This result improves the previously
known upper bounds for the minimal size of a narrow DBN universal approximator [110, 72, 73].

At this moment we don’t know if there exist RBM or DBN universal approximators with
fewer parameters. It is striking that our upper bounds for the minimal number of parameters in
RBM and narrow DBN universal approximators coincide, and furthermore, that these bounds
coincide with the exact minimal number of parameters of a universal approximating mixture of
binary product distributions (computed in Chapter 1).

In addition to the above mentioned results, we show that an RBM with three visible and two
hidden units is not a universal approximator, although the model has the same dimension as
the ambient probability simplex. In turn, the smallest RBM universal approximator with three
visible units has three hidden units, corresponding to our bound. For completeness we give a
formal discussion of parameter counting bounds for the minimal size of universal approxima-
tors. In Appendix 3.C we compare the parametrizations of the probability simplex which arise
from RBM and DBN universal approximators.

Chapter 4 (Expressive Power and Approximation Errors of RBMs and DBNs). This chapter
presents a hierarchy of explicit classes of probability distributions that RBMs and DBNs can
represent expressed in terms of the number of hidden units and hidden layers of the RBMs and
DBNs. These classes include large collections of mixtures of product distributions with disjoint
supports. If the number of hidden units and layers is large enough, these submodels fill the entire
probability simplex in accordance with the results from Chapter 3. The geometry of these sub-
models is easier to study, while they still capture important properties of the models. Using these
results we are able—for the first time—to bound the maximal approximation errors of RBMs
and DBNs.

The maximal Kullback-Leibler (KL) divergence from any points in the probability simplex to
a modelM is a measure of the model errors. The problem of maximizing the KL-divergence
to an exponential family was originally proposed by N. Ay [12] and has been treated by N. Ay,
F. Matúš and J. Rauh. In Section 4.1 we show upper and lower bounds for the maximal KL-
divergence in the case of mixtures of product distributions. In the case of RBMs we show:

It is always possible to reduce the error of an RBM with n visible and m hidden units to at most
(n− 1)− log(m+ 1) + 0.1.

Computer experiments showed that the bound captures the order of magnitude of the true ap-
proximation error, at least for small RBMs. In particular, for the RBM with three visible and
two hidden units the KL-distances from any three-dimensional face of the probability simplex
to the model and to the proposed submodel agree, and our bound is exact. We show that the
dimension of the RBM model strictly increases with the number of hidden units until reaching
the dimension of the ambient simplex, which slightly extends results from [31]. In the case of
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DBNs we show:

It is always possible to reduce the error of a DBN with n visible units and l hidden layers of
width n to at most n− log(2l log(l)).

Our approach can be generalized to treat DBNs with layers of different widths. Our results give
a theoretical basis for selecting the size of an RBM and a DBN which accounts for a desired
model error tolerance. On the other hand, learning may not always find the best approximation,
resulting in an error that may well exceed our bound. We believe that our bound for the ap-
proximation errors of DBNs can be improved through a more detailed analysis of the proposed
submodels.

In addition to the above results, we study the maximal number of modes of distributions from
RBM models and show that the smallest mixture model of product distributions which contains
an RBM has a much larger dimension:

In essentially all cases of practical interest, an exponentially larger mixture model, requiring an
exponentially larger number of parameters, is required to represent the distributions that can be
represented by the RBM.

We examine two particular RBM models in detail. We find that the RBM with three visible
and two hidden units, however full dimensional, can’t represent any distribution with four strong
local maxima (locality with respect to the Hamming distance on {0, 1}n) and provide evidence
showing that the uniform distribution is not an inner point of that model.

Chapter 5 (Model Design). The universal approximation problem, as treated in Chapter 3, is to
reduce the maximal KL-divergence from arbitrary distributions in the probability simplex to a
modelM, max{D(p‖M) : p ∈ P}, to zero as a function of the hyperparameters of the model
(the number of hidden units and layers for the classes RBM and DBN). The problem can be
treated for specific classes of target distributions p ∈ G ⊆ P . The resulting problem is called
Model Design. In many cases there are no explicit descriptions of the interesting classes of tar-
gets. In fact, one of the motivations for training DBNs is to obtain simpler representations of the
target distributions. Often however, certain properties of the targets are known in advance.

In Section 5.1 we study approximation errors when approximating distributions from partic-
ular classes of interest. For example, we consider the problem of representing deterministic
kernels by RBMs. Section 5.2 discusses how to reduce the search space of learning systems.
We use exponential families to parametrize objects other than probability distributions in such a
way that the resulting model is compatible with optimization of predetermined classes of func-
tions defined on those objects. We demonstrate the idea with low-dimensional models of policy
matrices which contain all deterministic policies and show the efficiency of natural gradient
methods within a reward maximization setting. Our construction can be used to optimize any
linear program within a two-dimensional search space. This works particularly well if the graph
of the feasible region (the polytope defined through the linear inequality constraints) allows a
Hamiltonian cycle, as is the case for the assignment problem and the Birkhoff polytope of dou-
bly stochastic matrices.

This thesis collects and extends the author’s work [14, 86, 85, 87, 88]. Numerical experiments
comprise custom implementation of a variety of algorithms; including Contrastive Divergence
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methods, Expectation-Maximization algorithms, ordinary and natural-gradient parameter up-
dates.

Notation

In the following we introduce the basic notation used in this work. In the various chapters we
introduce more specific concepts. For example, exponential families are defined in Chapter 1
and Restricted Boltzmann Machines in Chapter 3.

We consider vectors of discrete and finite valued random variables. If X is a random variable
taking values on a set X , then X is called the state space (sample space) of X . A collection
of n ∈ N random variables Xi with state spaces Xi for i ∈ [n] := {1, . . . , n} is gathered into
a random vector X = (X1, . . . , Xn) with state vectors (x1, . . . , xn) in the product state space
X := ×ni=1Xi. We usually denote x a state of the variable X . We call the variable Xi a q-ary
variable when Xi has cardinality q ∈ N. In this case Xi can be identified with the set {1, . . . , q}.
Sometimes we find it more convenient to identify Xi with the set Fq = Z/qZ = {0, . . . , q − 1}
endowed with its algebraic structure. Given some X = ×i∈[n]Xi and any λ ⊆ [n] we denote
xλ an element of ×i∈λXi or the natural restriction of some x ∈ X to the coordinates i ∈ λ. If
λ = {i, i+1, . . . , i+k} we also write xi+ki for xλ. The expression [xλ] represents a cylinder set
of dimension (n− |λ|). It consists of all y ∈ X with yλ = xλ. In the case of n binary variables,
the cylinder sets are in one-to-one correspondence to the sets of vertices incident to faces of the
n-dimensional unit cube {(r1, . . . , rn) ∈ Rn : 0 ≤ ri ≤ 1 ∀i} and we also call them cubical sets
or faces of the unit n-cube, which is justified from the combinatorial point of view. The lattice
of cubical sets in {0, 1}n is denoted Cn.

The set of real valued functions on X is denoted RX . An element f ∈ Rx is a vector with
entries f(x) ∈ R for all x ∈ X . For any Y ⊆ X we denote 1Y the indicator function defined by
1Y(x) = 1 if x ∈ Y and 1Y(x) = 0 otherwise. The constant unity function 1X is abbreviated
by 1. The support of a function f ∈ RX is the set supp(f) := {x ∈ X : f(x) 6= 0}.

A probability distribution on X is an element p ∈ RX with p(x) ≥ 0 for all x ∈ X and∑
x∈X p(x) = 1. A point measure (Dirac delta distribution) δx is a probability distribution with

δx(x) = 1. For any Y ⊆ X we denote uY the uniform distribution on Y , i.e., uY = 1Y/|Y|.
The set of all probability distributions on X is denoted P(X ) or just P if X is clear. We also
consider the set of strictly positive probability distributions

P(X ) := {p ∈ RX : p(x) > 0,
∑
x∈X

p(x) = 1} .

P is the closure of P in the topology of RX . A probability distribution p ∈ P(X ) has full sup-
port if p(x) > 0 for all x ∈ X . The set P(X ) is a (|X | − 1)-dimensional simplex (the convex
hull of the point measures δx with x ∈ X ), and hence it is also called a probability simplex. A
polytope is the convex hull of a finite number of points in Rd. A simplex is a d-dimensional
polytope which is the convex hull of (d+ 1) points. A probability simplex can be written as the
disjoint union of smaller (relatively open) probability simplices as P(X ) = ·∪Y⊆X ,Y6=∅P(Y).
We abbreviate P({0, 1}n) by Pn or, when more clarity is convenient, by Pn,bin.

8



Given a probability distribution pn of n variables, the marginal distribution pk of a subset of
the variables {1, . . . , k} ⊆ {1, . . . , n} is defined by

pk(x1, . . . , xk) =
∑

y ∈ ×i∈[n]Xi :
yi = xi ∀i ∈ [k]

pn(y1, . . . , yn) ∀(x1, . . . , xk) ∈ ×i∈[k]Xi .

Multivariate distributions are sometimes conveniently written as an n-way table with entries
px1,...,xn = p(x1, . . . , xn).

A statistical modelM is just a subset of P . UsuallyM is endowed with some further struc-
ture. We consider mostly parametric models for which we are given some parameter space Θ
(usually equal to Rd for some d ∈ N) and a map Θ→ P; θ 7→ pθ withM = {pθ ∈ P : θ ∈ Θ}.

There are several notions of distance between probability distributions and, in turn, for the
error in the representation (approximation) of a probability distribution. One may use the in-
duced distance of the Euclidian space of real valued functions RX . However, from the point of
view of information theory, a more meaningful distance notion for probability distributions is
the Kullback-Leibler divergence (KL-divergence):

D(p‖q) :=
∑
x∈X

p(x) log
p(x)

q(x)
.

We use the basis-2 logarithm. The KL-divergence is non-negative and vanishes if and only if
p = q. If the support of q does not contain the support of p it is defined as∞. The summands
with p(x) = 0 are set to 0. The KL-divergence is not symmetric but it has nice information
theoretic properties (see [71, 29]).

The Hamming distance between two vectors x, y ∈ ×i∈[n]Xi is defined as dH(x, y) := |{i ∈
[n] : xi 6= yi}|. An n-bit binary code is just a subset of {0, 1}n. We denote by Z+,n (or just Z+

if n is clear) the binary code of length n consisting of vectors with an even number of entries
equal to one:

Z+,n :=
{
x ∈ X = {0, 1}n :

∑
i∈[n]

xi = 0 mod 2
}
.

Similarly Z−,n denotes the set of binary vectors with an odd number of entries equal to one.
The distance between any pair x, y ∈ Z± satisfies dH(x, y) = 0 mod 2. We find it sometimes
useful to write the condition on the parity of a vector x as

∏
i∈[n](−1)xi = ±1.

Given any subsetM of the Euclidian space Rd, the affine hull aff(M) is the smallest affine
space in Rd that containsM. The convex hull conv(M) consists of all convex combinations of
finite sets of points fromM, i.e., points of the form

∑k
i=1 αipi for some k ∈ N,

∑k
i=1 αi = 1,

αi ≥ 0 and pi ∈M for all i ∈ [k].

The expression “w.l.o.g.” is an abbreviation for “without loss of generality”, “s.t.” abbreviates
“such that”, and “iff” stands for “if and only if”.
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Part I.
Exponential Families and Mixture Models





1 Mixtures of Discrete Exponential Families
In this chapter we use the combinatorics of support sets of distributions contained in the clo-
sures of discrete exponential families to assess the expressive power of their mixture models.
This combinatorial approach appears natural in the light of recent advances on boundaries of ex-
ponential families [64, 65, 66, 96] and the algebraic perspective on graphical models proposed
in [48].

Given a statistical model M ⊆ P and a natural number m ∈ N, the m-mixture of M is
the set of probability distributions that can be written as the convex combination of at most m
distributions fromM:

Mixtm(M) :=
{ m∑
j=1

α(j)fj : fj ∈M, α(j) ≥ 0 ∀j and
∑m

j=1
α(j) = 1

}
.

The numbers α(j) ∈ R are called mixture weights and the summands fj mixture components.
In this chapter we search for the smallest m for which Mixtm(E) ⊇ E ′ for two exponential
families E and E ′ ⊆ conv(E).

Section 1.1 fixes notation and reviews basic facts about exponential families, their support
sets and convex support polytopes. In Section 1.2 we discuss the support sets of faces of the
probability simplex which are entirely contained in the closure of statistical models. We refer
to these sets as S-sets of the statistical model. Section 1.3 analyzes coverings of the state space
of hierarchical models using S-sets and contains the main results of this chapter; a description
of necessary and sufficient number of mixture components from independence models and bi-
nary k-interaction models to represent arbitrary probability distributions or larger k-interaction
models. Some proofs and details are shifted to Appendix 1.A, in order to improve readability
of the main results. In Appendix 1.B we elaborate on the idea that the support sets of distribu-
tions within a mixture model provide information about the modes (topography) of distributions
within the mixture model. We use this idea to bound the volume of complements of mixture
models of binary independence models. Appendix 1.C analyzes submatrices of Hadamard ma-
trices and properties of the support sets of exponential families that can be defined using them.

1.1 Exponential Families

There is an abundant literature on exponential families, see [10, 42, 23] for reference works.
This section introduces notation and important concepts for the formulation of our results in the
next sections.

Definition 1.1.1. Given a strictly positive function ν ∈ RX> and a linear subspace V ⊆ RX , we
define an exponential family Eν,V on X as the image of the following map:

expν : V → P(X ) ; f 7→ ν exp(f)/
∑
x∈X

ν(x) exp(f(x)) .



1 Mixtures of Discrete Exponential Families

In particular an exponential family is a manifold. The differential geometry of exponential
families has been studied within information geometry, see [6] for a reference text. Within alge-
braic statistics exponential families are described by toric varieties and are called toric-models
(when V is generated by integer-valued functions), see [48, 109]. Exponential families are also
referred to as log-linear models.

The function ν is called a reference measure of Eν,V . There is no loss of generality in assum-
ing that ν has full support X . It is well known that Eν,V = Eν′,V ′ if and only if ν′∑

x ν
′(x) ∈ Eν,V

and V ′ = V mod 1. The results from this chapter are independent of the the chosen reference
measures. We refer to the space T = (V + R1)/1 as the tangent space of Eν,V , following the
denotation proposed by Rauh [95]. There exists an isomorphism between T and Tp(Eν,V ), the
differential geometric tangent space at any point p ∈ Eν,V .

A matrix A ∈ Rd×X with row span Rd · A = V is called a sufficient statistics of Eν,V . The
rows of A, denoted A1, A2, . . . , Ad, are functions on X called observables. We write Ax for
the column vector (A1(x), A2(x), . . . , Ad(x))> for any x ∈ X . We use subscripts x ∈ X to
signify that Ax is a column, and subscripts i ∈ [d] to signify that Ai is a row. The probability
distributions in Eν,V can be given as:

pθ(x) = ν(x) exp(θ>Ax − ψθ) ∀x ∈ X ∀θ ∈ Rd , (1.1)

where ψθ := log(
∑

y ν(y) exp(θ>Ay)) ensures that the entries of pθ add up to one. The vector
θ is called the natural parameter of pθ. For convenience we always denote a sufficient statis-
tics by A and we write Eν,A and Eν,V interchangeably if A is a sufficient statistics of Eν,V .
Furthermore, we omit the subscripts ν, V,A and write just E whenever there is no risk of con-
fusion. The parametrization given in eq. (1.1) depends on A, but the exponential family only
depends on (V + R1)/1. The map θ 7→ pθ is one to one and E has dimension d if and only if
{A1, . . . , Ad,1} are linearly independent (see [16, 10]). There is no loss of generality in includ-
ing 1 as an observable, Ad+1 = 1, and we do so throughout our considerations.

The probability distributions contained in an exponential family are strictly positive; they are
contained in the open simplexP . An exponential family onX approaches the boundary ofP(X )
at particular subsets P(Y) ⊂ ∂P(X ) with Y ⊂ X . We will discuss them further below. The
topological closure of E in RX is denoted E . In general this contains probability distributions
which are not strictly positive. We call ∂E := E \ E the boundary of E .

In the multivariate caseX = (X1, . . . , Xn) the state space X is a Cartesian product×i∈[n]Xi
and x = (x1, . . . , xn). A common choice of the spaces V defining EV are spaces generated by
functions of a limited number of variables. Given a collection of sets ∆ ⊆ 2[n] we consider the
following linear space of functions:

V∆ :=
{∑
λ∈∆

fλ ∈ RX : fλ(xλ, x[n]\λ) = fλ(xλ, x̃[n]\λ) ∀x, x̃ ∈ X , ∀λ ∈ ∆
}
. (1.2)

The functions fλ only depend on the variables Xi with i ∈ λ and the functions f∅ are constant.
The collection ∆ is called a simplicial complex on [n] when it is inclusion complete, i.e., λ ∈ ∆
implies λ′ ∈ ∆ for every λ′ ⊆ λ, and furthermore {1, . . . , n} ⊆ ∪λ∈∆λ.
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E1
2,bin

δ(00)

δ(01)

δ(11)

δ(10)

cs(E1
2,bin)

A(01) A(00)

A(11) A(10)

ED

δ1

δ3

δ2

δ0

δ4 cs(ED)

A1

A0

A2

A3

A4

Figure 1.1: Left: The three-dimensional simplex of probability distributions on {0, 1}2, the set
of product distributions E1

2,bin and its convex support cs(E1
2,bin). Right: Schlegel diagram1of the

four dimensional probability simplex on {0, 1, . . . , 4}, the corresponding projection of a two-
dimensional exponential family ED with convex support cs(ED). The color indicates the value
that the distributions take on x = 4; blue for p(4) = 0 and red for p(4) = 1. The uniform
distribution 1

5 as well as δ4 are projected into the same point.

Definition 1.1.2. If ∆ is a simplicial complex on [n], then we call E∆ := EV∆
the hierarchical

model of X with interaction structure ∆. Given any natural number k ≤ n, the model Ek :=
EV∆k

with ∆k := {λ ⊆ [n] : |λ| ≤ k} is called k-interaction model. The important special case
E1 consists of product distributions and is called independence model.

Any k-interaction model is a hierarchical model. There is a natural hierarchy of nested mod-
els E1 ⊂ E2 ⊂ · · · ⊂ En = P . See [6] for details on these hierarchies. We write Ekn,bin

for the k-interaction model of n binary variables, and Ekn,q-ary for the k-interaction model of
n q-ary variables. The dimension of the hierarchical model E∆ on×n

i=1Xi is dim(E∆) =∑
λ∈∆

∏
i∈λ(|Xi| − 1) − 1 (see [61]). In particular, the binary k-interaction model has dimen-

sion dim(Ekn,bin) =
∑k

i=1

(
n
i

)
. More details on hierarchical models can be found in [66, 61].

The independence model E1 consists of probability distributions of the form p(x1, . . . , xn) =
exp(

∑
i∈[n] fi(xi)) = p1(x1) · · · pn(xn), with pi ∈ P(Xi) for all i ∈ [n]. Any probability dis-

tribution p on X can be written conveniently as an n-way (|X1|× · · ·× |Xn|)-table (tensor) with
entries px1,...,xn = p(x1, . . . , xn) for all x ∈ X . The probability distributions in E1 correspond
to the tables p1 ⊗ p2 ⊗ · · · ⊗ pn, where each pi ∈ P(Xi) is a non-negative real vector of length
|Xi|, and correspond, up to normalization, to the set of non-negative (|X1| × · · · × |Xn|)-tensors
of rank one.

In algebraic geometry, the independence model is considered as a subset of the Segre em-
bedding of a product of projective spaces P|Xi|−1, which is the map defined through Pq1−1 ×
Pq2−1 → Pq1q2−1 and ((X1 : · · · : Xq1), (Y1 : · · · : Yq2)) 7→ (X1Y1 : X1Y2 : · · · : Xq1Yq2),
where (X1 : · · · : Xq) denotes the equivalence class of (X1, . . . , Xq) in projective space (called

1A Schlegel diagram is a projection of a polytope onto the affine hull of one of its facets by rays through a point
beyond that facet. It yields a complex which is combinatorially equivalent to the original polytope. See [51] for
details.
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h ∈ {1, . . . ,m}

v1 ∈ X1 v2 ∈ X2 vn−1 ∈ Xn−1 vn ∈ Xn

. . .

Figure 1.2: Graphical representation of the m-mixture of the independence model of n vari-
ables vi, i ∈ [n]. Each node in the bottom represents one of the variables vi. The dark node
represents a hidden variable with m states. If Xi = {0, . . . , q − 1} for all i, this is the model
Mixtm(E1

n,q-ary).

homogeneous coordinates). Figure 1.1 left shows the model E1
2,bin. We will use this example to

illustrate various concepts in the remainder of this section.

Remark 1.1.3. Any distribution in the m-mixture of the independence model of n variables
has the form p(x1, . . . , xn) =

∑
j∈[m] α(j) exp(

∑
i∈[n] f

j
i (xi)), where f ji is a function of the

variable xi only. Regarding j as the state of a hidden variable X0, we can write this as

p(x1, . . . , xn) =
∑
x0∈[m]

exp(f0(x0)) exp(
∑
i∈[n]

f{i,0}(xi, x0)) . (1.3)

Hence the m-mixture of the independence model is the marginal of a hierarchical model with
maximal interaction sets {{1, 0}, . . . , {n, 0}}. This model has the graphical representation de-
picted in Figure 1.2. Each edge in the graphical representation corresponds to an interaction set
of cardinality two.

A Hadamard matrix is a ±1 matrix with orthogonal rows. A natural choice for the sufficient
statistics of binary hierarchical models are submatrices of the following Hadamard matrix:

A = (Aλ,x)λ∈2[n],x∈X , Aλ,x := (−1)|supp(x)∩λ| . (1.4)

In this case the observables are well studied functions referred to as characters, and if ∆ ⊆ 2[n]

is inclusion complete, then the rows Aλ with λ ∈ ∆ build an orthogonal basis of V∆. In
Appendix 1.C we discuss Hadamard matrices in more detail.

Example 1.1.4. The binary independence model E1
n,bin has a sufficient statistics with columns

Ax = ((−1)xi)i∈[n] = (−2x + 1) for x ∈ {0, 1}n. In particular, the set of columns {Ax}x is
the list of vectors in {+1,−1}n and conv{Ax} is an n-dimensional hypercube. Furthermore,
any binary product distribution can be written as p(x) = exp(〈θ, x〉 − ψθ), where θ ∈ Rn,
〈θ, x〉 =

∑
i∈[n] θixi, and ψθ ensures normalization.

We will need polytopes and some related notions summarized in the following definition:

Definition 1.1.5. A polytope is a compact convex subset of Rd with finitely many extreme
points. Let Q ⊂ Rd be a polytope. A proper face of Q is the intersection of Q with a hyperplane
of codimension one in Rd such that all points of Q lie on one of the closed half-spaces defined
through that hyperplane. The polytope itself is a face (called improper face). The set of faces is
denoted F(Q). The dimension of a face F is dim(F ) := dim aff(F ). A facet is a proper face
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1.1 Exponential Families

of maximal dimension. An extreme point is a zero-dimensional face. The set of extreme points
is denoted ex(Q). The combinatorial type of Q is the set of all faces F(Q) together with the
partial order of inclusion relations. The polytope Q ⊂ Rd is called K-neighborly if the convex
hull of any K or less of its vertices is a face (see [67, 105]).

Remark 1.1.6. If Q is a polytope and 0 ≤ g ≤ dim(Q) − 1, then the union of g-dimensional
faces ∪F∈F(Q):dim(F )=gF contains all vertices of Q (see [54, Theorem 15.1.2]). Furthermore,
any nonsingular affine transformation of a polytope yields a combinatorially equivalent polytope
(see [51, Theorem 3.2.3]).

Definition 1.1.7. A d-dimensional cyclic polytope with v vertices C(v, d) is defined as the
convex hull of v different points on the d-moment curve: C(v, d) := conv{f(ti)}i∈I,|I|=v ,
where v ≥ d + 1, I is a linearly ordered set, i 7→ ti is a strictly monotone function, and f is
R→ Rd ; t 7→ (t, t2, . . . , td). See [46].

Definition 1.1.8. The convex support of EA is a convex polytope cs(EA) with the following
vertex presentation (i.e., as convex hull of a set of points):

cs(EA) := conv{Ax}x∈X ⊂ Rd .

Note that not every Ax must be an extreme point of cs(EA). The combinatorial type of the
polytope cs(EA) is determined by V , the row span of A. In the case of hierarchical models, the
convex support is also called marginal polytope.

The sufficient statistics matrix A induces the moment map: P → Rd ; p 7→ A ·p, which maps
EA bijectively onto cs(EA) (see [23]). This bijective map is in fact a homeomorphism, because
the moment map is continuous, EA is compact, and cs(EA) is Hausdorff. The vectorA·p contains
the p-expectation values of the observables and is called the expectation parameter of p. For any
η ∈ cs(EA) we denote pη the unique probability distribution in EA with A · pη = η.

Definition 1.1.9. A set Y ⊆ X , Y 6= ∅ is a facial set of EA iff Y = {x ∈ X : Ax ∈ F} for some
face F of cs(EA). We denote the set of facial sets of E by F(E).

A starting point for the ideas developed in this chapter is the following well known fact
(see [48, 96] for example):

Lemma 1.1.10. A set Y is the support set of some distribution p ∈ E if and only if Y is facial.

The mapG ∈ F(cs(EA)) 7→ {x ∈ X : Ax ∈ G} =: XG ∈ F(EA) is an isomorphism between
the face lattice of cs(EA) and the support sets of distributions within EA which preserves the
partial order of inclusion.

Example 1.1.11. The facial sets of E1
n,bin are the sets of vertices incident to faces of the n-

dimensional unit cube, which are precisely the cylinder sets of {0, 1}n. In the case n = 2
the independence model has a sufficient statistics with columns A00 = (−1,−1)>, A01 =
(1,−1)>, A10 = (−1, 1)>, A11 = (1, 1)>. See Figure 1.1. The facial sets are X , the pairs
{(0, 0), (0, 1)}, {(0, 1), (1, 1)}, {(1, 1), (1, 0)}, {(1, 0), (0, 0)}, which correspond to edges of
the convex support, and the individual elements of X , which correspond to the vertices of the
convex support. The edges and vertices of cs(E1

2,bin) are the only simplex faces.
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1 Mixtures of Discrete Exponential Families

1.2 S-sets

We introduce the following type of support sets of a model:

Definition 1.2.1. Given a set of probability distributionsM ⊆ P(X ) we say that a set Y ⊆ X
is an S-set ofM iff every distribution with support Y is contained in the closureM.

In the following we work out properties of S-sets and relate the combinatorics of support sets
to the expressive power of mixtures of exponential families.

Given an exponential family E on X we consider the following function which gives the
minimal cardinality of a facial packing of any set Z ⊆ X :

κfE : 2X → N ; Z 7→ min{n ∈ N : ∃Y1, . . . ,Yn ∈ F(E) with ∪i Yi = Z} .

We set κfE(Z) =∞ if there doesn’t exist a facial packing of Z . We write κfk for κfEk . All Yi in a
packing of Z are subsets of Z . If E∆ is a hierarchical model, then every {x} is facial, (provided
that ∪λ∈∆λ = [n]), and κfE∆ <∞.

We consider the smallest number of S-sets that cover any Z ⊆ X , which is the following
function:

κsE : 2X → N ; Z 7→ min{n ∈ N : ∃Y1, . . . ,Yn S-sets with ∪i Yi ⊇ Z} .

We set κsE(Z) = ∞ if there doesn’t exist an S-set covering of Z . All S-sets of E are contained
in F(E). If κ S-sets cover X , then at most κ S-sets are needed for packing any Z ⊆ X , because
any subset of an S-set is an S-set. We abbreviate κsE(X ) with κsE . Given two exponential families
E and E ′ we consider also the maximum of κfE restricted to the facial sets of E ′:

κfE,E ′ := max
Z∈F(E ′)

κfE(Z) . (1.5)

The functions κsE and κfE can be easily defined for arbitrary modelsM ⊆ P instead of E , re-
placing “facial sets” by “support sets of distributions withinM” in the above definitions.

We can find sufficient and necessary numbers of mixture components to represent a distribu-
tion q ∈ P with support supp(q) = Y by deriving bounds on the number of S-sets which is
sufficient to cover Y , and on the number of facial sets needed to pack Y . The following lemma
describes this very natural observation:

Lemma 1.2.2. Consider two exponential families E , E ′ ⊆ P(X ).

• If m ≥ κsE <∞, then Mixtm(E) = P .

• Mixtm(E) ⊇ E ′ implies m ≥ κfE,E ′ .

In particular, Mixtm(E) = P implies m ≥ maxκfE , and κfE,E ′ = ∞ implies conv(E) 6⊃ E ′.
This lemma can be formulated for arbitrary models. In that case however, the implication of the
first item holds only for the closures: If m ≥ κsM, then Mixtm(M) = P .

18



1.2 S-sets

Proof of Lemma 1.2.2. 1. Let {Yi}κi=1 be an S-set covering of X . W.l.o.g. Yi ∩ Yj = ∅ ∀i 6= j.
Any p ∈ P can be written as

∑κ
i=1 αifi and fi ∈ E choosing fi with supp(fi) ⊆ Yi, fi =

p|Yi/
∑

x∈Yi p(x) andαi =
∑

x∈Yi p(x). I.e., Mixtκ(E) = P . For strictly positive distributions:
Clearly, Mixtm(E) ⊆ P . For the other direction: Let Yi := P(Yi). The sets Yi are disjoint
faces of P whose union covers all point measures {δx}x∈X . Let pη := (A|E)−1(η) (the unique
probability distribution in E with expectation vector η). We have just seen that the mixture map
φ : D := Pm × (×mi=1 cs(E)) → P ; (α, η1, . . . , ηm) 7→∑m

i=1 α(i)pηi is surjective. It is easy
to check that the restriction φ|C : C → ∂P , with C := ∂(Pm × (×mi=1(A · Yi))) is a continuous
bijection between the compact domain C and the Hausdorff codomain ∂P . Therefore, φ|C is
a homeomorphism and induces isomorphisms between the homotopy groups of C and those of
∂P ' S|X |−2 (S|X |−2 denotes the (|X | − 2)-sphere). Note that φ(D̊) ⊆ P . For any ε > 0
we find a continuous deformation C → C̃ ⊆ D̊ which is mapped by φ into a continuous
deformation ∂P → φ(C̃) ⊂ P \ Pε, Pε := {p ∈ P : p(x) ≥ ε ∀x ∈ X}. If φ(D̊) didn’t
contain Pε, then φ(C̃) wouldn’t be contractible in φ(D̊), in contradiction to the fact that D̊ is
contractible. Obviously any element of P belongs to some Pε. Hence, Mixtm(E) ⊇ P .

2. Consider some p ∈ E ′ with a support Z ∈ F(E ′). If p is written as a mixture of elements
from E , then every summand with positive mixture weight must have a support Y ∈ F(E) with
Y ⊆ Z . Furthermore, the union of the support sets of these summands must be Z . The minimal
number is precisely κfE(Z).

Example 1.2.3. (Cylinder S-sets). Any distribution p with support contained in a cylinder set
[yΛc ] = {x ∈ X : xΛc = yΛc}, Λ ⊆ X , |Λ| = k is contained in Ek. Indeed, if p ∈ P is
arbitrary with support [yΛc ], then p(x) = lim

α→∞
exp(f(xΛ)−α∑j∈Λc gj(xj))/Z, where Z is the

normalization constant, f(x) = f(xΛ) is a function of k variables with f(xΛ) = log(p(x)) +
log(Z) ∀x ∈ [yΛc ] and gj are functions of one variable taking value 0 for xj = yj and 1
otherwise. Therefore, the k-dimensional cylinder sets are S-sets of Ek. If X = {1, . . . , q}n,
then κsEk ≤ qn−k and qn−k mixtures of Ek suffice to represent any distribution. We will improve
this bound in Theorem 1.3.9.

Example 1.2.4. (Mixtures of two independent binary variables). The set of mixtures of two
fixed distributions p and q on X can be represented as a line segment in RX connecting the two
points. If p and q are moved freely within E1

2,bin, the set of segments fills the entire probability
simplex P2 (see Figure 1.1 left). Close inspection reveals that mixtures of elements from the
intervals [δ(0,1), δ(1,1)] and [δ(1,0), δ(0,0)], already suffice to fill P2. These intervals correspond to
a partition of X into two S-sets of E1

2,bin.

The following lemma will help us estimate κsE for specific choices of E :

Lemma 1.2.5. (S-sets of exponential families). Consider an exponential family EA ⊆ P(X ).
The following statements are equivalent:

• Every probability distribution with support Y ⊆ X is in E , i.e., Y is an S-set.

• Y is facial and conv{Ay}y∈Y is a (|Y| − 1)-dimensional simplex.

• supp(m±) 6⊂ Y ∀m ∈ ker(A)\{0} ⊂ RX , where m±(x) = max{0,±m(x)} ∀x ∈ X .

Proof. The first item implies the second because the linear map A is a bijection on the simplex
P(Y). For the other direction: The matrix AY := (Ay)y∈Y defines an exponential family
EY = E ∩ P(Y), because Y is facial. If conv{Ay}y∈Y is a (|Y| − 1)-simplex, then all columns
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1 Mixtures of Discrete Exponential Families

of AY are affinely independent. In fact they are linearly independent (1 is a row of A), and
kerAY = {0}. In this case EY = P(Y). The third item is equivalent to: Y is facial [96] and
additionally supp(m) 6⊂ Y ∀m ∈ ker(A). This implies kerAY = {0}.

In Appendix 1.A we provide a more extensive discussion of the results from Lemma 1.2.5.

Remark 1.2.6. By Lemma 1.2.5, if |supp(p)| < |supp(m+)| ∀m ∈ ker(A) \ {0}, then p ∈ EA.
Furthermore, there always exists some q ∈ P(X )\EA with |supp(q)| = minm∈ker(A)\{0} |supp(m+)|.

If the convex support of an exponential family E is K-neighborly and E contains all point
measures, then E contains any probability distribution with support of cardinality at most K. In
other words, any Y with |Y| ≤ K is an S-set.

Example 1.2.7. (An n-gon exponential family). Let X = {0, . . . , n − 1} and let E be an ex-
ponential family with convex support given by an n-gon (a convex polygon with n vertices).
This is a two-dimensional family which contains all point measures δx in its closure. The later
property finds applications in model design and will be the topic of Section 5.2. Assume that
the boundary of cs(E) is given by the polyline A0A1A2 · · ·An−1A0. The facial sets are: X ,
the pairs {i, i + 1} mod n and the points {i}i∈X . All facial sets are S-sets, with exception
of X . The sample space X is covered by κsE =

⌈
n
2

⌉
S-sets, while the packing of any set

Y ⊆ X requires at most maxκfE =
⌊
n
2

⌋
facial sets. By Lemma 1.2.2 the smallest m for which

Mixtm(E) = conv(E) = P satisfies
⌊
n
2

⌋
≤ m ≤

⌈
n
2

⌉
. In the case n = 5 (see Figure 1.1 right)

we can show that m ≥ 2 =
⌊
n
2

⌋
is necessary and sufficient:

Proposition 1.2.8. Let ED be an exponential family on {0, 1, . . . , 4} with convex support a
pentagon, as the one shown in Figure 1.1 right. Then Mixt2(ED) = P .

Proof. See Appendix 1.A for the proof and a topological discussion.

The following example will help us illustrate some results in the remainder of this chapter:

Example 1.2.9. (The convex support of E2
4,bin). The polytope cs(E2

4,bin) has dimension 10 and 16
vertices. We used the computer software Polymake [47] to compute its face lattice. The poly-
tope has 56 facets (proper faces of maximal dimension 9). From these, 16 contain only 10 ver-
tices and are simplices. One of the corresponding S-sets is the following: Y = {(0000), (1000),
(0100), (0010), (1001), (0101), (0011), (1101), (1011), (0111)}. In total 8 S-sets contain each
6 elements from Z+ and 8 contain 6 elements from Z−. The other 40 facets have 12 vertices
each. Denote {Fi} the S-sets (of cardinality 10) and {Gi} the remaining facets (of cardinality
12). We found that Fi ∪ Fj 6= X ∀i, j and Fi ∪ Gj 6= X ∀i, j. Since all faces (facial sets) and
in particular all simplex faces (S-sets) are subsets of some facet, these computations show that
a minimal covering of X using S-sets has cardinality at least 3.

We briefly discuss symmetries of cs(E∆) with interesting relations to coding theory, and to
the work [66]:

If the family of interaction sets ∆ is invariant under permutations of the coordinate indices π :
[n]→ [n], then also cs(E∆). If Y is an S-set of Ek, then π(Y) := {(xπ(1), . . . , xπ(n)) : x ∈ Y}
is also an S-set for any permutation π. A further symmetry is given by re-labeling the values of
the variables:

Remark 1.2.10. Consider any ∆ ⊆ 2[n]. If EA is an exponential family with sufficient statistics
A = ((−1)|supp(x)∩λ|)λ∈∆,x∈X , then Y is an S-set if and only if x ∗ Y := {x+ y mod 2 : y ∈
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1.3 Mixtures of Hierarchical Models

Y} is an S-set for all x ∈ X . Furthermore, Y ⊆ X is facial if and only if x ∗ Y is facial for all
x ∈ X .

The elements of the family {x ∗ Y}x∈X need not be different from each other, but they are if
|Y| is odd or if Y is a Hamming ball. For any Y ⊆ X , Y 6= ∅ we have ∪x∈Xx ∗ Y = X , since
{x ∗ z : x ∈ X} = X for any z ∈ X . Moreover, |x ∗ Y| = |Y| for any x ∈ X , Y ⊆ X , since
x ∗ (x ∗ Y) = Y . In Appendix 1.C we provide more details on this.

1.3 Mixtures of Hierarchical Models

By Lemma 1.2.5 we can find κsE if we determine the simplex faces of cs(E) and how many
such faces suffice to cover all vertices of cs(E). This has the flavor of a covering code problem,
which can be difficult; e.g., finding a minimum clique cover of a graph is a graph-theoretical
NP-complete problem, and perfect covering codes on {0, 1}n are not completely understood
(see [27] for details on covering codes). Here we focus on S-set coverings and facial packings
for hierarchical models.

Product Distributions

The set of strictly positive product distributions of n variables with state space X =×i∈[n]Xi
is:

E1 = {p ∈ P : p(x1, . . . , xn) =
∏
i∈[n]

pi(xi), pi ∈ P(Xi)} . (1.6)

The convex support of E1 is a Cartesian product cs(E1) =×i∈[n] Si, where Si is a (|Xi| − 1)-
dimensional simplex for every i ∈ [n]. The facial sets are:

F(E1) = {×
i∈[n]

Yi : Yi ⊆ Xi ∀i ∈ [n]} . (1.7)

The S-sets have the form {(x1, . . . , xn) ∈ X : xi ∈ Yi and xj = yj ∀j 6= i} for some i ∈ [n],
Yi ⊆ Xi, and some yj ∈ Xj ∀j 6= i. See [78] for interesting properties of products of simplices.

In the case of binary variables, the convex support cs(E1
n,bin) is a combinatorial n-cube. The

set Y ⊆ X supports a distribution in E1 iff Y is a cylinder set, i.e., if there is some λ ⊆ [n] and
some yλ with

Y = {(x1, . . . , xn) ∈ {0, 1}n : xi = yi ∀i ∈ λ} . (1.8)

Hence Y is an S-set iff it has cardinality one or consists of two binary vectors with Hamming
distance one, see Example 1.2.3.

We will use the following function in the formulation of the next theorem:

Aq(n, d) := max{|Y| : Y ⊆ X s.t. dH(x, y) ≥ d ∀x, y ∈ Y, x 6= y} . (1.9)

This function is familiar in coding theory; it gives the maximal cardinality of a q-ary code of
length n and minimum distance d. The two complementary sets of binary vectors of length n
with an even and odd number of ones, Z+ and Z−, are binary codes with minimum distance two
and have cardinality |Z±| = A2(n, 2) = 2n−1. They are perfect binary codes of length n and
minimum distance 2.
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1 Mixtures of Discrete Exponential Families

Theorem 1.3.1. (Mixtures of discrete product distributions). LetX =×i∈[n]Xi, |X1| = max{|Xi|}
and |Xn| = min{|Xi|}.

• If m ≥ |X |/|X1|, then Mixtm(E1) = P .

• If Mixtm(E1) ⊇ P , then m ≥ Aq(n, 2), where q = |Xn|. Furthermore, Aq(n, 2) ≥
qn

1+n(q−1) and Aq(n, 2) = qn−1 if q is a prime power.

In particular, if q is a prime power and X = {1, . . . , q}n, then

Mixtm(E1
n,q-ary) = P if and only if m ≥ qn−1 .

Proof. We use Lemma 1.2.2. The following |X |/|X1| S-sets cover X : {{(x, y)}x∈X1 : y ∈
×i∈[n]\{1}Xi}. For the second item: An edge of cs(E1) is given by a pair {Ax, Ay} with q-ary
vectors x and y of length n which differ in exactly one entry, dH(x, y) = 1. A set Y ⊂ X
containing no such pair can be packed only using S-sets of cardinality one, because any facial
set of cardinality larger than one always contains edges. If the minimum distance of a code is
two, then obviously the code doesn’t contain any edges. The Gilbert-Varshamov bound [49, 116]
is: Aq(n, 2) ≥ qn∑d−1

j=0 (nj)(q−1)j
, and in the prime power case it reads: Aq(n, d) ≥ qk, where k

is the largest integer with qk < qn∑d−2
j=0 (n−1

j )(q−1)j
. On the other hand, we have the singleton

bound [106]: Aq(n, d) ≤ qn−d+1. For d = 2 the combination of the two bounds completes the
proof.

Remark 1.3.2.

(i) Any distribution in P can be approximated arbitrarily well by a mixture of qn−1 elements
from E1, in view of Theorem 1.3.1 and Mixtm(E) = Mixtm(E). Furthermore, P \
Mixtm(E1) has non-empty interior whenever m < Aq(n, 2).

(ii) The convex support of the independence model is not two-neighborly. A decomposition
of X based only on the neighborliness of cs(E1) would yield |X | mixture components,
instead of |X |/maxi |Xi|.

(iii) We see that the approximation of arbitrary distributions in P to an arbitrary accuracy
requires a very large number of product mixture components. The expected dimension of
the model Mixtm(E1) is min{∑n

i=1(|Xi| − 1)m + (m − 1), (
∏
i∈[n] |Xi|) − 1}. In the

case of q-ary variables, q a prime power, the smallest mixture model that contains the full
probability simplex has n(q−1)qn−1 +(qn−1−1) parameters, a number which surpasses
dim(Pn,q-ary) = qn − 1 by n q−1

q + qn−1 − 1. The exact dimension of Mixtm(E1
n,q-ary) is

to date unknown for general q. This is an interesting and active research topic in algebraic
geometry [1, 26]. In Remark 1.3.4 we comment on the binary case.

In the case of binary variables we have the following:

Corollary 1.3.3. (Mixtures of binary product distributions). The mixture model Mixtm(E1
n,bin)

doesn’t contain any probability distribution with support on a binary code of minimum distance
at least two and cardinality more than m. Furthermore,

Mixtm(E1
n,bin) = Pn,bin if and only if m ≥ 2n−1 .
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1.3 Mixtures of Hierarchical Models

Proof. This is a special case of Theorem 1.3.1. We give a binary version of the proof: We use
Lemma 1.2.2 and the fact that the support sets of probability distributions in E1

n,bin are faces of
the n-cube. Any packing of a binary code of minimum distance more than two by faces of the
cube consists of single points. If the code has cardinality k, then k points are needed to pack
it. Any p ∈ Pn,bin with support contained in the union of m edges of the n-cube is contained
in Mixtm(E1

n,bin). There are 2n−1 edges covering all vertices of the cube. Any representation
of any p ∈ P(Z±,n) as mixture of product distributions has at least |supp(p)| components with
support of cardinality one.

In Appendix 1.B we provide refinements of this result, in the sense that we describe portions
of the complement of Mixtm(E1

n,bin).

Remark 1.3.4. (Dimension and identifiability).

(i) For n ≥ 2 the graph of the n-cube has more than 22n−2
perfect matchings. A perfect

matching is a set of pairwise disjoint edges of a graph covering all its vertices. Hence
mixture decompositions into sums of probability distributions supported by pairs with
Hamming distance one are highly non-unique (although the number of possible decom-
positions is in many cases finite). The distributions with support on a code of distance
at least two have a unique representation as mixture of independent points in E1

n,bin. This
should be compared to a result by Bocci and Chiantini [22], which shows that if n > 5,
then any generic point of Mixtm(E1

n,bin) is contained in only one m-secant of E1
n,bin (the

affine hull of m independent points in E1
n,bin), for all m ≤ 2n−1

n .

(ii) The (non-negative) outer-product rank of a tensor is the smallest number of (non-negative)
rank-one tensors that can represent it as their sum. A rank-one tensor is an n-way
table that can be written as a product p1 ⊗ · · · ⊗ pn. A consequence of recent work by
Catalisano, Geramita and Gimigliano [26] is that the model Mixtm(E1

n,bin) always has
the expected dimension, except for the case m = 3 and n = 4, where the model has
dimension one less than expected. If m̃ denotes the smallest m for Mixtm(E1

n,bin) = P ,
and m̂ denotes the smallest m for which the mixture model has the same dimension as
the probability simplex, then our result implies m̃ = 2blog2(n+1)c−1m̂. Let Secm(E1

n,bin)

denote the collection of all affine combinations ofm points in E1
n,bin. The number m̂ is the

smallest m for which Secm(E1
n,bin) contains P (more precisely, the closure Secm(E1

n,bin)
in the Zariski topology contains P), and equals (generically) the rank of (2 × · · · × 2)-
tensors. The number m̃ is the maximal non-negative outer-product rank of non-negative
(2 × · · · × 2)-tensors. The discrepancy between the two types of rank is called a rank
jump.

The following is a consequence of Corollary 1.3.3:

Corollary 1.3.5. Let 1 ≤ j ≤ n− 1. If Mixtm(E1
n,bin) ⊇ Ejn,bin, then

m ≥ max
{
κf1,j ,

⌈
dim(Ejn,bin) + 1

n+ 1

⌉}
.

Furthermore, κf1,j ≥ max{|Z| : Z ∈ F(Ejn,bin) , Z ⊆ Z±} ≥ 2j − 1.
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1 Mixtures of Discrete Exponential Families

Proof. If Mixtm(E1
n,bin) ⊇ Ejn,bin it is necessary that dim(Mixtm(E1

n,bin)) ≥ dim Ejn,bin. Pa-
rameter counting yields mn + m − 1 ≥ dim(Mixtm(E1

n,bin)) ≥ dim Ekn,bin. The quantity
max{|Z| : Z ∈ F(Ejn,bin) and Z ⊆ Z±} is lower bounded by 2j − 1, which can be seen
from [64, Theorem 13].

Example 1.3.6.

(i) By Corollary 1.3.5 and Example 1.2.9: If Mixtm(E1
4,bin) ⊇ E2

4,bin, then m ≥ 6.

(ii) The polytope cs(E3
4,bin) has dimension 14 and

⌈
(dim E3

4,bin + 1)/(4 + 1)
⌉

= 3. On the

other hand 23 − 1 = 7. By Corollary 1.3.5 if Mixtm(E1
4,bin) ⊇ E3

4,bin, then m ≥ 7.

In later chapters we will derive analogous results for the inclusion of RBMs in mixtures of
independence models.

Interaction Models

Now we turn our attention to mixtures of more general hierarchical models than independence
models.

Remark 1.3.7. As explained in Section 1.1, each element from the hierarchical model E∆(X1 ×
· · · × Xn) with interaction sets ∆ factorizes according to p ∝ ∏λ∈∆ exp(φλ(xλ)). The model
Mixtm(E∆) can be understood as the set of marginal visible distributions from a hierarchi-
cal model E

∆̃
with (n + 1) variables; the n visible variables Xi, i = 1, . . . , n, and one hid-

den variable Xn+1. The interaction sets of E
∆̃

are ∆̃ := {λ ∪ {n + 1} : λ ∈ ∆} ∪ ∆ ∪
{(n + 1)}. The joint probability distributions have the following from: p(x1, . . . , xn, xn+1) ∝∏
λ∈∆ exp(φλ,(n+1)(xλ, xn+1)). The visible marginal distributions are of the form:

p(x1, . . . , xn) =
∑
xn+1

∏
λ∈∆

exp(φ
xn+1

λ (xλ)) exp(φ(xn+1)) , (1.10)

and can be written as p(x1, . . . , xn) =
∑

h α(h)ph(x1, . . . , xn), where ph is an arbitrary element
of E∆ for each value of h, and α are arbitrary mixture weights. Hence the mixture model of a
hierarchical model is the marginal of another hierarchical model. Figure 1.3 shows a factor-
graph representation of the model E

∆̃2
for four visible variables. See [118] for details on factor

graphs.

Proposition 1.3.8. Let X =×i∈[n]Xi. Let κ̃k(Y) denote the minimal cardinality of a cov-
ering of Y ⊆ X using cylinder sets of dimension k. Consider any p ∈ P and let κ :=

min{ |supp(p)|
2k−1

, κ̃k(supp(p))}. If m ≥ κ, then p ∈ Mixtm(Ek).

Proof. This follows from Example 1.2.3, the (2k − 1)-neighborliness of Ek (see [64]), and
Lemma 1.2.2.

The following is a stronger result for binary variables and our main result on mixtures of
binary hierarchical models:
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1.3 Mixtures of Hierarchical Models

h ∈ {1, . . . ,m}

v1 ∈ X1 v2 ∈ X2 v3 ∈ X3 v4 ∈ X4

Figure 1.3: Factor graph representation of the m-mixture model of the set of probability distri-
butions of 4 variables {vi}ni=1 taking values on {Xi}4i=1 and involving pairwise interactions. The
(circular) nodes represent variables and the black squares represent factors. The dark node at
the top represents a hidden variable. The nodes connected to a common factor are fully interact-
ing. If Xi = {0, 1} for all i, the depicted model is Mixtm(E2

4,bin), and by Theorem 1.3.9, m = 3
is a sufficient number of states of h for which the model can represent any visible distribution.

Theorem 1.3.9. (Mixtures of binary k-interaction models). There is a covering of all vertices
of cs(Ekn,bin) by 2n−(k+1)(1 + 1

2k−1
) simplex faces. Hence:

If m ≥ 2n−(k+1)
(
1 +

1

2k − 1

)
, then Mixtm(Ekn,bin) = Pn,bin.

In particular, if p ∈ Pn,bin and m ≥ κ̃k+1(supp(p))(1 + 2
2k−1

), then p ∈ Mixtm(Ekn,bin).

Remark 1.3.10.

(i) Theorem 1.3.9 holds for any E∆({0, 1}n) with ∆ ⊇ ∆k.

(ii) The result halves the bound onm computed in Proposition 1.3.8 in the case of full support
binary distributions.

(iii) For k = 1, the bound 2n−(k+1)(1 + 1
2k−1

) = 2n−1 recovers the upper bound on m given
in Corollary 1.3.3.

(iv) For n = 4 and k = 2 the cardinality bound for a covering of the vertices of cs(Ekn,bin) by
simplex faces given in Theorem 1.3.9 is

⌈
24−(2+1)/(1− 2−2)

⌉
= 3. This is optimal, in

view of Example 1.2.9.

Before proving Theorem 1.3.9 we need to elaborate the components of the proof. We will use
the S-sets of cardinality 2(2k − 1) described in Lemma 1.3.12.

Kahle [64] investigates the neighborliness of marginal polytopes and shows that the convex
support of Ek is (2k − 1)-neighborly. For binary variables this result gives the maximal neigh-
borliness degree of cs(Ekn,bin), because there exist sets of cardinality 2k which are not S-sets of
Ekn,bin:

Proposition 1.3.11. Let X = {0, 1}n and 0 < k < n. Consider Ekn,bin and any yλc ∈ Xλc , λ ⊆
[n], |λ| = k+ 1. Then |[yλc ]∩Z±| = 2k, and any Y ⊆ X containing [yλc ]∩Z± is not an S-set.
If Y ⊇ [yλc ] ∩ Z± and Y 6⊇ [yλc ], then Y is not facial.
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1 Mixtures of Discrete Exponential Families

Proof. See Appendix 1.A.

On the other hand, if Q is a K-neighborly d-dimensional polytope with d ≥ 2K, then every
face F of Q with 0 ≤ dimF < 2K is a simplex, i.e., Q is (2K − 1)-simplicial, see [51, The-
orem 7.4.3]. This implies that all (2K − 1)-dimensional faces of cs(Ek) are simplices, where
K = 2k − 1. If K >

⌊
1
2 dim(cs(Ek))

⌋
, then cs(Ek) is a simplex (this only occurs when k = n

and En = P).

In the following we focus on the binary case and search for facial sets of Ekn,bin of cardinality
2K, K = 2k − 1 (which are S-sets). For 0 < k < n, any (k + 1)-dimensional cylinder set
[yλc ], λ ⊆ [n], |λ| = k + 1 is facial for Ekn,bin (it is a facial set of E1

n,bin) and hence the vertices
of cs(Ekn,bin) can be covered by 2n−(k+1) disjoint faces {Fi}i. 2K of the (2K + 2) vertices of
each Fi are covered by a simplex face. Any polytope which is not a simplex always contains
two disjoint faces of complementary dimension [34], such that the two additional vertices can
be chosen as an edge of Fi. These two vertices in each Fi can be covered using the fact that
cs(Ekn,bin) is K-neighborly, but also arranging the simplex faces conveniently. To this end use
the following lemma, which collects similar results from [51, 61, 66]. We provide a thorough
proof in Appendix 1.A.

Lemma 1.3.12. Let 0 < k < n and X = {0, 1}n. Any (k + 1)-dimensional cylinder set
Y ⊆ X is a facial set of Ekn,bin and the corresponding face F of the convex support is a simplicial
polytope combinatorially equivalent to the cyclic polytope C(2k+1, 2k+1−2). There are exactly
22k S-sets of cardinality (2k+1 − 2) contained in Y . The S-sets contained in Y are {Z ⊂ Y :
Z± 6⊆ Z}.

Now we are ready for proving Theorem 1.3.9:

Proof of Theorem 1.3.9. Consider the following partition of {0, 1}n into (k + 1)-dim cylinder
sets:

{Cy}y := {(xk+1
1 , xnk+2) ∈ {0, 1}n : xnk+2 = y}y∈{0,1}n−(k+1)

By Lemma 1.3.12 for any y ∈ {0, 1}n−(k+1) the elements of Cy are disjointly covered by:
(i) An S-set of Ek of cardinality 2K. We denote this set by Gy.
(ii) A pair Ey, which can be chosen to be any edge of Cy (a pair differing in one entry), in
particular:

Ey = {(zk1 , xk+1, y) ∈ {0, 1}n : zk1 fixed } . (1.11)

The vector z can be chosen to be the same for all Ey, such that the S-sets {Gy}y satisfy:⋃
y∈{0,1}n−(k+1)

Gy = {0, 1}n \ C̃n−k ,

where C̃n−k is the following (n− k)-dimensional cylinder set:

C̃n−k =
⋃

y∈{0,1}n−(k+1)

Ey = {(zk1 , ỹn−k1 ) : zk1 fixed} .

The set C̃n−k can be considered as new state space which still has to be covered using S-sets. If
n−k < k+1, only one S-set is required. Iteration until exhausting all coordinates yields that κ,
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1.A Proofs and Details

the minimal number of faces of cs(Ekn,bin) which are simplices and suffice to cover all vertices,
is not more than:

κ ≤ 1 +
∑

0≤i≤n−(k+1)
k

2n−ik

2k+1
=

⌈
2n

2k+1

∞∑
i=0

1

(2k)i

⌉
=

⌈
2n−(k+1)

1− 2−k

⌉
.

We conclude this section with a few comments on the S-sets of binary hierarchical models:

From Proposition 1.3.11 we can derive an upper bound for the cardinality of an S-set. The
covering radius R(Y) of a binary code Y ⊆ {0, 1}n denotes the maximal Hamming distance
from some x ∈ {0, 1}n to Y , i.e., maxx∈{0,1}n miny∈Y dH(x, y). Let K(n, k + 1) denote the
smallest cardinality of a binary code with length n and covering radius k+1. LetBn,k+1 denote
a Hamming ball of radius k + 1 in {0, 1}n. We can give a (coarse) bound on the cardinality of
S-sets as follows:

Proposition 1.3.13. IfY ⊆ X is an S-set of Ek, then |Y∩Z±| ≤ 2n−1−K(n, k+1) ≤ 2n−1(1−
2/|Bn,k+1|), and |Y| ≤ |∆k|. Hence also |Y| ≤ 2n − 2K(n, k + 1) ≤ 2n(1− 2/|Bn,k+1|).

Proof. See Appendix 1.A.

Example 1.3.14. For n = 4 and k = 2 Proposition 1.3.13 implies that any S-set Y satisfies
|Y ∩ Z±| ≤ 8 − 2 = 6. In view of the computations from Example 1.2.9, the bound of
Proposition 1.3.13 is sharp in this case.

In general, the estimation of upper bounds for K(n, k) is a hard problem, see [77, 91, 27].
This complicates the specification of the optimal (necessary) number of S-sets which cover X .

1.A Proofs and Details

Proof of Proposition 1.2.8. Assume w.l.o.g. that the sufficient statistics contains the row 1. The
image of the map π : p 7→ A · p restricted to P is the convex support Q := conv{Ax}x∈X . We
denote by pη the unique preimage of η ∈ Q by the restricted moment map, pη = (π|E)−1(η).
The 2-mixture of E is parametrized by a mixture map in the following way φ : D := P2×Q2 →
P ; (α, η1, η2) 7→ ∑2

i=1 αipηi . From Mixt2(E) ⊃ ∂P := P \ P̊ it follows that the restriction
φ|C : C := ∂(P2×Q2)→ ∂P is a continuous surjection. Consider the normal space of E , which
is given byN = kerA. For any p ∈ P the linear modelNp := {q ∈ P : p−q ∈ N} intersects E
at a unique point pE ∈ E∩Np (see [95, Theorem 2.16]). Hence,P = (E+kerA)∩P = ·∪p∈ENp.
For every p ∈ P , Np is a polytope of dimension dim kerA. In the present case dim kerA = 2.
The boundary of Np is contained in the boundary of P . Now, for any p ∈ ED we consider the
subset Bp = φ−1(Np) = {(α, η1, η2) ∈ D :

∑2
i=1 αiηi = π(p)}. This set is mapped by φ to all

convex combinations of 2 elements of ED which have the same expectation parameter as p. We
consider also ∂Bp = Bp ∩ (P2 × (∂Q)2), which corresponds to the same kind of mixtures, but
with mixture components from the boundary of E . We have that φ : ∂Bp → ∂Np is surjective
and has degree 2! (this is the cardinality of the preimage of a regular value, which arises from
the freedom to permute the mixture components). For QD we see that ∂Bp is parametrized by
an angle, say γ, and that φ|∂Bp(γ) circulates ∂Np twice. Using that Bp is contractible it follows
that φ|Bp = Np and Mixt2(E) = P . For strictly positive distributions the claim follows from
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the fact that φ(B̊p) ⊆ P and that the image of an ε-retraction of Bp, (1 − ε)(Bp − p) + p, can
be made such that it contains any δ-retraction of Np, (1− δ)(Np − p) + p.

Topological Discussion. We abbreviate cs(E) by Q. Consider the following mixture map

φ̃ : Pm ×Qm → P ; (q, η1, . . . , ηm) 7→
m∑
i=1

qipηi ,

where (qi)i∈[m] are the mixture weights and pη ∈ E is the unique preimage of η ∈ Q by
the moment map E ∼→ Q ; p 7→ A · p. The parameters η are also known as expectation
parameters [10]. We can also consider the restriction φ of φ̃ to a domain which is homeomorphic
to the join ofQwith itselfQ?m, (the joinU?V ofU and V is the quotient spaceA×B×[0, 1]/ ∼,
where a × b × 0 ∼ a × b̃ × 0 for all a ∈ A and b, b̃ ∈ B and a × b × 1 ∼ ã × b × 1 for all
a, ã ∈ A and b ∈ B). This identifies all values of an entry ηi when qi = 0.

If the mixture model contains ∂P , then the idea of using topology is to show that a retraction
of φ−1(∂P) withinQ?m in fact induces by φ a retraction of ∂P on the image of φ which doesn’t
leave out any points of P . This is formalized in the following Proposition 1.A.1. Here we
denote by [γ] the homotopy class of γ, by Sn the n-dimensional sphere, and by πn(X) the n-th
homotopy group of X .

Proposition 1.A.1. Consider a (n + 1)-dim simplex P , a contractible set D and a continuous
map φ : D → P . If there exists a map γ : Sn → D such that [φ ◦ γ] ∈ πn(∂P) \ 0, e.g., if
there exists a C ⊆ D s.t. φ|C : C → ∂P is a covering space projection (a covering map), then
φ(D) = P .

Proof. The existence of the map γ means that there is a subset C ⊆ D such that φ|C : C →
∂P ' Sn and the induced homomorphism of the n-th homotopy group (φ|C)∗ : πn(C) →
πn(∂P) satisfies Im(φ|C)∗ ) 0. The condition that the image of (φ|C)∗ is not the trivial group
implies that φ|C : C → ∂P is surjective (any map Sn → Sn which is not surjective is null-
homotopic). If we assume that φ(D) 6= P , then there exists a y ∈ P \ ∂P with y 6∈ φ(D).
But in this case πn(φ(D)) 6= 0 and in particular any g : Sn → ∂P which is not null-homotopic
in ∂P isn’t null-homotopic in φ(D) either. This is a contradiction: Since Im(φ|C)∗ contains
one non-trivial homotopy class, there is one [g] ∈ πn(∂P) \ {0} for which (φ|C)−1

∗ ([g]) exists.
On the other hand, any element of [g̃] ∈ (φ|C)−1

∗ ([g]) is null-homotopic in D, because D is
contractible. Via φ this yields the null-homotopy of [g]. For the example: If φ|C is a covering
space projection onto ∂P , then the induced maps of homotopy-groups (φ|C)∗ : πn(C) →
πn(∂P) are isomorphisms for all n ≥ 2, [53, Proposition 4.1].

For completeness we provide here a more extensive characterization of S-sets. For any m ∈
RX let m±(x) := max{0,±m(x)} and let pm :=

∏
x∈X (p(x))m(x). We use the following

results:

Theorem 1.A.2. (Geiger et al. [48] and Rauh et al. [96]). Let E be an exponential family with
sufficient statistics A ∈ Rd×X . (I) A set Y ⊆ X is facial iff there exists one p ∈ E with
supp(p) = Y iff supp(m+) ⊆ Y ⇔ supp(m−) ⊆ Y for all m ∈ kerA. (II) A distribution p is
contained in E iff p fulfills the equations pm

+ − pm− = 0 ∀m ∈ kerA.

For simplicity we focus on the binary case. Consider an exponential family E on X with
sufficient statistics A(∆,X ) = (A(λ, x))λ∈∆,x∈X , which includes the row A(∅,X ) = 1. Let
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A(∆c,X ) span the orthogonal complement of A(∆,X ).

Proposition 1.A.3. Given any Y ⊆ X the following statements are equivalent:

(i) Every p ∈ P with supp(p) = Y is contained in E .

(ii) Every p ∈ P with supp(p) ⊆ Y is contained in E .

(iii) supp(m+) 6⊂ Y ∀m ∈ kerA(∆,X ) \ {0}.

(iv) rkA(∆c,Yc) = |∆c| and Y is facial.

(v) rkA(∆,Y) = |Y| and Y is facial.

(vi) Every Y ′ ⊆ Y is facial. I.e., Y corresponds to a (|Y| − 1)-simplex face of the convex
support; {A(∆, y)}y∈Y are the vertices of a (|Y| − 1)-simplex face of conv{Ax}x∈X .

Proof. The equivalence of (i) and (ii) is trivial. The claim (ii) if (iii) follows directly from
Theorem 1.A.2 (II). For the implication only if we have to show that if supp(m+) ∩ Yc = ∅ for
some m ∈ kerA(∆,X ) \ {0}, then there exists a p ∈ P with supp(p) = Y and pn

+ − pn− 6= 0
for some n ∈ kerA(∆,X ). Assume supp(m+) ⊆ Y . If there exists one p̃ ∈ E with support
Y (if none exists we are done), then Y is facial and supp(m−) ⊆ Y . We write (p̃i){i:mi 6=0} =

(ξ̃, η̃) ∈ Rsupp(m+)
+ × Rsupp(m−)

+ . |supp(m±)| > 0, since 0 = 〈A(∅,X ),m〉 =
∑

xm(x).
Assume ‖ξ̃‖1 < ‖η̃‖1, (if this is not possible, again we are done). By (II) ξ̃m

+ − η̃m− = 0. Now
consider a p with p(x) = p̃(x) ∀x : m(x) = 0, and ξ = 2ξ̃, and η = (1 − ‖ξ̃‖1/‖η̃‖1)η̃ in the
other entries. We have ‖ξ‖1 + ‖η‖1 = ‖ξ̃‖1 + ‖η̃‖1 s.t. p ∈ P , and:

ξm
+ − ηm− =

(
2〈1,m

+〉 −
(

1− ‖ξ̃‖1/‖η̃‖1
)〈1,m−〉)

ξ̃m
+
.

W.l.o.g. 〈1,m±〉 > 1. Since 0 < ‖ξ̃‖1/‖η̃‖1 < 1 and ξ̃ is greater than 0 in every entry,
ξm

+ − ηm− 6= 0.
(iv) iff (iii): It suffices to show: For a facial Y it is rkA(∆c,Yc) = |∆c| if and only if
Yc ∩ supp(m) 6= ∅ ∀m ∈ kerA(∆,X ) \ {0}. Any m ∈ kerA(∆,X ) can be written as
m(x) = 〈α,A(Γ, x)〉, where supp(α) ⊆ ∆c. For any x ∈ X m(x) = 〈α,A(Γ, x)〉 = 0 ⇔
α⊥A(Γ, x). Hence, Yc ∩ supp(m) = ∅ is equivalent to the existence of some α ∈ RΓ such that
α⊥A(Γ, x) ∀x ∈ Yc. These equations can’t be satisfied for any α 6= 0 with supp(α) ⊆ ∆c iff
rkA(∆c,Yc) = |∆c|.

(v) iff (iv): We show rkA(∆,Y) = min{|Y|, |∆|} iff rkA(∆c,Yc) = min{|Yc|, |∆c|}.
Consider first |Y| = |∆|. It suffices to show one direction, since one may define ∆′ = ∆c,Y ′ =
Yc. If A(∆,Y) has full rank, then there exist two invertible |∆| × |∆|-matrices L and R such
that LA(∆,Y)R = I|∆|. Now, multiplication of A with the block diagonal concatenation of
L and R with I|∆c| and appropriate row and column addition gives diag(I|∆|, A(∆c,Yc)). The
rank of this matrix is the same as that of A, and hence rkA(∆c,Yc) = |∆c|. Consider now the
case |Y| 6= |∆|. W.l.o.g. |Y| ≤ |∆| and rkA(∆,Y) = |Y|. Since A(∆,X ) has full rank |∆|,
there exists a set Ỹ s.t. X ⊇ Ỹ ⊇ Y , |Ỹ| = |∆| and rkA(∆, Ỹ) = |∆|. From the first part
we have that this is equivalent to rkA(∆c, Ỹc) = |∆c|. But this implies rkA(∆c,Yc) = |∆c|,
since Yc ⊇ Ỹc. The other direction is analogue.

(vi) iff (v): rkA(∆,Y) = |Y| is equivalent to {A(∆, y)}y∈Y being linearly independent, such
that conv{A(∆, y)}y∈Y is a (|Y| − 1)-simplex. If Y is facial, then all sets Y ′ ⊆ Y are facial. If
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1 Mixtures of Discrete Exponential Families

conv{A(∆, y)}y∈Y is a simplex face of Q, then {A(∆, y)}y∈Y are affinely independent and in
fact linearly independent.

Proof of Proposition 1.3.11. From Lemma 1.2.5 we have: Y is not an S-set⇔∃m ∈ kerA(∆,X )\
{0} such that supp(m+) ⊆ Y . If ∃m ∈ kerA(∆,X ) \ {0} such that supp(m+) = Y , then
Y is not facial (from [48, 96]). From [64] we have that ∀Λ ⊆ [n] with |Λ| = k + 1 and
∀y ∈ {0, 1}n−(k+1) there exists an m ∈ kerA(∆k,X ) such that supp(m) = {x ∈ X : xΛc =
y} =: C, (which is a (k + 1)-dim face of the n-cube), and m|C ∝ A(Λ, C). Now observe that
A(Λ, x) is just the parity of xΛ, i.e., A(Λ, x) is 1, if xΛ has an even number of ones and −1, if
xΛ has an odd number of ones. This means that supp(m+) = Z+ ∩ C = {x ∈ X :

∑
i∈Λ xi

mod 2 = 0, xΛc = y}. Hence the claim.

Proof of Lemma 1.3.12. The set Y has cardinality 2k+1 and therefore F has dimension at most
2k+1 − 1 = 2K + 1. In fact it has a dimension strictly less than 2K + 1, since in that case it
would be a simplex, in contradiction to Proposition 1.3.11. On the other hand, if the dimension
of F was less than 2K, then by the arguments from page 26 (see [51, Theorem 7.4.3]), it would
be a simplex, in contradiction to the number of vertices. Hence, dimF = 2k+1 − 2, and all
proper faces of F are simplices. The combinatorial equivalence of F to the cyclic polytope
C(2K + 2, 2K) follows from the fact that Any 2n-dimensional, n-neighborly polytope with
v ≤ 2n + 3 vertices is combinatorially equivalent to the cyclic polytope C(v, 2n) (see [51,
Theorem 7.2.3]). To complete the proof we use Gale’s Evenness Criterion: A d-tuple VJ =
{x(tj)}j∈J J ⊂ [v], |J | = d of vertices of C(v, d), spans a facet iff between any two elements
of J there is an even number of elements in [v] \ J (see [51, Theorem 4.7.2]). Here we have
v = 2k+1 and d = 2k+1−2. The combinatorial structure of the cyclic polytope is independent of
the map i 7→ ti and we may choose I = [v] := {1, . . . , 2k+1} ⊂ N. The sets VJ , |J | = 2k+1−2
satisfying the evenness criterion are exactly the complements of pairs {ie, io} ⊂ [v], where ie is
even and io is odd. There are 22k such pairs, and hence of facets. This is the same number of
sets respecting the condition on S-sets from Proposition 1.3.11. Therefore, all sets Z respecting
that condition, Z 6⊇ Y ∩ Z±, must correspond to facets of C(2k+1, 2k+1 − 2) and are indeed
S-sets.

Proof of Proposition 1.3.13. For any S-set Y of Ek we have: |(C∩Z±)\Y| ≥ 1 for any (k+1)-
dimensional face of the n-cube C. Therefore, the maximal cardinality of an S-set Y ⊆ Z± is
upper bounded by |Z±| −K(n, k + 1), where K(n, k + 1) is the smallest number of elements
needed to mark all (k + 1)-dim faces of the n-cube. The set of vertices of all (k + 1)-faces of
the n-cube containing a common mark x correspond to the Hamming ball Bn,k+1(x) ⊆ X of
radius k + 1 centered at x. Hence, K(n, k + 1) is the minimal cardinality of binary codes of
length n and covering radius k + 1. In the case R < n ≤ 2R + 1, clearly K(n,R) = 2, but
in general computing K(n,R) is hard (see [27]). A crude lower bound is the sphere-covering
bound: K(n,R) ≥ 2n/|Bn,R|, which is only optimal if the faces containing different marks can
be chosen to be disjoint. Here |Bn,R| =

∑R
i=0

(
n
i

)
. On the other hand, the cardinality of an S-set

of Ek can’t exceed dim cs(Ek) + 1 = |∆k| = |Bn,k|, since the dimension of the corresponding
face can’t be larger than that of cs(Ek).

Details to Remark 1.2.10. The set Y is an S-set iff

(i) rkA(∆,Y) = |Y|, (i.e., Y describes a (|Y| − 1)-simplex), and

(ii) ∃c ∈ R|∆| s.t. 〈c, A(∆, y)〉 = 0 ∀y ∈ Y and 〈c, A(∆, x)〉 ≥ 1 ∀x ∈ Yc, (i.e., Y is facial).

30



1.B Modes of Binary Mixture Models

We show that Y satisfies these properties iff x ∗ Y does. We have that

A(λ, x ∗ y) = (−1)|(supp(x)4supp(y))∩λ|

= (−1)|supp(x)∩λ|(−1)|supp(y)∩λ| , ∀x ∈ X , λ ∈ 2[N ], y ∈ X

and thusA(∆, x∗Y) = diag (A(∆, x))·A(∆,Y). Hence, rkA(∆,Y) = rkA(∆, x∗Y). On the
other hand we can define c̃ := diag(A(∆, x)) · c, and we get 〈c̃, A(∆, x ∗ y)〉 = 〈c, A(∆, y)〉 =
0 ∀y ∈ Y . Similarly, 〈c̃, A(∆, z′)〉 ≥ 1 ∀z′ ∈ (y ∗ Y)c.

1.B Modes of Binary Mixture Models

The support sets of mixtures of distributions from the closure of an exponential family give
information about the topography of the mixture model, i.e., about the kinds of modes that can
be realized by the mixture model. In the following we elaborate this idea and estimate the
volume of the complement of mixtures of binary independence models.

Definition 1.B.1. We call x ∈ {0, 1}n a mode of p ∈ Pn if p(x) > p(x̂) for all x̂ with
dH(x̂, x) = 1, and we call x a strong mode if p(x) >

∑
x̂:dH(x̂,x)=1 p(x̂). We denote Gn,m

the set of probability distributions in Pn which have at least m modes, and Hn,m the set of
probability distributions which have at least m strong modes.

Remark 1.B.2. Any strong mode is also a mode. Furthermore, a probability distribution on
{0, 1}n can have at most 2n−1 modes, because the Hamming distance between two modes is at
least two. Hence Pn = Gn,0 ⊃ Gn,1 ⊃ · · · ⊃ Gn,2n−1+1 = ∅.

The modes of a probability distribution encode events that are locally most likely in the space
of possible events. They are closely related to the possible support sets of probability distri-
butions in statistical models, a problem that has been studied especially for hierarchical and
graphical models without hidden variables [48, 66, 96]. The set of binary distributions with a
fixed set of modes is a convex polytope inscribed in the probability simplex Pn. A polytope is
a bounded intersection of half-spaces [122]. The modes that are not realizable by a statistical
model yield a (full dimensional) polyhedral approximation of their complement. This can be
used to bound the approximation errors of the models from below. Indeed, the faces of Gn are
portions of convex exponential families [79]. Maximizing the KL-divergence to these models is
significantly easier than to general exponential families, not to mention mixtures. Strong modes
are easier to study than not-strong modes, since they are described by fewer inequalities.

Example 1.B.3. Each p in the set G3,4 of probability distributions on {0, 1}3 which have four
modes satisfies one of the following two sets of inequalities:

p(x) > p(y) ∀y ∈ {0, 1}3 with dH(x, y) = 1 ∀x ∈ Z+,3 ∨ ∀x ∈ Z−,3 . (1.12)

Either set of inequalities represents an intersection of open half-spaces, i.e., a (possibly un-
bounded) open h-polytope. The closure of the intersection of this h-polytope with the probability
simplex is a bounded convex polytope G±3 , and G3 = G+

3 ·∪G−3 . The v-presentation of a bounded
polytope is a finite list of points in the polytope which contains the vertex set of the polytope.
Table 1.1 shows the list of vertices of the closure of G+

3 , the set of all probability distributions
on {0, 1}3 which have four modes Z+,3. The set of vertices incident to each of the facets of
G+

3 is listed in Table 1.2. The Lebesgue volume of the set G3 can be easily computed (using
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1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0 1/4 1/4 1/4 0 0 0 1/4
1/4 0 1/4 1/4 0 0 1/4 0
1/4 1/4 0 1/4 0 1/4 0 0
1/4 1/4 1/4 0 1/4 0 0 0

1/6 1/6 1/6 1/6 0 1/6 0 1/6
1/6 1/6 1/6 1/6 1/6 0 0 1/6
1/6 1/6 1/6 1/6 0 0 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6 0 0
1/6 1/6 1/6 1/6 1/6 0 1/6 0
1/6 1/6 1/6 1/6 0 1/6 1/6 0

1/7 1/7 1/7 1/7 0 1/7 1/7 1/7
1/7 1/7 1/7 1/7 1/7 0 1/7 1/7
1/7 1/7 1/7 1/7 1/7 1/7 0 1/7
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8


(000) (011) (101) (110) (001) (010) (100) (111)

(1.14)

Table 1.1: This table shows the v-presentation of the polytope G+
3 . Each row of the matrix

is a probability distribution on {0, 1}3 which is a vertex of the polytope. The vertices in the
first group are the point measures on Z+,3. They have degree 18 (i.e., they are incident to 18
edges) and are connected by edges to any other vertex of the polytope. The vertices in the
second and fourth groups have degree 11. There are no edges between pairs of vertices from
the second group. The vertices in the third group have degree 8, and the uniform distribution
has degree 12. The f -vector of the polytope is (19, 110, 290, 387, 270, 96, 16). The volume is
vol(G+

3 )/ vol(P3) = (1/2257920)/(1/40320) = 0.0179.... The vertices of G±3 are the extreme
points of the set of uniform distributions on subsets of {0, 1}3 which can be covered by three
disjoint faces of the unit cube.

Polymake):

vol(G+
3 ·∪G−3 )/ vol(P3) = 2 · (1/2257920)/(1/40320) = 2 · 0.01785714286... . (1.13)

Example 1.B.4. The set of probability distributions on {0, 1}3 with modes (110), (101) and
(011), denoted G({(110), (101), (011)}), is described by

p(110) > p(111), p(100), p(010)

and analogous inequalities for p(101) and p(011). The closure of the set of points in P3 satisfy-
ing these inequalities is a polytope with the vertices shown in Table 1.3. The set of probability
distributions on {0, 1}3 which have three modes is the union of all sets of the form G(Y), where
Y is a binary code of minimum distance two and cardinality three.
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2 3 4 5 8 10 12 13 16 17 18 19
2 3 4 5 7 9 12 14 15 17 18 19
2 3 4 5 6 11 13 14 15 16 18 19
1 3 4 6 8 10 12 13 16 17 18 19
1 3 4 6 7 9 12 14 15 17 18 19
1 3 4 5 6 9 10 11 15 16 17 19
1 2 4 7 8 10 12 13 16 17 18 19
1 2 4 6 7 11 13 14 15 16 18 19
1 2 4 5 7 9 10 11 15 16 17 19
1 2 3 7 8 9 12 14 15 17 18 19
1 2 3 6 8 11 13 14 15 16 18 19
1 2 3 5 8 9 10 11 15 16 17 19
1 2 3 4 6 7 8 12 13 14 18
1 2 3 4 5 6 7 9 11 14 15
1 2 3 4 5 6 8 10 11 13 16
1 2 3 4 5 7 8 9 10 12 17

(1.15)

Table 1.2: This table shows the vertex-facet incidence of the polytope G+
3 . Each row gives a list

of vertices incident to one facet of G+
3 . The number of each vertex is the number of the row in

which it appears in Table 1.1. The set of vertices contained in any face of the polytope is given
by an intersection of the 16 sets listed above. There are edges between vertices from the first and
the second groups shown in Table 1.1 which represent probability distributions with supports
of cardinality 5. The support of these distributions can’t be packed by three faces of the cube.
These distributions are not contained in Mixt3(E1

3 ).

33



1 Mixtures of Discrete Exponential Families



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0 0 1/3 1/3 0 0 1/3 0
0 1/3 0 1/3 0 1/3 0 0
0 1/3 1/3 0 1/3 0 0 0

0 1/4 1/4 1/4 0 0 0 1/4

0 1/5 1/5 1/5 0 1/5 0 1/5
0 1/5 1/5 1/5 1/5 0 0 1/5
0 1/5 1/5 1/5 0 0 1/5 1/5
0 1/5 1/5 1/5 1/5 1/5 0 0
0 1/5 1/5 1/5 1/5 0 1/5 0
0 1/5 1/5 1/5 0 1/5 1/5 0

0 1/6 1/6 1/6 0 1/6 1/6 1/6
0 1/6 1/6 1/6 1/6 0 1/6 1/6
0 1/6 1/6 1/6 1/6 1/6 0 1/6
0 1/6 1/6 1/6 1/6 1/6 1/6 0

0 1/7 1/7 1/7 1/7 1/7 1/7 1/7


(000) (011) (101) (110) (001) (010) (100) (111)

(1.16)

Table 1.3: Each row of the matrix shown above is a vertex of the polytope of probability distri-
butions on {0, 1}3 with modes (110), (101) and (011).

The set of probability distributions which have the maximal possible number of modes has an
easy description as the disjoint union of two convex polytopes. The following lemma provides a
description of the set of probability distributions on {0, 1}n with maximal number of modes. For
the sake of simplicity and generality, the formulation of this lemma includes the description of
functions on {0, 1}n with maximal number of modes, but which are not necessarily normalized
or non-negative.

Consider the set R2n of real-valued functions on {0, 1}n. We call x ∈ {0, 1}n a mode of
the function f ∈ R2n if f(x) > f(y) for all y with dH(x, y) = 1. Any two modes of f have
Hamming distance at least two. Hence 2n−1 is the maximal number of modes of any function
on {0, 1}n. Denote G̃n,2n−1 ≡ G̃n the set of functions on {0, 1}n which have 2n−1 modes. If a
function has 2n−1 modes, then the set of modes is Z+,n or Z−,n. The set G̃n is the union of the
set of functions with modes Z+,n and the set of functions with modes Z−,n. The set of functions
with modes Z±,n is

G̃±n = {p ∈ R2n : p(x) > p(y) ∀x ∈ Z±,n ∀y with dH(x, y) = 1} . (1.17)

Every inequality p(x) > p(y) defines an open half-space of R2n , and the set G̃±n is an intersec-
tion of n2n−1 open half-spaces.

The set of probability distributions on {0, 1}n which have 2n−1 modes is just Gn,2n−1 ≡
Gn = G̃n ∩ Pn. Hence G+

n is the intersection of the n2n−1 open half-spaces defining G̃+
n , the

(2n − 1)-dimensional affine space aff(Pn) = {f ∈ R2n :
∑

x f(x) = 1}, and the 2n−1 closed
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1.B Modes of Binary Mixture Models

half-spaces defined through p(y) ≥ 0 ∀y ∈ Z∓,n, (the inequalities p(x) ≥ 0 ∀x ∈ Z±,n are also
satisfied when p ∈ G̃n).

Lemma 1.B.5.

(i) The set G′n := G̃n ∩ aff(Pn) is an affine double-cone. More precisely, it is the disjoint
union of two open, affine, polyhedral, convex cones G′+n and G′−n with common apex u =
(1/2n, . . . , 1/2n), and which are the image of each other by the reflection through u.

(ii) The set G̃n ⊂ R2n has a non-empty interior and full dimension 2n for any n ∈ N. The sets
G′n ⊂ aff(Pn) and Gn ⊂ Pn have a non-empty interior and full dimension 2n − 1 for any
n ∈ N.

(iii) The sets G′+n and G′−n are separated by any affine hyperplane which intersects u and has
a normal vector in the following cone:

N :=
{ ∑
x∈Z+,n

∑
y:dH(x,y)=1

λ(x,y)(δx − δy) : λx,y ≥ 0,
∑

λx,y > 0
}
,

for example, by the affine hyperplane {uZ+,n − uZ−,n}⊥ + u. The union of these hyper-

planes equals the complement of G′n. The set G′±n doesn’t contain any line, i.e., G′±n is a
salient cone. In particular, G′+n ∩ G′−n = {u}.

(iv) Any line L = {p + λ(p − q) : λ ∈ R} ⊂ aff(Pn) which intersects both G′+n and G′−n ,
intersects their boundaries exactly once: |L ∩ (G′±n \ G′±n )| = 1.

(v) If the convex hull of a set of points {pi ∈ aff(Pn)}ki=1 intersects G′±n , then each of the
n2n−1 inequalities defining G′±n is satisfied by at least one of the points pi.

Proof.

(i) The uniform distribution is contained in any hyperplane {p : p(x) = p(y)} for any x 6= y,
and hence it is contained in the closure of G′±n . Any plane {f ∈ aff(Pn) : f(x) = f(y)}
for some x, y ∈ {0, 1}n with dH(x, y) = 1 separates G′+n and G′−n , because any point
f ∈ G′±n satisfies f(x) ≷ f(y). In particular, the two sets are disjoint. The sets G′±n
are open affine convex cones, because they are an intersection of affine open half-spaces
which contain the point u in their bounding planes.

Let f = u+ v be some vector in aff(Pn). If f ∈ G′+n , then v(x) > v(y) for all x ∈ Z+,n

and all y with dH(x, y) = 1, and
∑

x v(x) = 0. The vector −v satisfies −v(x) < −v(y)
for all y ∈ Z−,n and x with dH(x, y) = 1 and

∑
x−v(x) = 0. Therefore, u − v ∈ G′−n ,

and G′−n contains the reflection of any point in G′+n through u.

(ii) For any Y ⊆ {0, 1}n let uY be the probability vector defined by uY(x) := 1/|Y| if x ∈ Y
and uY(x) = 0 else. The open set G̃n contains a neighborhood of uZ±,n and therefore has
a non-empty interior and full dimension. The claim for the sets G′n and Gn follows from
similar arguments.

(iii) For any pair f, g ∈ R2n denote 〈f, g〉 :=
∑

x∈{0,1}n f(x)g(x) the standard scalar product.
Let d be any vector inN . From the definition ofN we have 〈d, (1, . . . , 1)〉 = 〈d, u〉 = 0.
Any point f ∈ G′+n satisfies f = u+ v with ‖v‖1 6= 0 and sgn v(x) ∈ {0,+} if x ∈ Z+,n
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1 Mixtures of Discrete Exponential Families

and sgn v(x) ∈ {0,−} if x ∈ Z−,n. Hence, 〈v, d〉 > 0. On the other hand, any point w
on the hyperplane with normal vector d, passing through u, satisfies 〈d, (w−u)〉 = 0 and
〈d,w〉 = 0. Hence w 6= f . Furthermore, the set of hyperplanes through u with normal
vectors in N contains all bounding hyperplanes of the half-spaces defining G′+n and G′−n .

The matrix with rows {(δx − δy)}x∈Z+,n,dH(x,y)=1 has a one-dimensional kernel spanned
by u. To see this note that any f in the kernel of the row (δx − δy) satisfies f(x) =
f(y), and since the graph of the n-cube is Hamiltonian, this implies f(x1) = f(y1) =
· · · = f(x2n−1) = f(y2n−1) for {xi} = Z+,n and {yi} = Z−,n. Hence the polytope
conv{(δx − δy)}x∈Z+,n,dH(x,y)=1 has dimension 2n − 2. This implies that G′+n doesn’t

contain any line (the double-cone G′n certainly does), and G′+n ∩ G′−n = u.

(iv) The generatrix of G′+n is the set of directions from the apex u to any other point in the
boundary of G′+n . Assume that the line L intersects the boundary of G′±n at two different
points f and f ′. Then the tangent vectors of L are not within the generatrix of G′±n and
f, f ′ 6= u. Since G′∓n is convex, a translate G′∓n + p contains G′∓n iff p ∈ u − G′±n . Hence
G′∓n + (u− f) ⊇ G′∓n . Since the tangent vectors of L are not within the generatrix of G′±n ,
they are not within the generatrix of G′∓n and L intersects the apex f of G′∓n + (u− f), but
L does not intersect any other point in G′∓n +(u−f), and in particular it does not intersect
G′∓n . Hence if L intersects G′+n and G′−n , then |L ∩ G′± \ G′±| ≤ 1. Since G′±n contains no
line, any line which intersects G′±n , intersects its boundary. This completes the proof.

(v) If not, the polytope lies in a half-space contained in the complement of G′±n .

Modes of Mixtures of Binary Independence Models

Definition 1.B.6. Let 1 ≤ l ≤ 2n−1. We define g(l, n) to be the smallest k ∈ N for which there
are k points in E1

n whose convex hull contains a distribution with l modes. Similarly, we define
h(l, n) to be the smallest k ∈ N for which there are k points in E1

n whose convex hull contains a
distribution with l strong modes.

Question 1.B.7. What is h(l, n), g(l, n)?

Corresponding questions have been posed in the case of continuous variables and mixtures of
multivariate normal distributions [97]. At the present time the maximal number of modes of a
mixture of k normal distributions on Rn is unknown.

The following lemma extends Corollary 1.3.3. It gives inequalities which cut out a portion of
the complement of the mixture model Mixtk(E1

n).

Lemma 1.B.8. Let n ∈ N and p ∈ Pn. If x ∈ {0, 1}n is a strong mode of p, then any
representation of p as mixture of product distributions includes a mixture component which is
strictly maximized at x. Furthermore, the smallest k for which Mixtk(E1

n) contains a distribution
with l strong modes is

h(l, n) = l ∀l ∈ {0, . . . , 2n−1} ,
and (

Pn \Mixtk(E1
n)
)
⊇ Hn,k+1 ∀k .

Proof. Consider any p ∈ E1
n. The set of maximizers of p is a face of Cn and hence p has at

most one mode. Consider a pair of vectors x, y ∈ {0, 1}n ∼= Fn2 . We can write y = x +
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1.B Modes of Binary Mixture Models

1supp(x)4 supp(y)(mod 2), where 4 denotes the symmetric difference. If p(x) ≥ p(y), then
p(x) ≥ p(z) ≥ p(y) for any z = x + 1B with B ⊆ supp(x)4 supp(y). Consider now a
probability distribution q which has a strong mode x. We show that any mixture decomposition
of q into product distributions has a mixture component with mode x. Let qi, i ∈ [n], denote the
mixture components. Assume that non of them has mode x. Then, for every i, there exists a y
such that qi(y) ≥ qi(x), and qi(x̂) ≥ qi(x) for x̂ = x + 1{j} for any j ∈ supp(x)4 supp(y).
Obviously, dH(x̂, x) = 1, but this implies that x can’t be a strong mode of

∑
i αiq

i.
Corollary 1.3.3 implies that Mixtk(E1

n) contains any distribution with support of cardinality k;
in particular the uniform distribution on a binary code of minimum distance two and cardinality
k whenever k ≤ 2n−1. This is a distribution fromHn,k.

Corollary 1.B.9. The model Mixtk(E1
n) intersects Hn,m if and only if Mixtk(E1

n) contains a
distribution supported by a binary code of minimum distance two and cardinality at least m.

The following is a crude bound for the Lebesgue volume of the set of probability distributions
with more than m strong modes and by Lemma 1.B.8, for the complement of Mixtm(E1

n):

Proposition 1.B.10. If m < 2n−1, then vol(Hn,m+1) ≥ K(m + 1)2−(m+1)n vol(Pn), where

K(m+ 1) =

{
2m+1, if m+ 1 ≤ 2k ≤ 2n

n for some k
2, otherwise

.

Proof. (i) The probability simplex P is a regular (|X | − 1)-simplex in R|X |; all edges have the
same length

√
2. Let H(Y) denote the set of probability distributions which have strong modes

at Y ⊂ X . Then H(Y) = ∩y∈YH(y). For any y ∈ X , denote by B1(y) the Hamming ball
with center y and radius 1. The set Py(B1(y)) := {p ∈ P(B1(y)) : p(y) ≥ p(X \ {y})} is a
regular n-simplex of side length

√
2

2 (its vertices are {1
2(δy + δŷ)}dH(ŷ,y)≤1). The volume of a

regular N -simplex with side length l is vol(∆N
l ) =

√
N+1

N !
√

2
N l

N . The set H(y) is the convex hull

of Py(B1(y)) and P(X \B1(y)), and hence volH(y) = 2−n volP . If Y has minimum distance
3 or more, volH(Y) = 2−|Y|·n volP . If the minimum distance of Y is two, then the volume of
H(Y) is larger.

(ii) The number K(m+ 1) is a lower bound on the number of disjoint sets H(Y) with |Y| =
m+ 1. The Gilbert-Varshamov bound (see Proof of Theorem 1.3.1) tells us that if m+ 1 ≤ 2k,
where k is the largest integer for which 2k ≤ 2n

n , there exists a binary code Y ⊂ X , |Y| = m+1
with minimal distance 3. Let Y ′ = Y \ {y} ∪ {y + 11} (flip one coordinate of one element of
Y). We have that H(Y) ∩ H(Y ′) = ∅. Since Y has (m + 1) elements, there are 2m+1 disjoint
setsH. For any m+ 1 ≤ 2n−1, if Y is a binary code of minimum distance 2, then also Y ′ + 11,
andH(Y) ∩H(Y ′) = ∅.

Remark 1.B.11.

(i) There are mixtures of two product distributions which have more than two modes. Hence
g(l, n) 6= h(l, n), in general.

(ii) The set of distributions with l strong modes is contained in the set of distributions with l
modes. By Lemma 1.B.8 we get

g(l, n) ≤ h(l, n) = l ∀l ∈ {0, . . . , 2n−1} . (1.18)
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1 Mixtures of Discrete Exponential Families

The following lemma relates the number of modes of a mixture model to the number of modes
of truncations of the model:

Lemma 1.B.12. Let n ≥ 2 and k ∈ N. Let p be a non-negative sum of k products p =∑
i∈[k] λi

∏
j∈[n] p

i,j , with λi ≥ 0 and (pi,1, . . . , pi,n) ∈ (P1)n, i = 1, . . . , k. If p has 2n−1

modes, then for any {j1, . . . , jm} ( {1, . . . , n} the convex hull of the products
∏
l∈[m] p

i,jl ∈
E1
m, i = 1, . . . , k on {0, 1}j1,...,jm ∼= {0, 1}m intersects both G+

m and G−m.

Proof. We show an illustrative special case of the claim. The proof of the general case is a
straightforward generalization of the proof of this special case:

Let n ≥ 2 and k ∈ N. If q ∈ Mixtk(E1
n) is contained inH+

n , then there exist k elements of E1
n−1

whose convex hull intersects both G+
n−1 and G−n−1.

Any mixture of k product distributions with n variables, q ∈ Mixtk(E1
n), has the following

form:

q(x1, x2, . . . , xn) =

k∑
i=1

λip
i,1(x1)pi,2(x2) · · · pi,n(xn) , ∀(x1, x2, . . . , xn) ∈ {0, 1}n ,

(1.19)
where

∑k
i=1 λi = 1, λi ≥ 0 and pi,j ∈ P1. For the fixed value x1 = 0 the above expression

can be understood as a mixture of k product distributions with (n − 1) variables, multiplied by
a positive constant:

q(x1 = 0, x2, . . . , xn) = c0

k∑
i=1

λ0,ip
i,2(x2) · · · pi,n(xn) = c0q0(x2, . . . , xn) ,

∀(x2, . . . , xn) ∈ {0, 1}n−1 , (1.20)

where
∑k

i=1 λ0,i = 1, λ0,i ≥ 0 with

λ0,i =
λip

i,1(x1 = 0)

c0
and c0 =

k∑
i=1

λ0,ip
i,1(x1 = 0) . (1.21)

A similar observation can be made for the fixed value x1 = 1. In total we get the following:

q =

{
c0
∑k

i=1 λ0,ip
i,2 · · · pi,n = c0q0 , if x1 = 0

c1
∑k

i=1 λ1,ip
i,2 · · · pi,n = c1q1 , if x1 = 1

. (1.22)

If the probability distribution q is contained in G+
n , then

(i) q0 ∈ G+
n−1, which is to say that q satisfies the inequalities describing G+

n involving coor-
dinates from the set {(0, x2, . . . , xn) : (x2, . . . , xn) ∈ {0, 1}n−1}.

(ii) q1 ∈ G−n−1, which is to say that q satisfies the inequalities describing G+
n involving coor-

dinates from the set {(1, x2, . . . , xn) : (x2, . . . , xn) ∈ {0, 1}n−1}.
The probability distributions q0 and q1 are mixtures of the same k product distributions
{pi,2 · · · pi,n ∈ E1

n−1}i=1,...,k, although they may have different mixture weights (λ0,1, . . . , λ0,k)
and (λ1,1, . . . , λ1,k). The convex hull of {∏n

j=2 p
i,j ∈ E1

n−1}ki=1 contains q0 and q1, and inter-
sects G+

n−1 and G−n−1.
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1.B Modes of Binary Mixture Models

Corollary 1.B.13. g(2n, n+ 1) > g(2n−1, n) for all n ≥ 1.

Proof. This follows from Lemma 1.B.12 and Lemma 1.B.5(iv).

The Three-Mixture of Three Independent Variables

Example 1.B.14. (Modes of Mixt3(E1
3,bin)). We have seen that any element of Mixt3(E1

3,bin)
has at most three strong modes. What about not-strong modes? We ask whether the following
inequalities have a solution:

3∑
i=1

αi(pi(x)− pi(y)) > 0 ∀y s.t. dH(x, y) = 1, ∀x ∈ Z+,3, for pi ∈ E1
3,bin . (1.23)

Every mixture component is a product pi(x) = p1
i (x1) · p2

i (x2) · p3
i (x3). Equation (1.23) rep-

resents a problem with 12 non-linear inequalities involving polynomials of degree four in the
11 variables {pji}i∈{1,2,3},j∈{1,2,3} and α1, α2, and 22 linear inequality constraints 0 ≤ pji (xj =
1) ≤ 1, and 0 ≤ αi, α1 +α2 ≤ 1. We formulated this as constrained optimization problem with
objective

f(x) =
∏

x∈Z+,y:dH(x,y)=1

(
∑
i

αi(pi(x)− pi(y)))2 , (1.24)

run the MATLAB function fmincon on a large number of initial values and found no solutions.
There exist solutions where the inequalities from (1.23) are not strict and the objective vanishes,
e.g., the uniform distribution, or the point measures within P(Z+). An alternative approach is
to search for likelihood maximizers within the mixture model given a target with four modes:
We run a custom EM algorithm for (data generated from) targets of the form pλ,β = (1 −
λ)u+ λ(βuZ+ + (1− β)uY) with Y ⊆ Z+. The resulting likelihood maximizers had a strictly
positive Kullback-Leibler divergence to the target whenever λ, β > 0. The result can be seen
in Figure 1.4. Both numeric evaluations suggest that any p ∈ Mixt3(E1

3,bin) has at most three
modes. With the next Proposition 1.B.15 we provide a rigorous proof of this statement.
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Figure 1.4: This figure shows the Kullback-Leibler divergence from probability distributions on
{0, 1}3 which have four modes, to the model Mixt3(E1

3,bin). The line marked with circles shows
pλ = (1− λ)u+ λuZ+ , the “symmetric” distributions with four modes on Z+. The other lines
show pλ,β = (1−λ)u+λ(βuZ+ +(1−β)uY) for β ∈ {0.25, 0.5, 0.75}; the squares correspond
to Y = {(000), (011), (110)}, and the diamonds to both Y = {(000), (011)} and Y = {(000)}.
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1 Mixtures of Discrete Exponential Families

Proposition 1.B.15. The mixture model consisting of convex combinations of any three product
distributions on {0, 1}3 doesn’t contain any probability distribution which has four modes:

Mixt3(E1
3 ) ∩ G3 = ∅ .

In particular u is not an inner point of the model Mixt3(E1
3 ).

Proof. Assume that Mixt3(E1
3 ) ∩ G3 6= ∅. Without loss of generality assume Mixt3(E1

3 ) ∩
G+

3 6= ∅. By Lemma 1.B.12 there exist (pi,1, pi,2, pi,3) ∈ (P1)3, i = 1, 2, 3 such that the con-
vex hull conv{qi}i=1,2,3 of the product distributions qi := pi,2pi,3 ∈ E1

2 intersects G+
2 and

G−2 . By Lemma 1.B.5(iv) any line which intersects both G′+2 and G′−2 , intersects the bound-
ary of each of them exactly once. See Figure 1.5. If a line segment in conv{qi}i extends
to a line which intersects the boundaries of G′+2 and G′−2 exactly once, then the distributions
q1, q2, q3 can be enumerated such that conv{q1, q2} intersects G+

2 , and conv{q2, q3} intersects
G−2 . By Lemma 1.B.5(v) the mixture of conv{q2, q3} intersects G−2 only if q2 ∈ G({(10)})
and q3 ∈ G({(01)}) or q3 ∈ G({(10)}) and q2 ∈ G({(01)}). Similarly, if conv{q1, q2} inter-
sects G+

2 , then q1 ∈ G({(11)}) and q2 ∈ G({(00)}) or q2 ∈ G({(11)}) and q1 ∈ G({(00)}).
Contradiction! The uniform distribution is contained in the independence model and hence also
u ∈ Mixt3(E1

3 ). On the other hand, by Lemma 1.B.5, u is contained in the closure of G3.

G+
2

G−2

E1
2

δ(00) δ(11)

δ(01) δ(10)

Figure 1.5: This figure shows the 3-dimensional probability simplex on {0, 1}2, the indepen-
dence model E1

2 , and the sets of distributions with two modes G+
2 and G−2 .

Remark 1.B.16. In the proof of Proposition 1.B.15 we used only 8 of the 12 inequalities that
describe G+

3 .

In the next chapters of this thesis we will study the class of binary models represented by
Restricted Boltzmann Machines. Without going into details at this point, we discuss a partic-
ular example; the Restricted Boltzmann Machine model RBM4,2. This model is contained in
Mixt4(E1

4 ) and has codimension one in P4. Its algebraic implicitization was studied in [32], i.e.,
its description as the set of zeros of a collection of polynomials. Using intensive computer analy-
sis Cueto et al. [32] showed that such a description is very complicated and involves polynomials
of degree 110 in as many as 5.5 trillion monomials. By Lemma 1.B.8 Mixt4(E1

4 ) ∩H4 = ∅ and
RBM4,2 ∩H4 = ∅. Proposition 1.B.15 and Corollary 1.B.13 allow us to explicitly describe a
larger portion of the complement:
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1.B Modes of Binary Mixture Models

Corollary 1.B.17. Mixt4(E1
4 ) doesn’t intersect G4. In particular, the Restricted Boltzmann

Machine with four visible and two hidden units can’t represent any probability distribution with
eight modes

RBM4,2 ∩G4 = ∅ .

In the following we show that the convex hull of certain submodels of E1
n doesn’t intersect Gn.

For any k ∈ N, Bi ∈ Rn and λi ∈ R≥0 for all i = 1, . . . , k we consider the following
function:

FBi,λi : R
n → R ; x 7→

k∑
i=1

λi exp(

n∑
j=1

Bi,jxj) . (1.25)

We will use the following elementary observation:

Proposition 1.B.18. Let k, n ∈ N. If {Bi}i∈[k] are any vectors in Rn, λi ∈ R≥0 for all i ∈ [k],
and FBi,λi is defined as in eq. (1.25), then FBi,λi is a convex function. If 0 ∈ aff{Bi}i∈[k], then
∇wF = 0 for all w ∈ aff{Bi}⊥. If dim(aff{Bi}i∈[k]) < n, then each level set is unbounded.

Proof. The Hessian H(F )(x) = (
∑

i λiBi,jBi,k exp(Bix))jk is everywhere positive semidefi-
nite, since

y>(H(F )(x))y =
∑
i

λi(
∑
j

yjBi,j)(
∑
k

ykBi,k) exp(Bix))jk =
∑
i

λi〈y,Bi〉2 exp(Bix))jk .

The Hessian is everywhere positive definite and the function F is strictly convex if and only if
the vectors Bi span Rn.

From the convexity of F it follows that each sublevel setL−c (F ) := {x ∈ Rn : FBi,λi(x) ≤ c}
is a convex subset of Rn.

Proposition 1.B.19. If M is a linear projection of R3 onto a 2-space, then conv(M(Z+,3))
intersects M(Z−,3). Hence M(Z+,3) and M(Z−,3) can’t be separated by the boundary of a
convex set.

Proof. Use that the convex hull of any two points in M(Z−,3) intersects the convex hull of
two points in M(Z+,3) (this follows from Radon’s theorem applied to any 2-face of {0, 1}3).
If conv(M(Z+,3)) didn’t contain one element of M(Z−,3), then the above condition wouldn’t
hold.

Corollary 1.B.20. Let E be any two-dimensional exponential subfamily of E1
3 which contains u.

Then conv(E) doesn’t contain any probability distribution of the form

p = λu+ (1− λ)uZ±,3 , λ ∈ [0, 1) .

In particular, u is not an inner point of conv(E).

Proof. If E is a two-dimensional exponential subfamily of the independence model E1
n, then

any element from E has the form exp(B>x)/Z, where x ∈ {0, 1}n, and B belongs to a 2-
dimensional subspace of Rn, and Z is a normalization constant. Any element in a mixture of k
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elements from E is proportional to

p(x) ∝ F (x) =
k∑
i=1

λi exp(B>i x) ∀x ∈ {0, 1}n . (1.26)

Each level set of F bounds a convex set which is symmetric along the normal vectors of aff{Bi}.
Together with Proposition 1.B.19 this implies that p 6= λu+ (1− λ)uZ±,3 , ∀λ ∈ (0, 1].

Example 1.B.21. The models from Corollary 1.B.20 include the one-dimensional model of n
independent and identically distributed variables {pθ(x) ∝ exp(θ1>x) : θ ∈ R}. This model is
a curve of order n contained in the exchangeable simplex with vertices

(
n
k

)−1∑
x,‖x‖1=k δx for

k = 0, . . . , n. For n = 3 the convex hull of this model doesn’t contain any distribution with four
modes.

1.C Hadamard Matrices and Related Exponential Families

In this appendix we study submatrices of Hadamard matrices. We are interested in the matrix
with entries

σ(λ, x) :=
∏
r∈λ

xr , for λ ∈ 2[N ] and x ∈ X = {−1,+1}N ,

where xr is the r-th coordinate of x. We use the following notation: Let σ be a matrix with rows
indexed by a ∈ A, and columns indexed by b ∈ B. For any subsets C ⊆ A andD ⊆ B we write
σ(C,D) := (σ(a, b))a∈C,b∈D. For a given λ, σ(λ, ·) is a function on x ∈ X called character
which only depends on the values of x in the coordinates i ∈ λ. These functions build a basis of
the space of functions on X , and are used to define the sufficient statistics of binary hierarchical
models (see Section 1.1). The matrix σ is a Hadamard matrix; it is a square 2N × 2N matrix
with entries ±1 which satisfies σ>σ = 2NI , where I is the identity matrix. All rows of σ are
orthogonal to each other and have the same two-norm. The indices λ ∈ 2[N ] and x ∈ X can be
arranged in such a way that σ is symmetric. In that case σ is called a Sylvester matrix, and can
be represented by the following Kronecker product σ(2[N ], {±1}N ) = ⊗Ni=1

(
+1+1
+1−1

)
. See [60]

for details.

We use the following nomenclature:

• For any ∆ ⊆ 2[N ] let Y∆ := {x ∈ X : supp(1 − x) ∈ ∆}. In particular, the set Y(y)
∆k

consists of all elements z ∈ X with Hamming distance to y smaller or equal to k.

• For any Y ⊆ X let Y [−] := {x : −x ∈ Y}, and more generally Y [ξ] := {ξix(i) : {x(i)}i =
Y} for any ξ = (ξ1, . . . , ξ|Y|) ∈ {±1}|Y|.

• For any Y ⊆ X and y ∈ X we define Y(y) := {z = x ∗ y : x ∈ Y}, where ∗ denotes
the element-wise product x ∗ y := diag(y)x, where diag(y) is the diagonal matrix with
entires yi in its diagonal.

• The radius of Y ⊆ X is min
x∈Y

max
x′∈Y
|supp(x − x′)|. Given any element x ∈ X the set of

elements in X which have Hamming distance to x at most k is a set of radius k.
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1.C Hadamard Matrices and Related Exponential Families

We present first the results on submatrices of Hadamard matrices, then their proofs, and at the
end the applications to related exponential families.

Lemma 1.C.1.

(i) Let ∆ = 2λ ⊆ 2[N ]. The sub-matrix σ(∆,Y∆) has orthogonal rows.

(ii) Consider any ∆ ⊆ 2[N ] and any Y ⊆ X . The matrix σ(∆,Y) has full rank min{|Y|, |∆|}
iff σ(∆c,Yc) has full rank min{|Yc|, |∆c|}.

(iii) For any simplicial complex ∆ ⊆ 2[N ] the matrix σ(∆,Y∆) has full rank |∆|, and the
matrix σ(∆c,Yc∆) has full rank |∆c|.

(iv) Consider any ∆ ⊆ 2[n] and Y ⊆ X . If rkσ(∆,Y) = |∆|, then

a) rkσ(∆,Y [−]) = |∆|.
b) If ∆ consists of sets of equal cardinality, then rkσ(∆,Y [ξ]) = |∆| ∀ξ ∈ {±1}|Y|.

(v) Consider any ∆ ⊆ 2[n] and Y ⊆ X . For any y ∈ X we have rkσ(∆,Y) = R ⇔
rkσ(∆,Y(y)) = R. Furthermore, σ(∆, y ∗ x) = diag(σ(∆, y))σ(∆, x), where y ∗ x :=
diag(y)x.

In general, y ∗ Y =: Y(y) can be equal to Y for y 6= 1. However, in the following cases the
sets Y and Y(y) are different:

Proposition 1.C.2.

(i) If k < N , then Y(y)
∆k
6= Y(y′)

∆k
, for any y, y′ ∈ X , y 6= y′.

(ii) If |Y| is odd, then all Y(y), y ∈ X are different.

(iii) If |Y| is even, then there are at least 2N

|Y| different Y(y), y ∈ X .

The following Lemma 1.C.3 is similar to a lemma due to Alon [3] (see [63, Chapter 15]):

Lemma 1.C.3. Let vi = (vi1, . . . , v
i
n), i = 1, . . . , k be k mutually orthogonal vectors in {±1}n,

all of them orthogonal to (1, . . . , 1), and let α = (α1, . . . , αk) be a vector in Rk \ {(0, . . . , 0)}.
Let v =

∑k
i=1 αiv

i and v+
j = max{0, vj}. Then v+ := (v+

1 , . . . , v
+
n ) has more than n/4k

nonzero entries.

We will use the following, which is a corollary of the results by Alon mentioned above. Its
proof can be found in [63, Chapter 15]:

Corollary 1.C.4. The sub-matrix given by σ(A,B), where A ⊆ 2[N ] and B ⊆ X and |A| =: r,
|B| =: t has rank r whenever t >

(
1− 1

r

)
|X |.

Proof of Lemma 1.C.1. Item (i) Consider any x, y ∈ X and let λ′ = supp(1−x)4 supp(1−y),
such that λ′ ∩ Λ = ∅ iff xΛ = yΛ for any Λ ⊂ [N ]. We have the following:

〈σ(2Λ, x), σ(2Λ, y)〉 =
∑
λ∈2Λ

σ(λ, x)σ(λ, y) =
∑
λ∈2Λ

(−1)|λ
′∩λ|

=
∑

λ′′′⊆Λ\λ′

∑
λ′′⊆λ′∩Λ

(−1)|λ
′′| = 2|Λ|δxΛ,yΛ .
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1 Mixtures of Discrete Exponential Families

In the last equality we used that any Λ 6= ∅ has an equal number of subsets of even and odd
cardinalities. Here the empty-set has even cardinality.

Item (ii) Consider first the case |Y| = |∆|. It suffices to show one direction, since one may
define ∆′ = ∆c,Y ′ = Yc. Since σ(∆,Y) has full rank |∆|, to every z ∈ Yc there exists
a vector ṽz = σ(:, z) +

∑
x∈Y αxσ(:, x) ∈ span {{σ(:, x)}x∈Y , σ(:, z)}, for which vz(∆) =

(0, . . . , 0) and ṽz(∆c) = vz with some vz ∈ R∆c
. Note that 2N = 〈σ(:, z), σ(:, z)〉 = 〈ṽz, σ(:

, z)〉 = 〈vz, σ(∆c, z)〉. For all y ∈ Yc \ {z} we have that σ(:, y)⊥ span{{σ(:, x)}x∈Y , σ(:, z)},
and therefore σ(∆c, y)⊥vz ∀z 6= y, z, y ∈ Yc. Summarizing, there exists a set of vectors
{vz}z∈Yc such that 〈σ(∆c, y), vz〉 = 2Nδy,z ∀y, z ∈ Yc. Written as a matrix multiplication

this is:
[
vz1 , . . . , vz|Yc|

]>
·σ(∆c,Yc) = 2N diag(1). We have |Yc| = |∆c|, such that σ(∆c,Yc)

is square. From det(A ·B) = det(A) · det(B), detσ(∆c,Yc) 6= 0 so that it has full rank.
Now consider an arbitrary Y with |Y| ≤ |∆|, (otherwise use Y ′ = Yc and ∆′ = ∆c). By

Corollary 1.C.4, σ(∆,X ) has full rank |∆|, since |X | = 2N > (1 − 1
|∆|)2

N . There exists a set

Ỹ with X ⊇ Ỹ ⊇ Y , |Ỹ| = |∆| and rkσ(∆, Ỹ) = |∆|. By the first part of the proof, this is
equivalent to rkσ(∆c, Ỹc) = |∆c|. But this implies rkσ(∆c,Yc) = |∆c|. The reverse direction
is analogue.

Item (iii) For σ(∆,Y∆): By item (i), 〈σ(2Λ, x), σ(2Λ, y)〉 = 2|Λ|δx(Λ),y(Λ) for any Λ ⊆ [N ].
If ∆ = 2Λ, then the matrix σ(∆,Y∆) has orthogonal rows. For the general case, denote by F
the set maximal inclusion subsets of ∆. For any x, y ∈ Y∆ there exists a pair Λ,Λ′ ∈ F with
supp(x−1) ⊆ Λ and supp(y−1) ⊆ Λ′. The pair x, y is either equal, or σ(2Λ′′ , x)⊥σ(2Λ′′ , y)
for Λ′′ = Λ or Λ′′ = Λ′. Consider some vector σ(∆, x) for which x satisfies supp(x − 1) ⊆
Λ ∈ F . We show that no linear combination of vectors s :=

∑
y∈Y∆\{x} αyσ(∆, y) can be

equal to σ(∆, x): s(∆) 6= σ(∆, x). For any y ∈ Y∆ \ {x} we have (a) σ(2Λ, y)⊥σ(2Λ, x) or
(b) σ(2Λ, y) = σ(2Λ, x) and ∃Λ′ ∈ F , supp(y − 1) ∈ 2Λ′ s.t. σ(2Λ′ , y)⊥σ(2Λ′ , x). If we had
s(∆) = σ(∆, x), then the coefficients αy of all y fulfilling (a) had to be 0. For all coefficients
y which do not fulfill (a), we have that they fulfill (b). Since σ(2Λ′ , y)⊥σ(2Λ′ , x), again, if
s(∆) = σ(∆, x), then all the αy to these y had to be 0. And so forth. This completes the proof
for σ(∆,Y∆). The claim for σ(∆c,Yc∆) follows using item (ii).

Item (iv) a) By definition, σ(λ, x) =
∏
i∈λ xi = (−1)|supp(1−x)∩λ| ∀λ ∈ ∆. On the other

hand, σ(λ,−x) =
∏
i∈λ−xi = (−1)|supp(1+x)∩λ| = (−1)|λ|−|supp(1−x)∩λ| ∀λ ∈ ∆. There-

fore, σ(∆, x) = diag
(

(−1)|λ1|, . . . , (−1)|λ|∆||
)
· σ(∆,−x).

b) For an arbitrary ξ ∈ {±1}|Y| and ∆ consisting of sets of equal cardinality, σ(∆,Y) =
[σ(∆, supp(ξ + 1)), σ(∆, supp(ξ − 1))]. On the other hand

σ(∆,Yξ) = [σ(∆, supp(ξ + 1)),diag
(

(−1)|λ1|, . . . , (−1)|λ|∆||
)
· σ(∆, supp(ξ − 1))] ,

where the diagonal matrix can be replaced by +1 or −1.

Item (v) For any x ∈ X , λ ∈ 2[n] and y ∈ X

σ(λ, x ∗ y) = (−1)|(supp(1−x)4supp(1−y))∩λ| = (−1)|supp(1−y)∩λ|(−1)|supp(1−x)∩λ|,

and thus σ(∆,Y(y)) = diag (σ(∆, y)) · σ(∆,Y). The diagonal matrix is regular.
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1.C Hadamard Matrices and Related Exponential Families

Proof of Proposition 1.C.2. Note that Y(y)
∆k

= B(k, y) ⊆ X . Any two balls of equal radius
k < N and different center are different.

For the second item: If |Y| is odd, then Y 6= X . Assume y ∗ Y = Y . Then Y =
{x1, . . . , xb|Y|/2c, y ∗x1, . . . , y ∗xb|Y|/2c, x}, and Y = y ∗Y = {x1, . . . , xb|Y|/2c, y ∗x1, . . . , y ∗
xb|Y|/2c, y ∗ x}. Hence y = 1.

For the third item: Let Ỹ := Y \ {x} for some x ∈ Y , such that |Ỹ| is odd and all Ỹ(y),
y ∈ X are different. There are at most |Y| ways to choose Ỹ from Y , and hence at least 2N

|Y| of

the Y(y), y ∈ X must be different.

Proof of Lemma 1.C.3. Let S+ = {j : vj > 0} and s+ = |S+|. Without loss of generality let
|α1| = maxi{|αi|}. We have then:

kα2
1n ≥

k∑
i=1

α2
in =

k∑
i=1

〈αivi, αivi〉 = 〈
k∑
i=1

αiv
i,

k∑
i=1

αiv
i〉 = 〈v, v〉

=
n∑
j=1

|vj |2 >
∑
j∈S+

|vj |2 =
1

s+

∑
j∈S+

1

∑
j∈S+

|vj |2
 ≥ 1

s+

∑
j∈S+

|vj |

2

.

On the other hand we have the following:

2
∑
j∈S+

|vj | †=
n∑
j=1

|vj | ≥
n∑
j=1

vjv
1
j =

n∑
j=1

k∑
i=1

αiv
i
jv

1
j

=

k∑
i=1

αi

n∑
j=1

vijv
1
j =

k∑
i=1

αi〈vi, v1〉 = α1〈v1, v1〉 = α1n.

Inserting the last expression into the first equation yields s+ > n
4k . For †we used 〈(1, . . . , 1), v〉 =

0 implies
∑n

j=1 |v+
j | =

∑n
j=1 |v−j |.

Hadamard models

In the remainder of this section E∆ denotes an exponential family on a set X of cardinality
|X | = 2N with and a sufficient statistics of the form

A = ((−1)|supp(x)∩λ|)λ∈∆,x∈{0,1}N . (1.27)

We consider an arbitrary family ∆ ⊆ 2[N ] (not necessarily a simplicial complex on [N ]), such
that A is a submatrix of a Hadamard matrix, but does not necessarily describe a hierarchical
model. We ask for the cardinality of S-sets in the case that ∆ is only assumed to have a certain
cardinality.

Proposition 1.C.5. Any p ∈ P(X ) with |supp(p)| < 2N

2|∆c| is contained in E∆ and cs(E∆) is(
2N

2|∆c| − 1
)

-neighborly.

Proof. By Lemma 1.C.3, for any ∆ ⊆ 2[N ] we have |supp(m+)| ≥ 2N

2|∆c| ∀m ∈ kerσ(∆,X )\∅.
The claim follows from Lemma 1.2.5.
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1 Mixtures of Discrete Exponential Families

Example 1.C.6. Let ∆ ⊆ 2[N ] have 2N−2 elements. By Lemma 1.C.1 (i), 〈σ(λ,X ), σ(λ′,X )〉 =
0 for all distinct λ, λ′ ∈ 2[n]. It follows that |{x ∈ X : σ(λ, x) = σ(λ′, x)}| = |{x ∈ X :

σ(λ, x) 6= σ(λ′, x)}|. Therefore, m = σ(λ,X ) + σ(λ′,X ) has |supp(m)| = 2N

2 ∀λ 6= λ′.
Since all entries of this m different from 0 have the same absolute value, and 〈m,σ(∅,X )〉 = 0,
we have that |supp(m+)| = |supp(m)|

2 .

If |∆| is large, the convex support has few vertices with respect to its dimension. In this case
there must exist large simplex faces of the convex support.

Proposition 1.C.7. Let ∆ ⊆ 2[n] and |∆| > 2N

2 . The convex support cs(E∆) = conv{σ(∆, x)}x∈X
contains at least ( 2N

2|∆|−2N
) simplex faces of dimension (2|∆| − 2N − 1) and at least 2N simplex

faces of dimension (2|∆| − 2N − 2). Hence there are at least ( 2N

2|∆|−2N
) S-sets of cardinality

(2|∆| − 2N ) and 2N S-sets of cardinality (2|∆| − 2N − 1).

Proof. The marginal polytope to ∆ ⊆ 2[n] is a |∆|−1-dim polytope with 2N vertices. Kalai [67]
showed the following result for general convex polytopes [67, Lemma 2.3]: Every d-dim poly-
tope with d+ b vertices contains a (d− b+1)-dimensional face which is a simplex. This implies
the existence of an S-set of cardinality (2|∆| − 2N − 1). Since this is odd, the claim follows
from Lemma 1.2.10 and Lemma 1.C.2.

Theorem 1.C.8. Let k ≥ N
2 , ∆k := {λ ∈ 2[N ] : |λ| ≤ k}, and ∆ ( 2[N ] with |∆| ≥ |∆k|.

For any κ < 1 there is an N0 = N0(κ) such that for all N ≥ N0 there are 2N different S-sets
{Y(y) ⊆ X}y∈X of E∆ with |Y(y)| ≥ 2κN .

Proof. We use Proposition 1.C.7. We need to show that for every κ there exists an N(κ) with

2|∆| − 2N ≥ 2κN , ∀κ < 1, ∀N ≥ N0(κ). (1.28)

Note that |∆k| =
∑k

i=0

(
N
i

)
and |∆c

k| =
∑N

i=k+1

(
N
i

)
=
∑N−(k+1)

i=0

(
N
i

)
. Consider the worst

case, where |∆| = |∆k|. Then we have that the relation from eq. (1.28) is satisfied for k s.t.
2
∑k

i=0

(
N
i

)
≥ 2N + 2κN . This equation is equivalent to 2N ≥ 2κN + 2

∑N−(k+1)
i=0

(
N
i

)
. The

last term is at most 2N − 2
( N
bN

2
c
)
, ∀k ≥ N/2, which is decreasing in N , given that k ≥ N

2 .

Furthermore, for any fixed κ < 1 and N large enough, 2κN

2N
is arbitrarily close to zero.

Proposition 1.A.3 characterizes S-sets of exponential families. The next proposition gives an
alternative characterization of facial sets which are S-set:

Proposition 1.C.9. Let ∆ ⊆ 2[N ] and Y ⊆ X = {0, 1}N . Then rkσ(∆c,Yc) = |∆c|, if

(i) |Y| < 2N

|∆c| , or

(ii) ∆ is a simplicial complex, and Y ⊆ Y(y)
∆ for some y ∈ X .

Hence if Y is facial and satisfies (i) or (ii), then Y is an S-set.

Proof. (i) By Corollary 1.C.4 (see Appendix 1.C), rkσ(∆c,Yc) = |∆c| whenever |Yc| > (1−
1/|∆c|)2N ,. (ii) Follows from Lemma (ii) and Lemma (v), since Y ⊆ Y∆ implies Yc ⊇ Yc∆.
See also Lemma (iv).
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1.C Hadamard Matrices and Related Exponential Families

Example 1.C.10. For any y ∈ X the set Y(y)
∆k

is the Hamming ball with radius k centered at y.
The S-sets of the independence model are the intersection of the family of faces of the N -cube
and the family of all sets of radius smaller or equal to the interaction order, k = 1, i.e., the sets
contained in Y(y)

∆1
for some y ∈ X .
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2 Convex Subsets, Secants, Geodesics and
Convex Hulls

In this chapter we develop techniques to compute the smallest natural number m for which
Mixtm(E) = conv(E) for a general exponential family E . This chapter contains a variety of in-
dividual results. The implications of some results to the main subject of this thesis are not fully
elaborated at this moment and should be understood as a basis for future research. Hierarchical
models (treated in Section 1.3) contain all point measures in their closures (when ∪λ∈∆λ = [n]).
They are always contained in the convex hull of their boundaries and allow a packing of their
state spaces in terms of S-sets. In general, however, the convex hull of an exponential family is
not the convex hull of its boundary and there does not exist a packing of their state spaces in terms
of S-sets. In some cases the minimal S-set packing does not correspond to the smallest mixture
that can represent any distribution (see Proposition 1.2.8). How can we assess the Carathéodory
number in these cases? In Chapter 1 we investigated the support sets that can possibly arise from
the mixtures. This is an approach to mixture models using the mixtures based at the boundary of
the probability simplex. S-sets and the corresponding convex subsets in the closure of exponen-
tial families proved very helpful. What can we say about convex subsets of exponential families?

In Section 2.1 we characterize convex α-families and study relations between S-sets and con-
vex subsets of exponential families. In Section 2.2 we give a description of the intersection of
m-geodesics and exponential families (i.e., a description of secant lines and intersection points).
We relate these intersections to the support sets of distributions in the closure of exponential
families. Furthermore, we examine the convex hull and limit points of α-geodesics. In Sec-
tion 2.4 we compute the Carathéodory number of some classes of exponential families which
are not contained in the convex hull of their boundaries.

2.1 Convex Exponential and α-Families

Convex Exponential Families

A convex family on X is a subsetM⊆ P(X ) ⊂ RX with λp+ (1−λ)q ∈M for all λ ∈ [0, 1]
for all p, q ∈ M. A convex exponential family is an exponential family which is a convex
family. A partition of X is a collection of disjoint subsets of X , denoted blocks, whose union is
X . Given a probability distribution R ∈ P(X ) and a subset Y ⊆ X , the conditional probability
distribution R conditioned to Y is R(·|Y) := 1YR(·)

R(Y) ∈ P(Y). The affine hull of two points
P,Q ∈ P is aff{P,Q} := {(1 − λ)P + λQ : λ ∈ R}. The following partition was introduced
by F. Matúš and N. Ay in [79] and will be important in our considerations:

Definition 2.1.1. Given two probability distributions P,Q ∈ P(X ), the partition %P,Q has
blocks defined as the equivalence classes of the relation x ∼ y iff P (x)Q(y) = P (y)Q(x)
for any x, y ∈ X . In other words P (·|Y) = Q(·|Y) holds for every block Y ∈ %P,Q.



2 Convex Subsets, Secants, Geodesics and Convex Hulls

Proposition 2.1.2. (F. Matúš and N. Ay [79]). Any convex exponential family supported by X
has the following form:

SR,% :=
{∑
Y∈%

πYR(·|Y) : πY > 0,
∑
Y∈%

πY = 1
}
,

where % is a partition of X and R ∈ P(X ).

SR,% is a convex family, because it is the relative interior of conv{R(·|Y)}Y∈%. It is an ex-
ponential family with sufficient statistics {1Y : Y ∈ %} and reference measure R. The convex
support cs(SR,%) is a |% − 1|-dimensional simplex. The support sets of elements from SR,% are
F(SR,%) = {∪Y∈%̃Y : %̃ ⊆ %} and depend only on the partition %, but not on the strictly positive
reference measure R. For any Y ∈ % and x ∈ Y the moment map maps P(Y) onto the vertex
Ax. For any ν, ν̃ ∈ P(X ), Eν,V is a convex exponential family iff Eν̃,V is a convex exponential
family iff F(Eν,V ) = F(Eν̃,V ) = {∪Y∈%′Y : %′ ⊆ %} for some partition % of X .

The model SP,%P,Q contains P and Q. This results from the choice πY = P (Y) (resp.
πY = Q(Y)) in the definition of SR,%, which yields P =

∑
Y P (Y)P (·|Y) (resp. Q =∑

Y Q(Y)P (·|Y)). In [79] it is shown that SP,%P,Q is the smallest convex exponential family
containing P,Q ∈ P . Based on a similar analysis it is possible to show that an exponential fam-
ily which contains the convex set conv{P,Q} already contains SP,%P,Q . The following lemma
resulted from personal discussions with J. Rauh:

Lemma 2.1.3. Let E be an exponential family on X with sufficient statistics matrix A. Let
P,Q ∈ P . If E ⊇ conv{P,Q}, then E ⊇ SP,%P,Q . Furthermore, E contains a d-dimensional
convex set iff there exists a linear projection of the vectors {Ax}x onto the (d+1) vertices of a d-
dimensional simplex. If E contains a d-dimensional convex set, then cs(E) has a d-dimensional
simplex face.

We will further strengthen this result in Theorem 2.2.6, where we show that the assumption
E ⊇ conv{P,Q} can be relaxed to |E ∩ aff{P,Q}| ≥ |%P,Q|.

Proof of Lemma 2.1.3. (i) Let T̃ be the extended tangent space of E , i.e., the span of {1, A1, . . . , Ad},
where {Ai} are a sufficient statistics for E . We assume that P+λ(Q−P ) is contained in E for ev-
ery λ ∈ [0, 1]. Note that any element of E is a reference measure for E . Therefore, log P+λ(Q−P )

P

is contained in T̃ for every λ ∈ [0, 1]. The difference of two vectors in T̃ is also in T̃ , and hence,
the n-th derivative of log P+λ(Q−P )

P for all n > 0. Let N = |%P,Q|. For any block Y of %P,Q
choose one xY ∈ Y . Define a matrix M ∈ RN×N with entries MY,n =

(
Q(xY )−P (xY )

P (xY )

)n
.

This is a regular Vandermonde matrix, since Q(xY )−P (xY )
P (xY ) 6= Q(xZ)−P (xZ)

P (xZ) for any two differ-

ent blocks Y and Z in %P,Q. This implies that the dimension of T̃ is at least N , such that the
dimension of E is at least N − 1. The family SPY :Y∈%P,Q is (N − 1)-dimensional and contains
the functions fn(x) = MY,n ∀x ∈ Y ∈ % for all n ∈ [N ] in its extended tangent space. Hence
E ⊇ SP,%P,Q .

(ii) By the first item, if E contains a d-dimensional convex set, then it contains a convex
exponential family S of dimension at least d. On the other hand S is an exponential subfamily
of E iff the sufficient statistics of S is the image of A by some linear map, and its reference
measure is in E . The columns of any sufficient statistics matrix of a d-dimensional convex
exponential family are the vertices of a d-dimensional simplex.
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A B C
δ00

δ10 δ01

δ11

E E / E����

Figure 2.1: This figure shows exponential families with uniform reference measure on {0, 1}2,
projected along aff{1

2(δ00+δ01), 1
2(δ11+δ10)} (in the terminology of geometry of ruled surfaces

this is the line of striction of E1
2,bin). The white lines are contours of p10 + p11. The convex

supports are: A parallelogram (A). In this case E is a doubly ruled surface. The depicted
example is the binary independence model. A trapezoid which is not a parallelogram (B). In this
case E is a (simply) ruled surface. A kite which is not a trapezoid (C). In this case E doesn’t
contain any non-trivial convex set, although its boundary consists of straight line segments.

(iii) If there is a linear map of the columns of the sufficient statistics A onto the vertices of a
d-dimensional simplex ∆, then the image of the d-dimensional faces of cs(E) covers ∆. Hence
the image of one of these d-faces covers ∆ and it must be a simplex.

Remark 2.1.4. Two exponential families E and E ′ that have the same support setsF(E) = F(E ′)
do not necessarily satisfy: E contains a convex subfamily if E ′ does. See Figure 2.1.

Example 2.1.5. Let E be an exponential family on X = {0, . . . , n − 1}, n ≥ 5, and let cs(E)
be an n-gon with polyline x 7→ Ax (as in Example 1.2.7). There is no linear projection of an
n-gon mapping the vertices onto the vertices of a d-simplex d ≥ 1 (otherwise, 3 vertices of the
n-gon would lie on a line). Hence E contains no convex sets of dimension larger than zero. The
closure E contains n one-dimensional convex sets given by conv{δx, δx+1} mod n.

By Example 2.1.5, a (d+ 1)-dimensional exponential family which contains a d-dimensional
face of P in its closure, does not always contain a d-dimensional convex set. The following
proposition explains this in more detail:

Proposition 2.1.6. Let E be an exponential family onX . If E contains a d-dim convex set, d ≥ 1,
then E has two facial sets which partition X .

More generally one can state: If E contains conv{Q,Q′}, Q 6= Q′, then there exist Y,Y ′ ∈
F(E) such that supp(Q) ∪ supp(Q′) = Y ·∪Y ′.

Proof. If E contains a d-dim convex set, d ≥ 1, then E contains conv{Q,Q′} for some Q 6= Q′.
Hence, E contains SQ,%Q,Q′ . Clearly |%Q,Q′ | ≥ 2, and hence cs(SP,%) is a simplex of dimension
at least one. There exist two disjoint faces of cs(SP,%) covering all vertices. This corresponds to
a partition of X into two disjoint facial sets of SP,%. The claim follows from F(S%) ⊆ F(E).
The second item follows from the first item and the observation that, for any Z ∈ F(E), the
intersection E ∩ P(Z) is an exponential family on Z .

Any element of an exponential family is a reference measure of that exponential family, i.e.,
Eν,A = EP,A for any P ∈ Eν,A. If E contains SR,%, then E contains SQ,% for any Q ∈ E . This
can be used to construct convex foliations:
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Proposition 2.1.7. Let E be an exponential family with sufficient statistics A and extended
tangent space T̃ := span{1, A1, . . . , Ad}. If E contains the convex family SP,%, then E =
·∪Q∈GSQ,%, where G is an exponential family with extended tangent space {1Y : Y ∈ %}⊥∩ T̃ +
R1.

Example 2.1.8. (Convex subsets of independence models).

(i) Consider the independence model of 2 binary variables, E1
2,bin. The entries of a vec-

tor P = (P00, P01, P10, P11) in this model are given by P11 = p1p2, P10 = p1(1 − p2),
etc. The relation P11

P10
= Q11

Q10
is equivalent to p2 = q2. Therefore, if p2 = q2, then %P,Q =

{{(10), (11)}, {(00), (01)}}, and SP,%P,Q = aff{P,Q} ∩ P . The e-geodesic connecting P and
Q is equal to the convex hull conv{P,Q}. Similar arguments apply for the case p1 = q1. From
this we see that E1

2,bin contains two different straight lines through each of its points, i.e., it is a
doubly ruled surface. An alternative way to see this is by considering the following unitary map
(see also [120, page 130]):

f : E1
2,bin → R4; f(P ) =

1

2


1 1 1 1
−1 −1 1 1
−1 1 −1 1

1 −1 −1 1

 ·

P00

P01

P10

P11

 .

The image of this map can be written as f(E1
2,bin) = {(1

2 , r, s, 2rs) : − 1
2 < r, s < 1

2} using
that P 2

00 − P 2
01 − P 2

10 + P 2
11 = P00 − P01 − P10 + P11. This corresponds to a portion of the

hyperbolic paraboloid {(x, y, z) : z = x2

2 −
y2

2 } with r = 1
2(x − y) and s = 1

2(x + y), and
is known to be a doubly ruled surface (see e.g., [39]). Interestingly, the mean curvature of this
surface is H(x, y) = −x2+y2

2(1+x2+y2)3/2 and vanishes only for x2 = y2, implying that E1
2,bin is not a

minimal surface, (the mean curvature of minimal surfaces vanishes everywhere, see [90]).

(ii) Consider E1
n,bin. As explained in Section 1.1, page 16, the functions {Ai(x) = (−1)xi : i ∈

[n]} are a sufficient statistics of this model and the convex support conv{Ax} is an n-dim cube
Cn = conv{±1}n. The cube has no simplex faces of dimension more than one, and hence the
binary independence model contains no convex sets of dimension larger than one. On the other
hand, for each i ∈ [n], diag(0, . . . , 0, 1

i
, 0, . . . , 0) is a linear projection of Cn onto the interval

[−1, 1] mapping [xi = 0] onto the point {1}, and [xi = 1] onto the point {−1}. Hence, for
any i ∈ [n], E1

n,bin contains one-dimensional convex exponential subfamilies with facial sets
[xi = 0] and [xi = 1]. Therefore E1

n,bin contains n different straight lines through each of its
points (E1

n,bin is n-ruled). For each i ∈ [n] we have a convex foliation E1
n,bin = ·∪Q∈GSQ,% ,

where % = {[xi = 0], [xi = 1]} and G is the exponential family with sufficient statistics
{Aj(x) = (−1)xj : j ∈ [n] \ {i}}.

(iii) The independence model E1 on×i∈[n]Xi is a
(∑

i(|Xi| − 1)
)
-dim model. Its convex

support is a product of (|Xi| − 1)-dim simplices, cs(E1) =×i∈[n] ∆|Xi|−1, and can be projected

onto 0× · · · × 0×∆|Xi|−1

i
× 0× · · · × 0. Hence this model contains n different convex sets of

dimensions (|Xi| − 1), i ∈ [n] through each of its points.
Interestingly, for each j ∈ [n], there exists a linear projection M which maps E1 onto a

set of dimension smaller than min{dim E1, rankM − 1}. Marginalizing out the n-th variable
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corresponds to the linear map P(×i∈[n]Xi) → P(×i∈[n−1]Xi); p 7→ M · p, where M is a
matrix with rows {1{x : xi=yi ∀i 6=n}}(y1,...,yn−1). It maps p1 · · · pn onto p1 · · · pn−1 and maps
E1(X1 × · · · × Xn) onto E1(X1 × · · · × Xn−1).

Convex α-Families

The notion of α-families provides a class of models which interpolates between exponential and
mixture families:

Definition 2.1.9. For any (n+1) probability distributions {p0, . . . , pn} ⊂ P , the mixture family
(m-family)M{p0,...,pn} consists of all probability distributions of the following form:

p(x, θ) =
n∑
i=1

θipi(x) + (1−
n∑
i=1

θi)p0(x) , θi ∈ R . (2.1)

This is the secant space through p0, . . . , pn. An important class of mixture families results
from the restriction θi > 0 and

∑
θi < 1. Any m-family is convex, and the smallest m-family

containing the convex hull of any P and Q is just {tP +(1− t)Q : t ∈ [0, 1]} = conv{P,Q}. A
mixture model is a union of mixture families with basis points from a previously specified model.
This should be compared to an exponential family: {pθ(x) = exp

{
C(x) +

∑d
i=1 θ

iAi(x) −
ψ(θ)

}
∀x ∈ X : θ ∈ Rd}, which is characterized by the affine space C + span{Ai}i ⊆ RX

modulo the constant functions. In this notation ν(x) = exp(C(x)) is a strictly positive reference
measure and log(ψ) is the normalization constant.

An e-geodesic is a connected portion of a one-dimensional exponential family: {pt(x) =
exp(C(x) + tA(x) − ψ(t)) ∀x ∈ X : t ∈ (a, b) ⊂ R}, where A ∈ RX and 1 are linearly
independent. If pt=a = P and pt=b = Q for two points P,Q ∈ P , we say that {pt : t ∈ [a, b]}
is an e-geodesic between P and Q. The natural parameters of an exponential family E form an
e-affine coordinate system. Any e-geodesic between two points of E is contained in E and is
given by a straight line segment in the natural parameter space of E . We say that exponential
families are e-geodesically convex. An m-geodesic is a standard straight line segment in P . In
general, given an affine connection on a manifold, the one-dimensional autoparallel submani-
folds are called geodesics. See [10] for details on affine coordinates and interesting relations
between mixture families and exponential families.

For each α ∈ R, Amari [10] defines

l(α)(x; ξ) := L(α)(p(x; ξ)) and L(α)(p) :=

{
2

1−αp
1−α

2 for α 6= 1

log p for α = 1
. (2.2)

Definition 2.1.10. An n-dimensional manifoldM ⊆ P(X ) is an α-family iff there exist func-
tions {C,A0, . . . , An} ⊂ RX such that the denormalization M̃ := {τp : p ∈ M, τ > 0}
satisfies

L(α)(τp(x; ξ)) = C(x) +

n∑
i=0

θi(ξ, τ)Ai(x) ∀τp ∈ M̃ , (2.3)

where θ(ξ, τ) is a one-to-one mapping of {(ξ1, . . . , ξn, τ)}, the natural parameters of M̃.
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Within this framework, an exponential family is a (1)-family and a mixture family is a (−1)-
family. The probability simplex P is an α-family for every α ∈ R. The α-geodesic between two
points p(x; ξ0), p(x; ξ1) ∈ P is defined through the relation l(α)(x; ξt) = (t − 1)l(α)(x; ξ0) +
tl(α)(x; ξ1).

For convex α-families we have the following:

Lemma 2.1.11. Any convex exponential family SR,% is anα-family for everyα ∈ R. Forα 6= −1
the smallest α-family containing the convex hull of a pair of distributions P and Q supported by
X is SP,%P,Q . Hence any convex α-family is of the form SR,%.

Proof. L(α)(
∑

i πiRi) =
∑

i θ
iAi, choosing Ai(x) = L(α)(Ri) for x ∈ Xi and Ai(x) = 0 else,

and θi = π
1−α

2
i for α 6= 1 and θi = log πi for α = 1.

The case α = 1 is Lemma 2.1.3. For any α 6= 1 we can write the elements of an α-family

G as p(x; ξ) =
(∑n

λ=0 θ
λ(ξ)Aλ(x)

) 2
1−α [10, pg.49]. Let T = spanAλ, which corresponds to

the extended tangent space of the α-family G. If G contains the convex hull of P and Q, then
T contains the vectors (P + t(Q − P ))

1−α
2 for all t ∈ [0, 1]. The differences of vectors from

that set must also be contained in T and thus the derivatives with respect to t. For α 6= −1,
the n-th derivative at t = 0 is knP

1−α
2

(
Q−P
P

)n
, where kn = 1−α

2 · · · (1−α
2 − (n − 1)). We

have that Q(x)−P (x)
P (x) = Q(y)−P (y)

P (y) iff P (x)Q(y) = P (y)Q(x), and hence, the matrix Vi,n =

(Q(xi)−P (xi)
P (xi)

)n has full rank N . This implies that dimG ≥ N − 1, while the model SR,%P,Q is
an α-family of dimension (N − 1) and which contains P and Q.

Corollary 2.1.12. Let γα(P,Q) be the α-geodesic connecting two full support distributions P
andQ. Then γ1(P,Q) = γ−1(P,Q) iff γα(P,Q) = γ−1(P,Q) ∀α iff γ1(P,Q) = {exp(C(x)+
tA(x)− ψt) : t ∈ R}, where A = 1Y − 1X\Y .

Example 2.1.13. Binary hierarchical models have a sufficient statistics which consists of rows of
a Hadamard matrix (see Chapter 1). For Ekn,bin these are {Aλ(x) =

∏
i∈λ(−1)xi : λ ⊂ [n], |λ| ≤

k}. For every one of these Aλ there is a one-dimensional convex α-family contained in Ekn,bin.

Example 2.1.14. Consider the binomial model for n independent Bernoulli trials and probability
p for success, Binn,p(x) =

(
n
x

)
px(1 − p)n−x, x ∈ {0, 1, . . . , n}. For p ∈ (0, 1), this model is

a one-dimensional exponential family with sufficient statistics A(x) = x, natural parameter
θ = log p/(1 − p) and reference measure ν(x) =

(
n
x

)
. Any two points P and Q on this curve

satisfy P
Q ∝ exp((θP − θQ)x). Therefore, |%P,Q| = n + 1 (unless P = Q). If an α-family

(α 6= −1) contains the convex hull of any two different points on Binn,p, then it equals the full
probability simplex {∑x∈X π{x}P (x|{x}) : π} = P(X ). The result extends to the case where
one of the points lies on the boundary, i.e., pQ = 0, or pQ = 1. When pQ = 0 and pP = 1, we
have Q = δ0, P = δn, and there are many e-geodesics connecting the two points.

2.2 Secants of Exponential Families

We explore secants of exponential families, and more generally, intersections of different α-
families. A secant line of some setM is a line which intersectsM at two points; in other words,
an m-geodesic that intersectsM at two (or more) points. We use the following notation: Given
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an exponential family E supported by X and a facial set Y ∈ F(E), the truncation of E to Y is
EY := { 1Yp∑

y∈Y p
: p ∈ E}.

The following is a known fact about intersections of exponential families:

Example 2.2.1.

(i) Let E and E ′ be two exponential families on X with extended tangent spaces T and T ′
respectively, (T = span{1, A1, . . . , Ad}, where A is a sufficient statistics of E). Then
E∩E ′ = Ẽ is an exponential family with extended tangent space T̃ = (T ⊥+T ′⊥)⊥+R1.

(ii) The closure of an exponential family E is a disjoint union of exponential families EY ⊆
P(Y) defined on the facial sets Y ∈ F(E). More precisely, E = ·∪Y∈F(E)EY , where
the family EY is the truncation of E to the set Y given by EY := {p ∈ P(Y) : p ∝
q|Y , q ∈ E}. Hence, the intersection of closures of exponential families satisfies E ∩ E ′ =
∪Y∈F(E)∩F(E ′)ẼY , where ẼY is the intersection EY ∩ E ′Y as described in the first item.

Example 2.2.2. The three exponential families shown in Figure 2.4 intersect at the one-dimensional
(and planar) exponential family with sufficient statistics (0, 1,−1, 0).

We are interested in the following question:

Question 2.2.3. What kinds of lines intersect exponential families and at how many points?

Intersection of m-Geodesics and Exponential Families

If two one-dimensional exponential families intersect at two points, then they are identical. More
generally, if two α-geodesics intersect at more than one point in P , then the two geodesics are
identical. Now, at how many points can a one-dimensional α-family intersect another α′-family?

Lemma 2.2.4.

• If an e-geodesic and an m-geodesic intersect at more than two points in P , then they
intersect at all of their points.

• More generally, all α-geodesics through a pair of points P,Q ∈ P either intersect only at
P and Q, or are all equal, equal to the m-geodesic.

Proof. Assume that an e-geodesic γe intersects an m-geodesic at three full support probability
distributions P , Q and P + λ(Q − P ), for some λ ∈ (0, 1). Then γe = P exp(θ log Q

P − ψθ),
and for some reals θ and K the following holds: θ log Q

P + K = log(P+λ(Q−P )
P ). This yields

the following equations on K and θ:

eKzθi = (1− λ) + λzi ∀i ∈ {1, . . . , |X |} , (2.4)

where (zi)i = z := Q
P ∈ RX>0 is a vector with positive entries, and λ ∈ (0, 1). For λ ∈ {0, 1}

the equation is solvable for any z. Now, as a function of zi > 0 and for any K, eKzθi is linear
if θ = 1, strictly convex if θ > 1 and strictly concave if θ < 1. Hence, for any λ 6∈ {0, 1}, the
curve eKzθi intersects (1−λ)+λzi at most at two values of zi, independently of how we choose
K and θ. This is, the equations 2.4 are only solvable if the function Q

P takes not more than two
values. This is equivalent to P (·|Y) = Q(·|Y) and P (·|X \ Y) = Q(·|X \ Y) for some Y ⊂ X ,
and |%P,Q| = 2. But in this case we know that SP,%P,Q is a one-dimensional exponential family
containing P and Q. In turn, γe = SP,%P,Q is convex, and hence equal to the m-geodesic. For
α 6∈ {1,−1} the claim follows from∇(α) = 1+α

2 ∇(1) + 1−α
2 ∇(−1), see [10].
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Now we extend Lemma 2.2.4 in order to account for the intersection of m-geodesics and
arbitrary exponential families. First we show the following lemma, which is used in the proof of
Theorem 2.2.6:

Lemma 2.2.5. Let P,Q ∈ P(X ), N := |%P,Q|, %P,Q = ·∪k∈[N ]Xk and xk ∈ Xk for k ∈ [N ].

Furthermore, let d ∈ N and fi = log P+λi(Q−P )
P with i ∈ {1, . . . , d} and 0 < λ1 < . . . < λd =

1. Then the vectors f(xk) = (fi(xk))i are the N vertices of a cyclic d-polytope combinatorially
equivalent to C(N, d).

Proof. Let %P,Q = {Xk}Nk=1. For each k we choose a representative of the respective block
xk ∈ Xk. Consider the following alternant matrix (an n × m matrix is called alternant if its
entries contain the evaluation of m functions at n points):

f(i, k) := log
P (xk) + λi(Q(xk)− P (xk))

P (xk)
= log(1 + λiyk) , ∀ k ∈ [N ],∀ i ∈ [d] , (2.5)

where yk := Q(xk)−P (xk)
P (xk) > −1. We show that the determinants |(fi(yk))i,k∈[n]| never vanish

for 0 < λ1 < · · · < λn ≤ 1 and −1 < y1 < · · · < yn < ∞. This is the case if the number
of zeros of

∑n
i=0 aifi in the interval −1 < y < ∞ is at most n. A stronger condition is that

the functions fi satisfy Descartes’ rule on the interval −1 < y <∞, i.e., if a1, . . . , an are reals
not all equal to zero, then the number of zeros of

∑n
i=1 aifi in −1 < y < ∞ is at most equal

to the number of times that the sequence a1, . . . , an changes sign (disregarding zeros). By [93,
ex. 87 and 90], the Descartes’ rule is equivalent to the following condition: Given integers
1 ≤ r1 < · · · < rl ≤ n, the Wronskian W [fri(y)] doesn’t vanish in −1 < y < ∞, and two
determinants with the same number of rows have the same sign. We have

W [fri(y)] :=

∣∣∣∣∣∣
fr1(y) f ′r1(y) . . . f

(l−1)
r1 (y)

...
...

...
frl(y) f ′rl(y) . . . f

(l−1)
rl (y)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
log(1 + λr1y)

λr1
(1+λr1

y)
. . .

(−1)l−2(l−2)!λl−1
r1

(1+λr1y)l−1

...
...

...

log(1 + λrly)
λrl

(1+λrl
y)

. . .
(−1)l−2(l−2)!λl−1

rl

(1+λrl
y)l−1

∣∣∣∣∣∣∣∣ .
This is a kind of Vandermonde determinant, and doesn’t vanish iff λri

1+λriy
are different from each

other. The later is true, since z
1+zy is strictly increasing in z ∈ [0, 1] whenever y > −1. The sign

condition also is satisfied. If we multiply every second row by −1, the sign of the determinant
is always strictly positive. This implies that the functions f̃i(y) = (−1)i log(1 + λiy) build
a Tchebycheff system on −1 < y < ∞, i.e., |(f̃i(yk))i,k∈[n]| > 0 (see [69, Page 25]). In
particular, the map f : (−1,∞) → Rd ; y 7→ (fi(y))i is a d-order curve in the sense of

Sturmfels [108], i.e.,
∣∣∣∣ 1 1 . . . 1
f(y1) f(y2) . . . f(yd+1)

∣∣∣∣ is always positive (or always negative)

whenever −1 < y1 < · · · < yd+1. As pointed out in [108] (making reference to [82, 28]), the
convex hull of N distinct points on any d-order curve is a combinatorial cyclic polytope.

Theorem 2.2.6. (Intersections of exponential families and m-geodesics). Let P,Q ∈ P(X ) with
N := |%P,Q| and consider the line L := aff{P,Q}. If L intersects an exponential family E on X
at (d+1) points, then E contains an exponential subfamily with convex support combinatorially
equivalent to the cyclic polytope C(N,min{d,N − 1}). In particular we have the following:

• If L intersects E at a finite number of points, then this number is at most dim(E) + 1.
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f(x6)

f(x4)

f(x2) f(x5) f(x3)

f(x1)

Figure 2.2: The convex support of an exponential subfamily of any exponential family in-
tersecting a straight line aff{P,Q} at the points (1 − λi)P + λiQ. In this example X =
{x1, . . . , x6}, P ∝ (1, 2, 3, 4, 5, 6), Q ∝ (3, 1, 3, 1, 3, 1) and (λi)i = (0, 0.1, 0.9, 1). This
implies %P,Q = 6. An exponential family which intersects the mixture of P and Q at these
points contains a subfamily with the convex support conv{f(x)}x, where f(x) = (fi(x))i,
fi(x) = log P (x)+λi(Q(x)−P (x))

P (x) . Note that fλ=0(x) ≡ 0. (The resulting, depicted polytope is
much longer in one direction than in the others. This is not apparent in the chosen perspective,
which highlights the faces of the polytope.)

• If L intersects E at |%P,Q| points, then Sν,%P,Q ⊆ E ∀ν ∈ E .

• If L intersects E at more than one point, then E has |%P,Q| facial sets which partition X .

Proof. Assume L intersects E at the following (d + 1) points: P, P + λ1(Q − P ), . . . , P +
λd(Q− P ) = Q, where 0 = λ0 < λ1 < · · · < λd = 1. This implies that the tangent space of E
contains the vectors fi = log P+λi(Q−P )

P for i ∈ {0, . . . , d}. The vectors fi build the sufficient
statistics of a subfamily E ′ ⊆ E . The properties of cs(E ′) are shown in Lemma 2.2.5. By
Lemma 2.2.5 the vectors fi are linearly independent for d+ 1 ≤ |%P,Q|, and hence dim(E) ≥ d.
If d+1 = |%P,Q|, then E ⊇ SP,%P,Q , since dim(SP,%P,Q) = d and SP,%P,Q contains all intersection
points. The choice of the reference measure ν is arbitrary in E . The third claim follows using
F(E ′) ⊆ F(E) together with the fact that the columns (fi(x))i are equal for all x in the same
block of the partition %P,Q and all columns are vertices of cs(E ′).

An exponential family which contains all (k − 1)-dimensional faces of P in its closure, E ⊃
∪Y:1≤|Y|≤kP(Y), is a k-Hamiltonian or k-neighborly exponential family.

Remark 2.2.7.

(i) For a generic pair P,Q ∈ P(X ), the partition %P,Q has cardinality |X |. This implies that
an exponential family E intersecting a generic line at d + 1 < |X | points contains an
exponential subfamily whose convex support is combinatorially equivalent to the cyclic
polytope C(|X |, d), and E is bd2c-Hamiltonian. If d+ 1 ≥ |X |, then E = P(X ).

(ii) In the proof of Lemma 2.2.5 we in fact show that the functions (−1)i log(1+λiy), i ∈ [d],
0 < λ1 < . . . < λd = 1 are a Tchebycheff system on −1 < y <∞ (see [69, Page 25]).

Figure 2.2 illustrates Lemma 2.2.5 and Theorem 2.2.6. It shows the convex support of the
smallest exponential family on a state space of cardinality six which intersects a generic straight
line at four points.
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Corollary 2.2.8. If E has sufficient statistics matrix A and there is one x for which A(x) ∈
ri(cs(E)), then any straight line intersects E at most at two points. Similarly, if there is one x
for which A(x) ∈ ri(conv{A(y)}y∈Y) for some facial set Y ∈ F(E), then any straight line
intersects EY at most at two points.

Proof. This is immediate from the third item of Theorem 2.2.6, since |%P,Q| ≥ 2 for any two
distinct points on any straight line, while from the current assumption, the only facial set of E
which contains x is X .

Corollary 2.2.9. Let E be a two-dimensional exponential family which intersects a straight line
at exactly three points. Then cs(E) is monotone in the following sense: There exist parallel
supporting hyperplanes of two neighboring vertices of cs(E).

Proof. Let f(i, k) = log P (xk)+λi(Q(xk)−P (xk))
P (xk) with i ∈ {1, . . . , d} and 0 < λ1 < . . . <

λd = 1, as in the Proof of Lemma 2.2.5. Here we have d = 3. For every i ∈ [3] all entries
of (f(i, k))k∈[N ] are different. W.l.o.g. let f(3, k) < f(3, l) for k < l. This entails f(i, k) <
f(i, l) for k < l for all i 6= 0. We have the following:

f(i, k + 1)− f(i, k)

f(j, k + 1)− f(j, k)
=
f̄ ′i,k(yk+1 − yk)
f̄ ′j,k(yk+1 − yk)

=
f̄ ′i,k
f̄ ′j,k

, (2.6)

where f̄ ′i,k denotes the mean slope of y 7→ log(1 + λiy) in the interval [yk, yk+1]. For i <

j, the ratio of the slopes f ′i(y)
f ′j(y)

=
λi+λiλjy
λj+λiλjy

is strictly increasing in y. Hence, the expression
of eq. (2.6) is strictly increasing in k, and the piecewise linear interpolation through the pairs
{f(1, k), f(1, k + 1)}, 1 ≤ k ≤ N − 1 is a function. The claim is equivalent to the existence
of a face G of cs(E) such that there exists a bijective orthogonal projection of ∂ cs(E) \ G into
a straight line. This holds for conv{f(x)}. Any regular linear map of {f(x)}x preserves this
property, and hence the claim holds for the convex hull of the columns of any sufficient statistics
of the exponential family.

Consider a collection of probability distributions P0, . . . , Pd ∈ P . The smallest exponential
family containing all of them is E(P0, . . . , Pd) = {exp(

∑
i θi log(Pi)−ψθ) :

∑
i θi = 1}. This

can be written as E = {P0 exp(
∑d

i=1 θi log Pi
P0
− ψθ) : θ ∈ Rd}. The functions {log Pi

P0
}di=1 are

a sufficient statistics and P0 a reference measure. If {log Pi
P0
}di=0 are linearly independent, then E

is d-dimensional and the parametrization with θ is one-to-one. The exponential family depends
only on the affine hull of {logPi}di=0.

We can always define a d-dim exponential family which intersects a straight line at d + 1
points, and in particular, a two-dimensional exponential family which intersects a straight line
at three points. From Corollary 2.2.9 it follows that:

Example 2.2.10.

(i) An exponential family with convex support given by a regular n-gon, n ≥ 5, intersects a
straight line at most at two points.

(ii) A straight line L intersects E1
n,bin at zero, one, two, or at all points in L ∩ P . See also

Figure 2.1 A.

(iii) The families B and C shown in Figure 2.1 have monotone convex supports and there exist
straight lines intersecting them at exactly three points.
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2.3 α-Geodesics and α-Mixtures

Given two points P andQ inP , denote γα(t) the α-geodesic between P andQ. The curve γα(t′)
for a fixed value t′ and α ∈ [−1, 1] connects a point from the e-geodesic with a point from the
m-geodesic. For t′ = 0 or t′ = 1, γα(t′) is constant on α, equal to P and Q respectively. It
is interesting to know whether the collection of curves γα(t) is contained in the convex hull of
the e-geodesic. Furthermore, what can we say about the convex hull of α-geodesics, and the
α-mixtures of exponential families?

Lemma 2.3.1. Consider two distributions P,Q ∈ P .

• For any α the convex hull of the α-geodesic between P andQ, is contained in SP,%P,Q and
hence it has a dimension dim(conv(γα)) ≤ |%P,Q| − 1.

• The smallest affine space containing γ1 also contains SP,%P,Q . Hence, the convex hull of
the e-geodesic has a dimension dim(conv(γe)) = |%P,Q| − 1.

Proof of Lemma 2.3.1. From Lemma 2.1.11: The convexα-family SP,%P,Q contains theα-geodesic
between P andQ, because the later is the smallest α-family containing P andQ. In fact SP,%P,Q
contains a compact convex set which contains γ, and hence it also contains the convex hull of γ.
Obviously dim convγ ≤ dimSP,%P,Q = |%P,Q| − 1. For the lower bound: We have that %P,Q =

{Y : P (x)
Q(x) = P (y)

Q(y) ∀x, y ∈ Y}. But this is equal to {Y : log P (x)
Q(x) = const. ∀x ∈ Y}.

An immediate consequence is that the α-geodesics between P,Q ∈ S , P 6= Q coincide for
all α iff |%P,Q| = 2.

Consider some P and Q for which |%P,Q| = 3. In this case, all α-geodesics connecting P
and Q are contained in a 2-dimensional affine space aff{P (·|A)}A∈%P,Q . The e-geodesic has a
sufficient statistics of the form T = 1X1 − 1X2 , X1 ∩ X2 = ∅ and ∪Xi ( X .

Proposition 2.3.2. Let P and Q be full support distributions with |%P,Q| = 3. Let γα denote the
α-geodesic from P to Q. Then the following holds:

convγβ ( convγα for all − 1 ≤ β < α ≤ 1 ,

and furthermore
⋃
β∈[−1,α] γβ = convγα = Mixt2(γα) .

Proof. From Lemma 2.2.4: The set∪α∈[−1,β]γα strictly increases with β. Furthermore, [−1, α] 3
β 7→ γβ is a homotopy of the two curves γα and γm with fixed points γβ(t = 0) ≡ P and
γβ(t = 1) ≡ Q. For any α 6= −1, γα is a strictly convex plane curve, and the boundary of
convγα is given by γα ∪ γm. Any compact set S contains all extreme points of convS. From
Proposition 2.3.1 we know that the convex hull of γα has dimension at most 2. Carathéodory’s
theorem says Mixt3(γα) = conv(γα). The mixtures of any 3 points on γα yield a triangle with
vertices γα(t1), γα(t2), γα(t3). The rays from γα(t1) to the line interval [γα(t2), γα(t3)] hit the
curve γα, and hence any mixture of 3 points on γα can be written as a mixture of 2 points.

If |%P,Q| > 3, then ∪β∈[−1,α)γβ 6= conv(γα), since dim(∪γβ) = 2, while dim conv(γα) ≥ 3.
Yet, there are interesting questions, such as: What is convβ(γα), i.e., the set that arises from
adding β-geodesics between points indefinitely, starting from points in the set γα? Is it true that
conv(γβ) ⊆ conv(γα), −1 ≤ β < α ≤ 1 ?
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2 Convex Subsets, Secants, Geodesics and Convex Hulls

In Section 5.2 we will discuss two-dimensional 1-Hamiltonian exponential families (and m-
dimensional k-Hamiltonian exponential families). Their convex supports have |X | vertices and
they contain all point measures {δx}x∈X in their closures. The closure of any one-dimensional
exponential family contains at most 2 point measures, and hence there don’t exist one-dimensional
1-Hamiltonian exponential families for |X | > 2. The following Lemma 2.3.3 states that for any
X , there exist one-dimensional exponential families which approximate all {δx}x∈X simulta-
neously to an arbitrary accuracy, and provides a one-dimensional counterpart to 1-Hamiltonian
exponential families.

Lemma 2.3.3. (Exponential geodesics approaching all point measures). For any finite X and
any ε > 0 there exists an e-geodesic γ = {pt : t ∈ R} for which D(δx‖γ) ≤ ε ∀x ∈ X and
conv(γ) ⊇ Pε := {p ∈ P : p(x) ≥ ε ∀x ∈ X}.

Figure 2.3 illustrates the result.

Proof of Lemma 2.3.3. Let X = {1, . . . , N}. We set A(i) = i and ν(i) = exp(
∑fi

k=1 10−kK)
for i ∈ X , where

fi =

{
i, i ≤ dN2 e
N − (i− 1), i > dN2 e

.

The geodesic is pt(i) = ν(i)et·i∑
j ν(j)et·j

, t ∈ R. The claim is that given any ε > 0 we always find

a K such that for each i ∈ X , there is a t = ti with pti(i) ≥ (1 − ε) and pti(j) < ε for all
j 6= i. We show the following equivalent statement: Given any κ ≥ 1, for all i ∈ X there exists
a ti ∈ R such that

pti(i)

pti(j)
= exp

(
(i− j)ti + (

fi∑
k=1

10−k −
fj∑
l=1

10−l)K
)
> eκ ∀j 6= i . (2.7)

It is sufficient to show that the exponent in the left hand side of the inequality can be made larger
than zero for all j 6= i, since in this case we can multiply t and K by a constant in order to
satisfy the inequality. Let i ≤ dN2 e (the proof for i > dN2 e is analogue). There are four cases: i)
j1 < i, ii) dN2 e ≥ j2 > i, iii) N − (i − 1) > j3 > dN2 e ≥ i, iv) j4 ≥ N − (i − 1). Inserting
iii) into eq.( 2.7) we get that t must be smaller than 0. In this case iv) is always satisfied. The
remaining cases are satisfied if the following inequalities hold:

−
∑i

k=j1+1 10−k

(i− j1)
<

∑j2
k=i+1 10−k

(i− j2)
,

∑N−(j3−1)
k=i+1 10−k

(i− j3)
. (2.8)

The left hand side is smaller than −10−i, while the terms in the right hand side are larger than
10−j2 j2−(i+1)

i−j2 ≥ −10−(i+1), and larger than

10−N−(j3−1) (N − (j3 − 1))− (i+ 1)

i− j3
≥ −10−(i+1) dN2 e − 1− i

j3 − i
≥ −10−(i+1)

respectively. This completes the proof.
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δ1

δ2

δ3 δ4

δ5

γKe

Figure 2.3: This figure illustrates Lemma 2.3.3. It shows the Schlegel diagram of the four-
dimensional simplex P(X = {1, . . . , 5}) and four elements from a one-parameter set of e-
geodesics: For every K ∈ R γKe is an e-geodesic with natural parameter t ∈ R and limit points
γK(t → ±∞) = {δ1, δ5}. The blue curve is for a small value of K and the magenta one is for
a larger value of K. The distance from γKe to any δx goes to zero as K →∞.

Limit Points of α-Geodesics

There are many e-geodesics which hit the boundary of the probability simplex at the same points.
Every one-dimensional exponential family with a sufficient statistics which attains a unique
maximum value at x and a unique minimum value at y hits the boundary at δx and δy. On
the other hand it is clear that different m-geodesics have different boundary points. Here we
study the behavior of boundary points for general α-geodesics. We start with the collection of
α-geodesics through a common pair of full support distributions P and Q.

Lemma 2.3.4. Consider a pair of probability distributions P,Q ∈ P(X ).

• The limit points of the e-geodesic γe(t) through P andQ are probability distributions with
support argmax P

Q for t→∞ and argmin P
Q for t→ −∞.

• For α 6= 1. The α-geodesic γα(t) through P andQ hits the boundary of P at a probability
distribution with support {x ∈ X : P (x)

Q(x) 6= min P
Q} and at a probability distribution with

support {x ∈ X : P (x)
Q(x) 6= max P

Q}.

Remark 2.3.5. Given any pair of points, the support of boundary distributions of the e-geodesic
through the two points is always contained in the support of the boundary distributions of α-
geodesics through the same two points. Furthermore, for the two boundary points ∂γ(1)

α and
∂γ

(2)
α the map α 7→ ∂γ

(1/2)
α is continuous.

Proof of Lemma 2.3.4. Let X = {1, . . . , n}. We write P = (pi) and Q = (qi) and γα = γ =
(γ1, . . . , γ|X |). First item: In the case α = 1 we have log γi(t) = t log pi + (1− t) log qi−ψ(t),

or equivalently γi(t) =
qi

(
pi
qi

)t
∑
i qi

(
pi
qi

)t . This means that γ(t) hits the boundary of P at a probability

distribution with support argmax pi
qi

for t → ∞ and at a probability distribution with support
argmin pi

qi
for t→ −∞.
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Second item: Consider some α 6= 1. Then the α-geodesic through P and Q is a curve
γ(t) = (γi(t))i∈X which satisfies

(γi(t))
1−α

2 = C(t)

(
tp

1−α
2

i + (1− t)q
1−α

2
i

)
. (2.9)

This curve hits the boundary of the probability simplex at two points. The first point is given by
γ(t+), where t+ is the smallest positive t for which γi(t) = 0 for some i ∈ X . The second is
γ(t−), where t− is the largest negative t for which γi(t) = 0 for some i. The condition γi(t) = 0

can be written as q̄i + t(p̄i − q̄i) = 0, where p̄i := p
1−α

2
i and q̄i := q

1−α
2

i . If pi = qi 6= 0, then
γi 6= 0 for all t. For those i with pi 6= qi we consider the following two sets: I+ := {i : pi > qi}
and I− := {i : pi < qi}. For P 6= Q the two sets I± are not empty. We get the following:

t± =

{
mini∈I− −q̄i/(p̄i − q̄i)
maxi∈I+ −q̄i/(p̄i − q̄i)

. (2.10)

Hence, at time t+, the curve γ hits the boundary of P at a distribution which vanishes in
i = argmin −q̄i

p̄i−q̄i

∣∣∣
I−

= argmin pi
qi

∣∣∣
I−

= argmin pi
qi

. Similarly, γ(t−) is a distribution which

vanishes in i = argmax pi
qi

.

Remark 2.3.6. By Lemma 2.3.4, unless α = 1, given two points in the boundary of P , there
is not much freedom in the choice of an α-geodesic connecting the two points (straight lines,
for example, are completely determined from the two points, in contrast to exponential families,
which are only vaguely determined from their boundary points, unless the boundary points have
complementary supports).

Proposition 2.3.7. Consider an e-geodesic γ(t) = ν exp(tf − ψt), ν > 0. Let I+ = {x ∈
X : f(x) = max f} and I− = {x ∈ X : f(x) = min f}. The limit points of γ have supports
supp(γ(−∞)) = I− and supp(γ(+∞)) = I+. Furthermore γ(±∞)|I± ∝ ν|I± .

Proof. This follows from Lemma 2.3.4. We provide an alternative proof: The support sets of
the probability distributions in the boundary of the exponential family are I− and I+ because
these sets are the index sets of all columns of the sufficient statistics matrix f ∈ R1×X which
lie in a proper face of the convex support conv{fx}x∈X = [min f,max f ] (see [48] and [96]).
The second statement is clear from the fact that exp(tf(x)) is constant on {x ∈ X : f(x) =
max f}.

Proposition 2.3.8. Let P,Q ∈ ∂P , P = δx and Q = δy for some x, y ∈ X , x 6= y. The
collection of all e-geodesics with limit points P and Q covers all P .

Proof. Let P 0 = exp(f0 − ψ0) and P 1 = exp(f1 − ψ1) be probability distributions in P .
The functions f0 and f1 are arbitrary (finite) elements of RX . The e-geodesic connecting P 0

and P 1 is P (t) = exp((1 − t)f0 + tf1 − ψt) = exp(f0) exp(t(f1 − f0) − ψt). This is the
one-dimensional exponential family with strictly positive reference measure ν = exp(f0) and
sufficient statistics (f1− f0). The probability distribution P (0) = exp(f0−ψ0) = ν/

∑
x ν(x)

can be made arbitrary in S by choosing a suitable f0. Furthermore, for any f0 we may choose
f1 = f0 + ‖f0‖11x − ‖f0‖11y, in which case the limit points of P (t) are P (+∞) = δx = P
and P (−∞) = δy = Q. Hence, given any µ ∈ P , we find an e-geodesic with limit points P
and Q, which contains P (0) = µ.
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If the limit points have complementary supports, then the e-geodesic is unique:

Proposition 2.3.9. If P,Q ∈ ∂P have complementary supports supp(P ) = X \ supp(Q), then
there is a unique e-geodesic with limit points P and Q: The m-geodesic between P and Q.

Proof. Any e-geodesic with limit points P and Q must have a sufficient statistics A satisfying
argmax(A) = supp(P ) and argmin(A) = supp(Q). This implies that A = 1supp(P ) is a
sufficient statistics. On the other hand ν = k1P + k2Q must be a reference measure. This is
γe(t) = etk1

etk1+k2
P + k2

etk1+k2
Q.

In particular, Proposition 2.3.9 shows that a pair of boundary points of an exponential family
are not necessarily connected by an exponential geodesic within the exponential family. In con-
trast, for pairs of strictly positive distributions, the exponential geodesic is contained in any expo-
nential family containing them. This reflects the well known fact that the natural parametrization
of an exponential family E doesn’t extend to the boundary ∂E . We discuss this further in Propo-
sition 2.3.11.

In contrast to Proposition 2.3.8, given the limit points, the α-geodesics with α < 1 are unique
and the following holds:

Proposition 2.3.10. Consider any P,Q ∈ ∂P(X ), P 6= Q.

• For all α < 1: There exists an α-geodesic in P connecting P and Q. This α-geodesic is
contained in P(supp(P ) ∪ supp(Q)).

• For α = 1: There exists an e-geodesic connecting P and Q iff supp(P ) ∩ supp(Q) = ∅.
It is unique iff supp(P ) ∪ supp(Q) = X .

Proof of Proposition 2.3.10. First item: There is no problem in writing the geodesic γ(t) from
equation 2.9 for P,Q ∈ ∂P . On the other hand, from that equation we also see that if Pi =
Qi = 0 for some i ∈ X , then γi(t) ∀t, and in consequence γ ⊆ S(supp(P ) ∪ supp(Q)).

Second item: An e-geodesic γ(t) can be given as a one-dimensional exponential family with
arbitrary reference measure ν and an arbitrary sufficient statistics f ∈ RX . Let Y = supp(P )
and Z = supp(Q). For the if statement: We assume Y ∩ Z = ∅. The choice ν|Y ∝ P |Y and
ν|Z ∝ Q|Z together with f = 1Y − 1Z yields that γ(∞) = ν1Y/

∑
x∈X 1Y(x)ν(x) = P

and γ(−∞) = ν1Z/
∑

x∈X 1Z(x)ν(x) = Q. For the only if statement: The support of a
distribution belonging to the boundary of a one dimensional exponential family with sufficient
statistics f ∈ RX is a subset of X consisting of those x for which f(x) is a boundary point
of the line segment conv{fx}x∈X = [min f,max f ], Proposition 2.3.7. Now, either f is a
constant function, in which case the exponential family consists of only one point, or {x : fx =
max f} ∩ {x : fx = min f} = ∅, in other words, the support sets of the boundary distributions
are disjoint.

A natural question is if it is possible to define an exponential family as the exponential mixture
of a number of its extreme points, or starting from a predetermined boundary. This is not possible
(see, Proposition 2.3.8 and Proposition 2.3.9), at least not without further ado, since different
exponential families can have the same boundary. Therefore, one usually considers the e-convex
hull of a collection of full support probability distributions and the extension to the e-affine hulls,
i.e., the span of a sufficient statistics.
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An interesting question is which points in the boundary of E are limit points of e-geodesics
parametrized by one-dimensional linear subspaces of the parameter space of E . This is, by
θr = rϑ for a fixed vector ϑ in the unit (d− 1)-sphere Sd−1 and r ∈ R≥0. It is also interesting
to know how these limit points depend on the parametrization of E .

Proposition 2.3.11. Let Eν,A be the exponential family with reference measure ν and a sufficient
statistics {Ai}di=1. The set of limit points of e-geodesic with natural parameters of the form
{rϑ : r ∈ R} for some ϑ ∈ Sd−1 consists of the truncations of the reference measure to the
sets F(E) = {argmax f : f ∈ span{Ai}}. For every Y ∈ F(E) there is exactly one limit
point ν1Y/

∑
x∈Y ν with support Y . On the other hand, every p ∈ ∂E is the limit point of an

e-geodesic of the form given above by choosing an appropriate reference measure.

Proof. The limit distributions for r →∞ and a fixed ϑ ∈ Sd−1 are given by the truncation of ν
to any set from FE := {argmax f : f ∈ V }, Proposition 2.3.7. The truncation of ν to Y ∈ FE
is defined as ν|Y := ν1Y/

∑
y∈Y ν(y). Furthermore, Y = argmax f for some f in the span of

{Ai, } is equivalent to the existence of a vector θ ∈ Rd such that
∑d

i=1 θiAi(x) = 0 ∀x ∈ Y
and

∑d
i=1 θiAi(x) ≤ −1 ∀x 6∈ Y . This is precisely the definition of a facial set of E . The

claim follows from the fact that for a facial set Y , E ∩P(Y) equals the truncation of E to Y [95,
Theorem 2.29], and the fact that cs(E) and E are homeomorphic.

Example 2.3.12. Consider the product distributions of two binary variables. Let x = (x1, x2) ∈
{0, 1}2 = X . Given three product distributions P i = (pi,1pi,2, pi,1(1− pi,2), (1− pi,1)pi,2, (1−
pi,1)(1−pi,2)), i = 0, 1, 2, we have E(P 0, P 1, P 2) := {P 0 exp(θ1 log P 1

P 0 +θ2 log P 2

P 0−ψ)}. The
expression in the exponent can be written as θ1(x1 log

p1,1

p0,1
+ (1− x1) log

1−p1,1

1−p0,1
+ x2 log

p1,2

p0,2
+

(1− x2) log
1−p1,2

1−p0,2
) plus a similar expression for θ2. We can write this in the following form:

(θ1, θ2) ·
(

log
p1,1p1,2

p0,1p0,2
log

p1,1(1−p1,2)
p0,1(1−p0,2) log

(1−p1,1)p1,2

(1−p0,1)p0,2
log

(1−p1,1)(1−p1,2)
(1−p0,1)(1−p0,2)

log
p2,1p2,2

p0,1p0,2
log

p2,1(1−p2,2)
p0,1(1−p0,2) log

(1−p2,1)p2,2

(1−p0,1)p0,2
log

(1−p2,1)(1−p2,2)
(1−p0,1)(1−p0,2)

)

The vectors (1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 1,−1), (−1, 1, 1,−1) build a basis of RX and
(−1, 1, 1,−1) is a kernel element of the matrix in the above-equation. Hence E = {P0 exp(θ′ ·
A) : θ′ ∈ R2}, where P 0 is any element of the exponential family andA =

(
1 1 0 0
1 0 1 0

)
. The

facial sets are X , {11, 10}, {11, 01}, {00, 10}, {00, 10} and the individual elements of X . For a
fixed P 0 the e-geodesics with parameters given by a linear subspace are precisely those passing
throughP 0. The limit points areP 0 for the facial setX , (p0,1p0,2, p0,1(1−p0,2), 0, 0)/(p0,1p0,2+
p0,1(1 − p0,2)) for the facial set {11, 10}, and similar distributions for the other pairs. For the
facial sets {x} ∈ X the limit distributions are δx, independently of P 0.

α-Mixtures of Exponential Families

We define α-geodesic mixtures (α-mixtures for short) recursively. In order to have a consistent
notation for mixtures, we denote the α-geodesic connecting the points p and q by Mixtα(p, q) .
We define the n-th α-mixture of a set G ⊆ P as

Mixtnα(G) := Mixtα(G,Mixtn−1
α (G)) , (2.11)
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with Mixtα(G,G′) := {Mixtα(p, q) : p ∈ G, q ∈ G′}.

For α = −1 we get the usual notion of mixtures. In Chapter 1 we showed that if the boundary
of an exponential family E contains entire faces of P , and κsE is the smallest cardinality of a
covering which contains all vertices of P , then n ≥ κsE ⇒ Mixtn(E) = P . It is possible to
compute or estimate κsE for various interesting exponential families. On the other hand, for an
exponential family E it is Mixtne (E) = E for every n. What can we say about Mixtnα(E)?

Proposition 2.3.13. For α < 1, P(Y) is the smallest α-family which approaches every point
measure δx, x ∈ Y ⊆ X . HenceP is the smallest α-family that approaches every point measure.

Proof. By Proposition 2.3.10, an α-geodesic with α 6= 1 and limit points δx and δy is con-
tained in P({x, y}). Therefore, in fact this geodesic equals the interval [δx, δy]. Similarly, the
smallest α-family which reaches this interval and a further point δz has closure conv{δy, δy, δz}.
Induction yields the result.

An α-family which contains all point measures in its closure, is equal to the full probability
simplex, and we get a straight extension of Lemma 1.2.2 to the case of α-mixtures:

Corollary 2.3.14. Let E be an exponential family. If n ≥ κsE then Mixtnα(E) = P for any α < 1.

Proof. Let {Yi}i be S-sets for E , i.e., the support sets of faces of P which are contained in E .
Assume that there are κsE of them that cover X . We can assume without loss of generality that
they are disjoint. Proposition 2.3.13 implies that the α-mixture Mixtα(P(Yi),P(Yj)) is equal
to P(Yi∪Yj). Iteration of this yields Mixtnα(E) = P for n ≥ κsE . The result for strictly positive
distributions follows the lines of the Proof of the Mixture Decompositions using S-sets Lemma
from [86].

Remark 2.3.15. For α-mixtures of compact subsets of E we expect in general Mixtnα(E) 6=
Mixtnα′(E) for α 6= α′.

2.4 Convex Hulls

Carathéodory Number of Some Exponential Families

If E is an exponential family with sufficient statistics A and there is an x ∈ X for which the
column Ax is not a vertex of the convex support, i.e., Ax 6∈ ex(cs(E)), then every mixture of
elements of E has support either not containing x, or strictly larger than x. It is interesting to
know for which n the mixture model equals the convex hull. We use the results from the previous
subsections to study two interesting situations. We use the following terminology:

Definition 2.4.1. Consider two sets V ⊂ Rd and V ′ ⊆ conv(V ). The Carathéodory number of
V ′ with respect to V , written CarV (V ′), denotes the smallest natural number m for which any
p ∈ V ′ is the convex combination of at most m points in V . If CarV (conv(V )) = m, we say
that V has Carathéodory number m and write Car(V ) = m.

Consider a d-dimensional exponential family E for which and all but one columns of its suf-
ficient statistics are vertices of cs(E). If the column Ax0 is contained in a k-dimensional face of
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A

δ4

E4q qqq

B

E4q qqq

C

E4p qa q

δ1

δ2

δ3

Figure 2.4: This figure shows exponential families on X = {1, 2, 3, 4}. They illustrate Propo-
sition 2.4.2 and Theorem 2.4.3. For these families pη(4) is a concave function on the convex
support. The small figures indicate the configuration of the column vectors of the sufficient
statistics. Example 2.4.5 provides a more detailed discussion.

cs(E), then cs(E) can be projected along this face (along basis vectors of the supporting hyper-
plane) onto a simplex of dimension (d − k). This implies that E contains a convex subfamily
SP,% attached to each P ∈ E , see Lemma 2.1.3.

Proposition 2.4.2. If X = {x0, x1, . . . , xN} and E is an exponential family with sufficient
statistics A such that cs(E) is a d-pyramid with basis conv{Axi}Ni=1, then E contains the one-
dimensional convex families with sufficient statistics 1{x0}. In fact E is Mixt(EX\{x0}, δx0) and
Car(EX\{x0}) = Car(E), where EX\{x0} is the truncation of E to X \ {x0}.

This result can be easily extended to the case where several columns of the sufficient statistics
lie in the apex of the pyramid.

Proof. Use Proposition 2.3.9.

Theorem 2.4.3. Let E be an exponential family on X , |X | = d + 2, with sufficient statistics
A, for which cs(E) is a d-dimensional simplex. If Ay 6∈ ex(cs(E)) for one y ∈ X , the map
cs(E)→ [0, 1] ; η 7→ pη(y) is concave and Car(E) = 2. If Ay ∈ ex(cs(E)) for all y ∈ X , then
E is a simplex and Car(E) = 1.

Remark 2.4.4.

(i) The map Rd → R ; θ 7→ pθ(y), pθ = exp(θ ·A− ψθ) is not concave.

(ii) In the case |X | ≥ d+ 3 (e.g., the binomial model Binn, n ≥ 3), the map η 7→ pη(y) is not
necessarily convex, concave or monotone for a non-facial {y}.

Proof of Theorem 2.4.3. The assumption implies that there is a set X ′ := X \ {y}, y ∈ X such
that {Ax}x∈X ′ are vertices of cs(E), and Ay lies in the convex hull of {Ax}x∈X ′ . The polytope
cs(E) is the disjoint union of the relative interiors of its faces, cs(E) = ·∪G∈F(cs(E)) ri(G), where
ri({v}) = {v}. Let G be the face in which Ay is contained, Ay ∈ ri(G). If G = Ax′ ,
then E is a convex family with blocks {x′, y} plus the atoms of X \ {x′, y}. Consider now
G = cs(E). E is a manifold of codimension one in P and ∂E ⊂ ∂P . The Jordan-Brouwer
separation theorem yields that E divides P into two regions P+ and P−. Since Ay is in the
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interior of cs(E), Theorem 2.2.6 yields that any line intersects E at most at two points. A line
which intersects P(X ′) at two points is contained in P(X ′). W.l.o.g. P+ ⊃ P(X ′). A regular
line must intersect the boundary ∂P+ = E ∪ P(X ′) at an even number of points. Any line
segment joining two points of E is contained in P+, and in turn P+ is a convex set. Now we
show that Mixt2(E) ⊃ P+. There are 2 S-sets covering X ′, and hence Mixt2(E) ⊇ P(X ′).
The normal space of E , given by kerA, is one-dimensional. The union of the fibers fills the
simplex ·∪p∈ENp = P and the union of the positive parts of the fibers fills P+. For any p ∈ E
with A · p = η ∈ cs(E) there are two points in ∂ cs(E) with

∑
πiηi = η and hence

∑
πipηi = q

with A · q = η. Furthermore, q ∈ ∂P , because pηi(y) = 0. This implies {q, p} = ∂N+
p .

Since Np is one dimensional, the curve γp1,p2(t) :=
∑
πip(1−t)ηi+tη ⊆ Np with end points

{q, p} in fact contains N+
p . The remaining cases of G follow from recursive application of

Proposition 2.4.2.

The Kullback-Leibler divergence from P ∈ P to E is infQ∈E D(P‖Q), where D(P‖Q) :=∑
x P (x) log P (x)

Q(x) . S. Weis [120] discussed codimension one exponential families for which the
centroid of P(X \ {x}) is a local Kullback-Leibler maximizer. The cardinality of the support of
a local maximizer is at most dim(E) + 1, a bound which is attained in this case. J. Rauh [95]
shows that any local maximizer of KL-divergence to an exponential family E(X ) belongs to the
class of kernel distributions1 KE , and that KE ∩ P(Y) is a convex set which is not empty iff
Y ⊂ X is not facial. For any codimension one exponential family there exist exactly two local
maximizers of KL-divergence. For E as in Theorem 2.4.3 we have

max
p∈P

D(p‖conv(E)) = D(δy‖E) ,

and δy is one of two local maximizers of DE .

Example 2.4.5. We discuss the three families on X = {1, 2, 3, 4} depicted in Figure 2.4. They
have codimension one in P and do not contain every δx in their closure. The dots in 4q qqq , 4q qqq
and4p qa q represent the configuration of column vectors of the sufficient statistics. The convex hull
of these models does not fill the entire probability simplex. We are interested in Car(E). In
the following examples A and B Theorem 2.4.3 yields Car(E) = 2, while in example C the
family is convex. A. The sufficient statistics has rows (1, 0, 0, 1

3) and (0, 1,−1, 0). The vector
Ax=4 lies is in the relative interior of cs(E). This exponential family can be thought of as a
higher dimensional analogue to the Hardy-Weinberg exponential family on the two dimensional
simplex, which has sufficient statistics A = (0, 1, 2) and reference measure (1, 2, 1). B. In this
case A = {(1, 0, 0, 0), (0, 1,−1, 0)} and Ax=4 is contained in the relative interior of a facet of
cs(E). Here E is Mixt(E{1,2}, {δ3}). C. In this case A = {(1, 0, 0, 1), (0, 1,−1, 0)}, such that
Ax=4 = Ax=1. All Ax are vertices of cs(E), cs(E) is a simplex.

Example 2.4.6. In Chapter 1 we showed that if |X | = 4 (|X | = 5) and cs(E) is a tetragon (a
pentagon), then Mixt2(E) = P . In combination with Proposition 2.4.2 we get:

If |X | = 5 (|X | = 6) and cs(E) is a pyramid with basis given by a tetragon (a pentagon), then
Mixt2(E) = conv(E) = P .

1Given an exponential family E(X ), P is a kernel distribution iff there exists someQ ∈ P(X \ supp(P )) such that
P −Q ∈ N .
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δ4

δ1 δ2

δ3

δ5

E�q qq qq

Figure 2.5: This figure shows an exponential family on {1, . . . , 5} for which A5 ∈ ri(cs(E))
and cs(E) is a tetragon. The color from blue to red corresponds to values of p(5) from 0 to 1

5 .
The contour lines are equally spaced values of p(5). Note that only the boundary of E intersects
P({1, 2, 3, 4}).

Carathéodory’s theorem [24] (Steinitz’ extension) states that Car(V ) ≤ d + 1 for any set
V ⊂ Rd. Hanner and Rådström [52] extended a result by Fenchel [43] and showed that if
V ⊂ Rd is compact and has at most d convexly connected2components (e.g., V consists of at
most d connected components), then Car(V ) ≤ d. It is natural to ask for further conditions on
the set V which guarantee lower Carathéodory numbers. For example, Car(Sd−1) = 2 ∀d ≥ 1.
Space curves are curves in R3. Their Carathéodory number is at most 3. Their convex hulls
are interesting objects (see [94] for a recent work on boundaries of space curves). We show the
following:

Proposition 2.4.7. Consider a continuous curve c : S1 → R3. If there exists a point p ∈
ri(conv(c)) with Carc(p) = 3, and if there exists an axis W := p + Rw, p, w ∈ R3 such that
the winding function of c around W is monotone, then conv(c) has a face with Carathéodory
number 3.

Proof. The cone with apex p and base 2p−c is the set of all raysGp := p+R+(p−c(t)), t ∈ S1.
Gp doesn’t intersect c at any point (otherwise Carc(p) ≤ 2), and divides R3 into two regions
G±p which are orthogonally convex3with respect to w (otherwise the winding function wouldn’t

be monotone). W.l.o.g. c ⊂ G−p and p + w ∈ G+
p . We have that Gp+λw ⊂ G

+
p ∀λ ≥ 0.

This implies that Carc(p + λw) ≥ 3 ∀λ ≥ 0. Clearly, there exists some λ ≥ 0 for which
(p+ λw) ∈ ∂conv(c).

In particular, any space curve cwhich can be projected into the boundary of a planar convex set
with regular values of degree one has Carathéodory number bounded from above by the maximal
Carathéodory number of its convex hull’s faces. If none of the faces contains a polygon, then
Car(c) = 2.

Corollary 2.4.8. Let ED be the exponential family from Proposition 1.2.8. Then Car(ED) ≤
Car∂ED(∂P) = 2.

2A set W ⊂ Rd is convexly connected if there is no (d − 1)-plane U which divides W into two non-empty parts
and for which U ∩W = ∅. E.g. a collection of concentric spheres is convexly connected. See [52].

3A subset M of Rd is orthogonally convex with respect to a direction w ∈ Rd if whenever r, s ∈ M satisfy
r − s = cw for some c ∈ R, thenM contains the convex hull of r and s.
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Proof. Extend Proposition 2.4.7 to the case of curves in R4 and use that any point in ∂P is the
mixture of two points in ∂ED.

Example 2.4.9. Consider E�q qq qq , an exponential family on {1, . . . , 5} with sufficient statistics A
such that Ax=5 is contained in ri(cs(E)). Then dim(Mixt2(E)) = 4.

Proof. Consider the function f : P → R ; p 7→ p5. The level set Eh := (f |E)−1(h) is the
intersection of E with the three-dimensional affine space {p :

∑5
i=1 pi = 1, p5 = h}. The

moment map π maps Eh bijectively onto Qh := π(Eh).

An interesting property of minimal surfaces is that they are contained in the convex hull of
their boundary. We have seen in Example 2.1.8, that E1

2,bin is not a minimal surface. On the
other hand, any exponential family which contains all point measures in its closure certainly is
contained in the convex hull of its boundary. The following provides sufficient conditions as
well as necessary conditions:

Proposition 2.4.10. Consider an exponential family E with sufficient statistics A.

• If cl(conv(E)) = conv(∂E), then Ax ∈ ∂ cs(E) ∀x ∈ X .

• If E contains a convex set, or if Ax ∈ ex(cs(E)) ∀x ∈ X , then cl(conv(E)) = conv(∂E).

• The condition Ax ∈ ∂ cs(E) ∀x ∈ X does not imply cl(conv(E)) = conv(∂E).

Proof. (i) If Ax ∈ ri(cs(E)), then the function η 7→ pη(x) has a unique maximum η = F · δx =
A(x). To see this, consider the derivative ∂ηpη(x) = (A(x)− η)pη∂ηθ, and note that η = A(x)
is the only critical point which comes into question. For η = A(x), pη 6∈ conv(∂E).

(ii) If E contains a convex set, then E is a ruled manifold, and every p ∈ E is contained in the
straight line connecting two points in ∂E . If Ax ∈ ex(cs(E)) ∀x and Ax 6= Ay ∀x 6= y then
{δx}x∈X ⊂ E . If Ax ∈ ex(cs(E)) ∀x and Ax = Ay for some x 6= y, then there is a partition
% = {Xy}y of X , where Xy := {x ∈ X : Ax = Ay}. We have that E is a subfamily of S% and
E ⊃ ex(S%). (iii) See Example 2.4.11 and Figure 2.6.

Example 2.4.11. Consider the two-dimensional exponential family E on X = {1, . . . , 5} with

sufficient statistics A =

(
1 1 1

2 0 1
0 1 1

2 1 1
2

)
and uniform reference measure. The configuration

of Ax is as 4p qq qq q , such that Ax ∈ ∂ cs(E) ∀x ∈ X . The facial sets are F(E) = {{12345},
{125}, {134}, {24}, {1}, {2}, {4}}. Figure 2.6 shows a linear image of E and of the convex
hull of its boundary. The later doesn’t contain all points of E . This confirms item three of
Proposition 2.4.10.
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δ4

δ1

δ3

δ5

δ2

conv(∂E)

E4p qq qq q

Figure 2.6: This figure illustrates Example 2.4.11. Depicted is a linear projection of the proba-
bility simplex on X = {1, . . . , 5} onto a three-dimensional simplex. The light blue surface is the
projection of a two-dimensional exponential family on X for which all columns of its sufficient
statistics are in the boundary of the convex support, but only three of them are also vertices. The
white curves are level surfaces of p(5). The gray volume is the projection of the convex hull
of the boundary of E . The red lines show a triangulation of the boundary of this volume. This
figure shows conv(∂E) 6⊃ E .
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Part II.
Restricted Boltzmann Machines

and Deep Belief Networks





3 Universal Approximation Results for RBMs
and DBNs

Restricted Boltzmann Machines

A Boltzmann Machine is an undirected stochastic binary network, formally similar to the Ising
model in statistical physics. A Boltzmann Machine includes pair interactions between any two
nodes, and a bias term for each node (corresponding to an external field). See [2, 59, 9, 68]
for an overview. A Glauber dynamics can be defined on the states of the nodes. The state of
each node is updated asynchronously and takes value 0 or 1 with a probability that depends
on the state of its neighbors, the strength of the connection between them, and a bias term. A
Restricted Boltzmann Machine (RBM) is a special type of Boltzmann Machine, where the graph
describing the interactions is bipartite: Only connections between a visible and hidden part of
the units appear (see Figure 3.1). An arbitrary weight can be assigned to each edge and to each
unit. An RBM with n visible and m hidden units generates stationary probability distributions
on the states of the visible units which have the following form:

pW,C,B (v) =
1

ZW,C,B

∑
h∈{0,1}m

exp
(
h>Wv + C>h+B>v

)
∀v ∈ {0, 1}n , (3.1)

where h ∈ {0, 1}m denotes the state vector of the hidden units, W ∈ Rm×n, C ∈ Rm and
B ∈ Rn constitute the model parameters, and ZW,C,B is a normalization constant (the partition
function). A Restricted Boltzmann Machine model with n visible and m hidden units, denoted
RBMn,m, is the set of all probability distributions on {0, 1}n which can be approximated arbi-
trarily well by a probability distribution of the form given in eq. (3.1). In particular, the model
RBMn,m is the closure of a hierarchical model marginalized overm variables. See [107, 45] for
the origins of RBMs and [72, 57, 87, 88] for additional details.

h

v

Figure 3.1: Graphical representation of an RBM with 4 visible (light gray) and 16 hidden units
(dark gray). This model can approximate any distribution on {0, 1}4 arbitrarily well as the
stationary distribution on the states of its visible units through appropriate choice of parameters
(this follows from a result from [72]). In Section 3 we show that the number of hidden units can
be halved.



3 Universal Approximation Results

Deep Belief Networks

A Deep Belief Network (DBN) is a special kind of generative graphical model with binary vari-
ables, originally introduced in 2006 by G. E. Hinton, S. Osindero and Y. Teh [58]. The graphical
representation consists of a sequence of layers of units, where all pairs of units from neighboring
layers are connected, but units in the same layer are not connected. The two layers at the top of
the network have undirected connections between them, while all other connections are directed
towards the bottom layer, which is the visible layer, see Figure 3.2. An arbitrary weight can
be assigned to every edge. Beside the connection weights, every node contains an individual
bias weight. Formally a DBN with only two layers is just an RBM, but the general idea is that
DBNs have several hidden layers. A model with the same interaction graph as a DBN but with
undirected connections is called a Deep Boltzmann Machine (DBM), see [99].

A DBN is specified by the number of hidden layers l ∈ N (indexed by k ∈ [l]), the number
of units nk ∈ N in the layer k, called the width of the layer, for each k ∈ [l], and the width
n0 ∈ N of the visible layer. The model contains a total of N =

∑l
k=0 nk binary units. To

any pair of units j and i belonging to a pair of subsequent layers (k − 1) and k the associated
connection weight is denoted W k

j,i ∈ R. To any unit j in any layer k the associated bias weight
is denoted bkj ∈ R. This makes a total of d = (

∑l
k=1 nk−1nk) + (

∑l
k=0 nk) parameters. The

state of the unit j in the layer k is denoted by hkj ∈ {0, 1}, and the states of all units in layer k
by (hkj )j =: hk ∈ {0, 1}nk . The joint probability distributions on the states of all N units of the

model are parametrized by the following mapQ : Rd → PN ⊂ R2N , which maps the connection
weights {(W k

j,i)j,i =: W k ∈ Rnk−1×nk}lk=1 and the bias weights {(bkj )j =: bk ∈ Rnk}lk=0 with
a distribution P defined as follows [110]:

P (h0, h1, . . . , hl) = P (hl−1, hl)

l−2∏
k=0

P (hk|hk+1) , (3.2)

P (hk|hk+1) =

nk∏
j=1

P (hkj |hk+1) , (3.3)

P (hkj |hk+1) ∝ exp

(
hkj b

k
j + hkj

nk+1∑
i=1

W k+1
j,i hk+1

i

)
. (3.4)

The closure of Q(Rd) ⊆ PN ⊂ R2N contains all distributions which can be approximated arbi-
trarily well by a distribution of the form given above. We denote this set by D(nl0).

The set of probability distributions which can be approximated arbitrarily well by the DBN
model, denoted DBNn0,n1,...,nl or DBN(nl0) for short, is the image of D(nl0) by the linear
marginal map:

D(nl0) → DBN(nl0) ⊆ Pn ,
P 7→ p = M · P ,

where M ∈ R2n×2N has rows Mv = 1{(v′,h′):v′=v} ∀v ∈ {0, 1}n. This is just p(v) =∑
h∈{0,1}N−n P (v, h).
The model DBN(nl0) only depends on the ordered tuple n0, . . . , nl. For notational conve-

nience we sometimes use subscripts from an interval {r, r + 1, . . . , r + l} ⊂ Z. A DBN is
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Figure 3.2: This figure shows the graph of interactions of a narrow DBN with 4 visible units
(at the bottom layer). A DBN with this architecture can approximate any distribution on {0, 1}4
arbitrarily well (this follows from a result from [73]). In Section 3.2 we improve previous bounds
on the minimal number of layers of a DBN universal approximator (we show that roughly half
the number of hidden layers used in previous results suffice).

narrow if all hidden layers have width of order n0, the width of the visible layer.

Universal Approximation

An RBM, respectively a DBN which can approximate any distribution on the states of its visible
units arbitrarily well is called a universal approximator. We say that an RBM, DBN, or some
other statistical model can approximate some probability distribution p ∈ Pn arbitrarily well iff
there exists a sequence of visible probability distributions in the model which converges to p.
The main question in this chapter is: What is the minimal number of hidden units (hidden lay-
ers) of an RBM (a narrow DBN) universal approximator? This chapter builds on previous work
by N. Le Roux and Y. Bengio [72, 73]. We improve their results on the minimal size of RBM
and DBN universal approximators and resolve thereby a conjecture that they formulated. The
results of this chapter are used in Chapter 4, where we analyze the expressive power of RBMs
and DBNs which are not necessarily universal approximators.

A DBN universal approximator on {0, 1}n necessarily has a number of parameters larger or
equal to 2n − 1, the dimension of Pn. We give a formal proof of this intuitive statement in
Appendix 3.A. A lower bound on the number of hidden layers of a DBN universal approximator
with layers of width n is 2n−1−n

n(n+1) . This implies the answer yes to the following question, which
was raised in [110]: Given that a network with 2n/n2 layers has about 2n parameters, can it be
shown that a deep and narrow (with width n + c) network of� 2n/n2 layers cannot approxi-
mate every distribution?

Using Corollary 1.3.3 from Section 1, a further bound can be given as:

Proposition 3.0.12. Any RBM, DBN, or DBM universal approximator on {0, 1}n has at least
(n− 1) units in the first hidden layer (next to the visible layer).
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3 Universal Approximation Results

Proof. The visible distributions are mixtures of 2n1 product distributions, where n1 is the num-
ber of units in the first hidden layer. By Corollary 1.3.3, the mixture can’t represent distributions
supported by Z±,n unless 2n1 ≥ 2n−1.

Since DBNs and RBMs have restricted architectures, the lower bounds derived above are not
necessarily attained by universal approximators of these kinds.

The following theorem shows that RBMs are universal approximators provided they have
enough hidden units (see also [45]):

Theorem 3.0.13. (N. Le Roux and Y. Bengio [72, Theorem 2]). Any distribution on {0, 1}n
with support of cardinality s can be approximated arbitrarily well (with respect to the Kullback-
Leibler divergence) by an RBM with (s+ 1) hidden units.

I. Sutskever and G. E. Hinton [110] showed the existence of narrow DBN universal approxi-
mators. More precisely, they showed that a DBN with∼ 3·2n hidden layers of width (n+1) can
approximate any distribution on {0, 1}n arbitrarily well. In [73] it is shown that hidden layers
of width n suffice, and furthermore:

Theorem 3.0.14. (N. Le Roux and Y. Bengio [73, Theorem 4]). If n = 2t, a DBN composed of
2n

n + 1 layers of size n is a universal approximator of distributions on {0, 1}n.

The optimality of [73, Theorem 4] remains an open problem in that paper. However, the proof
method suggests the sufficiency of less hidden layers (of order 2n

2n ), which was conjectured in
that paper. Our Theorem 3.2.1 gives a positive solution to that conjecture. The proofs contained
in [73] crucially depend on Theorem 3.0.13. In this chapter we sharpen that ingredient, see
Theorem 3.1.1, which allows us to even better exploit their method, see Lemma 3.2.3, and
thereby prove Theorem 3.2.1.

3.1 Restricted Boltzmann Machines

The following Theorem 3.1.1 improves Theorem 3.0.13.

Theorem 3.1.1. (RBM universal approximators). Any distribution p on binary vectors of length
n can be approximated arbitrarily well by an RBM with (k − 1) hidden units, where k is the
minimal number of pairs of binary vectors such that the two vectors in each pair have Hamming
distance one and such that the support set of p is contained in the union of these pairs.

We shall present a stronger version of this result in Chapter 4 (Theorem 4.2.1).
Any subset of {0, 1}n can be covered by 2n−1 pairs of vectors of Hamming distance one,

because the graph of the n-dimensional hypercube (the graph of the cube has a perfect matching).
The minimal number of pairs which is sufficient to cover the support of some p ∈ Pn can be
as small as | supp(p)|/2. For example, if the support of p is of the form {(x1, . . . , xn) : xij ∈
{0, 1}, 1 ≤ j ≤ b} ⊆ {0, 1}n for any 1 ≤ b ≤ n and fixed xi ∈ {0, 1} for all i 6= i1, . . . , ib.
The union of the following 2b−1 pairs covers that set:{

{(x1, . . . , 0
i1
, . . . , xn), (x1, . . . , 1

i1
, . . . , xn)} : xij ∈ {0, 1}, 2 ≤ j ≤ b

}
.

Therefore, we have the following:

76



3.1 Restricted Boltzmann Machines

Corollary 3.1.2.

• Any distribution on {0, 1}n can be approximated arbitrarily well by an RBM with 2n

2 − 1
hidden units.

• An RBM with n hidden units can approximate p ∈ Pn arbitrarily well, whenever supp(p)
is contained in the set of vertices of some (log(2(n+ 1)))-dimensional face of the n-
dimensional unit cube, e.g., supp(p) = {(x1, . . . , xb, 0, . . . , 0) ∈ {0, 1}n : xi ∈ {0, 1}, 1 ≤
i ≤ b} for any b ≤ log(2(n+ 1)).

Our proof is in the spirit of the proof of [72, Theorem 2]. The idea of that proof is to show that,
given an RBM with some marginal visible distribution, appending one additional hidden unit
allows to increment the probability mass of one visible state vector, while uniformly reducing the
probability mass of all other visible state vectors. We show that appending an additional hidden
unit in fact allows to increase the probability mass of a pair of visible vectors, in independent
ratio, given that this pair differs in one entry. At the same time, the probability of all other visible
states is reduced uniformly. Furthermore, we use the bias weights in the visible layer to improve
the result.

Proof of Theorem 3.1.1. (i) Let p be the distribution on the states of visible and hidden units of
an RBM that is represented for a choice of the parameters W,B and C. Its marginal distribution
on v can be written as

p(v) =

∑
h z(v, h)∑

v′,h′ z(v
′, h′)

, (3.5)

where z(v, h) = exp(hWv + Bv + Ch). Denote by pw,c the distribution that arises when an
additional hidden unit is added to the RBM connected with weights w = (w1, . . . , wn) to the
visible units, and with bias weight c. Its marginal distribution is

pw,c(v) =
(1 + exp(w · v + c))

∑
h z(v, h)∑

v′,h′(1 + exp(w · v′ + c))z(v′, h′)
. (3.6)

(ii) Given any vector v ∈ {0, 1}n we write vj,0 for the vector defined through vj,0i = vi,∀i 6=
j, and vj,0j = 0. Similarly we write vj,1 for the vector with vj,1i = vi,∀i 6= j, and vj,1j = 1. We
also write 1 := (1, . . . , 1), and ej := (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the j-th entry.

(iii) Consider an arbitrary j ∈ {1, . . . , n} and an arbitrary visible vector u. Consider also
s := 1 · uj,0, i.e., the number of ones in vector uj,0. Define

ŵ := a(uj,0 − 1

2
1j,0) ,

w̄ := ŵ + (λ2 − λ1)ej ,

c̄ := −ŵ · uj,0 + λ1 = −ŵ · uj,1 + λ1 .

For the weights w̄ and c̄ we have:

w̄ · v =
1

2
a(s− |{i : uj,0i 6= vj,0i }|) + (λ2 − λ1)vj , (3.7)

c̄ = −1

2
as+ λ1 , (3.8)
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3 Universal Approximation Results

and in the limit a→∞ we get:

lim
a→∞

1 + exp(w̄ · v + c̄) = 1, ∀v 6= uj,1, uj,0 ,

lim
a→∞

1 + exp(w̄ · uj,0 + c̄) = 1 + eλ1 , (3.9)

lim
a→∞

1 + exp(w̄ · uj,1 + c̄) = 1 + eλ2 .

Now we take a look at the denominator in the right hand side of eq. (3.6). For the parameters
w̄ and c̄ defined above this evaluates to:

lim
a→∞

∑
v′,h′

(1 + exp(w̄ · v′ + c̄))z(v′, h′) =

∑
v′,h′

z(v′, h′) + eλ1
∑
h′

z(uj,0, h′) + eλ2
∑
h′

z(uj,1, h′) . (3.10)

Inserting the terms of eqs. (3.9) and eq. (3.10) into eq. (3.6), and multiplying nominator and
denominator by

∑
v′,h′ z(v

′, h′) yields (cf. eq. (3.5)):

lim
a→∞

pw̄,c̄(v) =
p(v)

1 + eλ1p(uj,0) + eλ2p(uj,1)
, ∀v 6= uj,1, uj,0 ,

lim
a→∞

pw̄,c̄(u
j,0) =

(1 + eλ1)p(uj,0)

1 + eλ1p(uj,0) + eλ2p(uj,1)
, (3.11)

lim
a→∞

pw̄,c̄(u
j,1) =

(1 + eλ2)p(uj,1)

1 + eλ1p(uj,0) + eλ2p(uj,1)
.

This shows that the probability of uj,0 and of uj,1 can be increased independently by a multi-
plicative factor, while all other probabilities are reduced uniformly.

(iv) Now we explain how to start an induction from which the claim follows. Consider an
RBM with no hidden units. Through a choice of the bias weights in every visible unit, RBMn,0

produces any arbitrary product distribution p0(v) ∝ exp(B · v) ∝ exp(B · v + K) as visible
distribution, whereB is the vector of bias weights andK is a constant that we introduce for illus-
trative reasons, and is not a parameter of the RBMn,0 since it cancels out with the normalization
of p0. In particular, RBMn,0 can approximate arbitrarily well any distribution with support
given by a pair of vectors that differ in only one entry. To see this, consider any pair of vectors
uj,0 and uj,1 that differ in the entry j. Then the choice B = a(uj,0 − 1

21
j,0) + (λ2 − λ1)ej

and K = −a(uj,0 − 1
21

j,0)uj,0 + λ1 yields in the limit a→∞ (similarly to eqs. (3.9)) that
lima→∞ p0(v) = 0 whenever v 6= uj,1 and v 6= uj,0, while lima→∞ p0(uj,1)/p0(uj,0) =
exp(λ2 − λ1) can be chosen arbitrarily by modifying λ1 and λ2. Hence p0 can be made ar-
bitrarily similar to any distribution with support {uj,1, uj,0}. Notice that p0 remains always
strictly positive for a <∞.

By the arguments described above in eqs. (3.11), every additional hidden unit allows to in-
crease the probability of any pair of vectors which differ in one entry. Obviously, it is possible
to do the same for a single vector instead of a pair. Hence RBMn,(i−1) is an approximator of
distributions with support contained in any union of i pairs of vectors which differ in exactly one
entry.
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3.2 Deep Belief Networks

3.2 Deep Belief Networks

In this section we make a sensible modification of the construction used in the proof of [73,
Theorem 4] and prove Theorem 3.2.1, the main result of this chapter:

Theorem 3.2.1. (DBN universal approximators). Let b ∈ N and n = 2b

2 + b. A DBN containing
2n

2(n−b) hidden layers of width n is a universal approximator of distributions on {0, 1}n.

We first develop some components of the proof. An important idea of [110] is that of shar-
ing, by means of which in a part of a DBN the probability of a vector is increased while the
probability of another vector is decreased and the probability of all other vectors remains nearly
constant. This idea is refined in [73, Theorem 2]:

Consider two layers of units indexed by i ∈ [n1] and k ∈ [n2]. Denote {wik}i,k the connection
weights and {ci} the bias weights in the first layer. Denote v ∈ {0, 1}n1 and h ∈ {0, 1}n2 the
state vectors for each layer. Let a, b ∈ {0, 1}n2 be vectors satisfying dH(a, b) = 1 and let
j ∈ [n2] be the entry where they differ.

Theorem 3.2.2. (N. Le Roux and Y. Bengio [73, Theorem 2]). Given any l ∈ [n1] there exist
weights {wl,k}k∈[n2] and cl such that the following equations are satisfied with arbitrary accu-
racy: P (vl = hl|h) = 1 ∀h 6∈ {a, b}, while P (vl = 1|h = a) = pa and P (vl = 1|h = b) = pb
with arbitrary pa, pb ∈ [0, 1].

By this theorem, a sharing step can be accomplished in only one layer, where probability mass
is transferred from a chosen vector to another vector that differs in one entry. The sharing step
requires only adaptation of the connection weights and bias weight of one single unit. This way,
the overlay of a number of sharing steps in each layer is possible. The requirements for the
realizability of simultaneous sharing steps as described in Theorem 3.2.2 can be summarized in
properties of sequences of binary vectors. These properties are described in [73, Theorem 3], or
in the items 2–3 of the following lemma:

Lemma 3.2.3. Let b ∈ N, n = 2b

2 + b, and a := 2(n − b) = 2b. There exist 2b sequences of
binary vectors Si, 0 ≤ i ≤ a−1 composed of vectors Si,k, 1 ≤ k ≤ 2n

a satisfying the following:

1. {S0, . . . , Sa−1} is a partition of {0, 1}n.

2. dH(Si,k, Si,k+1) = 1 ∀i ∈ {0, . . . , a− 1}, ∀k ∈ {1, . . . , 2n

a − 1}.

3. For all i, j ∈ {0, . . . , a − 1}, i 6= j and every k ∈ {1, . . . , 2n

a − 1} the bit switched
between Si,k and Si,k+1 and the bit switched between Sj,k and Sj,k+1 are different, unless
dH(Si,k, Sj,k) = 1.

4. Furthermore, the choice {S0,1, . . . , Sa−1,1} = {(x, 0, . . . , 0) : x ∈ {0, 1}b}, (the vertices
of a b-dimensional face of the n-cube), is possible.

Proof of Lemma 3.2.3. An m-bit Gray code is a matrix of size 2m × m, where every element
from {0, 1}m appears exactly once as a row of the matrix, and any two consecutive rows have
Hamming distance one to each other. A Gray code can be understood as an ordered binary code
describing a Hamiltonian path on the graph of the m-cube. Such paths exist for any m, (the
graph of the m-cube is Hamiltonian). Let G0

n−b be any (n − b)-bit Gray code. Obviously, any
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3 Universal Approximation Results

permutation of columns of a Gray code gives a Gray code. Let Gin−b be the cyclic permutation
of the columns of G0

n−b, i positions to the left. Now, we define the following matrix:

Si =


Si,1

...
Si,k

...
Si,2n−b

 :=

binb(i)
... G

i mod(n−b)
n−b

binb(i)

 .

The first b entries of the row vector Si,k contain the b-bit representation of i. The remaining
(n − b) entries of Si,k contain the k-th row of the Gray code Gi mod(n−b)

n−b , which is G0
n−b with

columns cyclically shifted i positions to the left. The cyclic shift forces two sequences of vectors
Si and Sj , i 6= j to change the same bit in the same row only if Gi mod(n−b)

n−b = G
j mod(n−b)
n−b (in

this case both sequences change the same bit in every row), i.e., only if i = j mod(n − b),
which means that i and j differ in a multiple of (n − b) = 2b/2. This implies that binb(i) and
binb(j) differ in exactly the first entry. For the last item, note that G0

n−b can be chosen such that
the first row is (0, . . . , 0). Thus we have verified all claims.

Remark 3.2.4. Two consecutive rows Si,k and Si,k+1 in a sequence Si differ in an entry that can
be located in almost any position {1, . . . , n}. In contrast, in the sequences from [73, Theorem 3]
that entry can be located only in a subset of {1, . . . , n} of cardinality n/2. In Lemma 3.2.3,
each of (n − b) entries of any row is flipped by exactly two sequences. The choice of the
relations between number of sequences, number of visible units, and number of layers is not
accidental and somewhat intricate. It must take into account all the components that will be
needed in the proof of Theorem 3.2.1. The attempt to produce 2n instead of 2(n− b) sequences
with the properties 1 and 2 (and flips in all entries) would correspond to the following: Set S0

...
S2n−1

 = Gn, i.e., the sequences to be overlayed are portions of the same Gray code. In this

case it is difficult to satisfy property 3, i.e., that if Si and Sj flip the same bit in the same row, then
dH(Si,k, Sj,k) = 1. This property however is essential for using Theorem 3.2.2. Most common
Gray codes flip some entries more often than other entries and can be discarded. Other sequences
referred to as totally balanced Gray codes flip all entries equally often and exist whenever n is
a power of 2, but still a strong cyclicality condition would be required for our purposes. On
account of this we say that the sequences given in our Lemma 3.2.3 allow optimal use of [73,
Theorem 2 ].

The following Lemma 3.2.5 is a transcription of [73, Lemma 1] with replacements of indices
according to our construction. Denote by hi a state vector of the units in the hidden layer i, and
denote by h0 a visible state. The joint distribution on the states of all units, for 2n

a + 1 layers, is

of the form P (h0, h1, . . . , h
2n

a ) = P (h
2n

a
−1, h

2n

a )
∏ 2n

a
−1

k=1 P (h
2n

a
−(k+1)|h 2n

a
−k).

Lemma 3.2.5. Let p∗ be an arbitrary distribution on {0, 1}n. Consider a DBN with 2n

a + 1
layers and the following properties:

1. For all i ∈ {0, . . . , a − 1} the top RBM between h
2n

a and h
2n

a
−1 assigns probability∑

k p
∗(Si,k) to Si,1,
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3.A Lower Bounds on the Number of Parameters

2. For all i ∈ {0, . . . , a− 1} and for all k ∈ {1, . . . , 2n

a − 1}

P (h
2n

a
−(k+1) = Si,k+1|h

2n

a
−k = Si,k) =

∑ 2n

a
t=k+1 p

∗(Si,t)∑ 2n

a
t=k p

∗(Si,t)
,

P (h
2n

a
−(k+1) = Si,k|h

2n

a
−k = Si,k) =

p∗(Si,k)∑ 2n

a
t=k p

∗(Si,t)
.

3. For all k ∈ {1, . . . , 2n

a − 1}

P (h
2n

a
−(k+1) = u|h 2n

a
−k = u) = 1, ∀u 6∈ ∪i{Si,k} .

Such a DBN has p∗ as its marginal visible distribution.

Now we are ready to prove Theorem 3.2.1:

Proof of Theorem 3.2.1. The proof follows the strategy of the proof of [73, Theorem 4] given
in that paper. We show the existence of a DBN with the properties of the DBN described in
Lemma 3.2.5. In view of Corollary 3.1.2 it is possible to achieve that the top RBM assigns arbi-
trary probability to a collection of vectors Si,1, i ∈ {0, . . . , a− 1} whenever they are contained
in the set of vertices of a log(2(n+ 1))-dimensional cube. This requirement is met for the vec-
tors Si,1, i ∈ {0, . . . , a − 1} of Lemma 3.2.3, since we can choose {Si,1}i = {(x, 0, . . . , 0) ∈
{0, 1}n : x ∈ {0, 1}b}, which is a b-dimensional cube, and b < log 2n. At each subsequent
layer, the first b bits of hk+1 are copied to the first b bits of hk with probability arbitrarily close
to one. The (n − b) remaining bits are potentially changed to move from one vector in a Gray
code sequence to the next with the correct probability as defined in Lemma 3.2.5. This changes
are possible because Theorem 3.0.13 can be applied for the sequences provided in Lemma 3.2.3.
The crucial difference to the proof of Theorem 3.0.14 is that by our definition of the {Si}, at
each layer (n− b) bit flips occur (with correct probabilities), instead of n2 .

3.A Lower Bounds on the Number of Parameters

In this appendix we formally confirm the heuristic that a DBN can only approximate any visible
distribution on {0, 1}n arbitrarily well when the number of parameters of that DBN is not less
than 2n − 1.

Consider a DBN with l hidden layers, where the hidden layer k = 1, . . . , l contains nk units.
LetN be the total number of units of the DBN, and d the number of parameters: The connection
weights W k+1

j,i between the unit j in layer k and the unit i in layer k + 1, for all j and i, and
k = 0, . . . , l − 1, as well as the biases bkj for all j and k = 0, . . . , l.

The set of joint distributions on the states of all units of the DBN which arise through varia-
tion of the parameters is a manifold E = Q(Rd) ⊂ PN ⊂ R2N of dimension not more than d,
parametrized by the function Q : Rd → PN ⊂ R2N , which takes the parameters {W k

j,i}, {bkj }
into a distribution P defined as in eqs. (3.2)–(3.4). Q is continuous everywhere and converges to
some distribution for any sequence of parameters escaping to any direction. Hence Q(Rd), i.e.,
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3 Universal Approximation Results

the set of all joint distributions (also for parameters taking infinite values, including not strictly
positive distributions), is contained in a compact set E which is contained in a bounded manifold
of dimension dim(E).

Now, restricting observations to the visible units corresponds to marginalizing out the vari-
ables hk, k = 1, . . . , l, which is applying the following linear map:

M : R2N ⊃ E → Pn ⊆ R2n ;

p 7→ pV = M · p ,

for a matrix M ∈ R2n×2N with rows Mv = 1{(v′,h′):v′=v}, for v ∈ {0, 1}n, such that

pV (v) =
∑

h∈{0,1}N−n
p(v, h) .

Since this is a linear map, its differential (the Jacobian of the natural extension of M to R2N

restricted to the tangential space of E) is given by the same matrix: dp M = M : TpE → TpV Pn.
The rank of this map is not more than dimTpE = dim E . The elements p ∈ E for which the
differential dp M is not a surjective map are called critical points, and for these p the value M(p)
is called a critical value. If dim E < dimPn = 2n − 1, then clearly all points in the image
M(E) are critical values. Sard’s theorem [101], states that the set of critical values is a null set.
This means that if dim E < dimPn, then M(E) is a null set of Pn. M(E) is also a null set,
since M can be extended to a domain which is a manifold containing E , and the image of which
is a null set of aff Pn, i.e., a null set of Pn. Note that a set G approximates any element of Pn
arbitrarily well exactly when it is dense in Pn, i.e., G = Pn. Since the map M is continuous
and E is compact, we have that M(E) is a compact subset of Pn. In particular, M(E) = M(E).
By the above-arguments this is a null set whenever dim E < dimPn, in which case it obviously
differs from Pn. Hence if a DBN approximates any visible distribution on {0, 1}n arbitrarily
well, then the number of its parameters is at least equal to 2n − 1, the dimension of the set of
all distributions on {0, 1}n. The arguments given above allow a straightforward generalization
to the case of RBMs, DBMs, Boltzmann Machines with higher order interactions, and other
models.

Lemma 3.A.1. RBM, DBN, DBM universal approximators of probability distributions on {0, 1}n
contain at least 2n − 1 parameters.

Corollary 3.A.2.

• An RBM universal approximator of distributions on n visible units hasm ≥ 2n−n−1
n+1 ∼ 2n

n
hidden units.

• A DBN and a DBM universal approximator on n visible units and layers of width (n+ c)
has at least a number of layers of order 2n

n2 (and a number of hidden units of order 2n

n ).

Interestingly, for deep and narrow architectures and for shallow architectures, the bound on the
number of hidden units is the same. We make the following informal observation: Minimizing
the number of hidden units

∑
l nl ( nl is the number of units in layer l) of a network with pairwise

interactions between neighboring layers while keeping the number of parameters
∑

l nl−1nl +∑
l nl constant to the minimal necessary value (2n − 1) yields something of the form: Two

hidden layers of size
√

2n (and a total of 2
√

2n hidden units).
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3.B A Test of Universal Approximation

When represented as mixtures of products, the probability distributions supported by the per-
fect binary codes of minimum distance two require the maximal number of mixture components
(see Corollary 1.3.3). Therefore, it is appealing to use uZ+ to test whether a binary stochastic
network is a universal approximator. In this short appendix we test the representability of such
probability distributions by RBMs of different sizes. In Chapter 4 we will show that RBMs can
approximate uZ±,n better than mixtures of independence models with the same dimension, and
we will show that RBMn,n−1 can’t approximate uZ±,n when n is odd and larger than one.

The visible distribution of an RBM with parameters W,B,C is p = 1
Z

∑
h exp(hWv +

Bv + Ch). If p has support Z+, then for every h the function exp(hWv + Bv + Ch) must be
proportional to a point measure (see Corollary 1.3.3), i.e., there must exist a v′ ∈ {0, 1}n such
that p(v′|h)/p(v|h) =∞ for all v 6= v′. This can be expressed as (hW + B)(v′ − v) =∞ for
all v 6= v′, and

(h|1>)

(
W C
B 0

)(
v
1

)
!

=


−∞ −∞ · · ·
λ1,1 −∞ · · ·
−∞ λ2,1 −∞
λ1,k1 −∞ · · ·

 =: λ , (3.12)

where h ∈ {0, 1}2m×m and v ∈ {0, 1}n×2n are matrices with the hidden and visible states as
rows, and 1 = (1, . . . , 1) is a row vector of appropriate length. The matrix in the right hand
side has 2n columns, each one corresponding to a visible state vector, and 2m rows, each one
corresponding to a hidden state vector. In each row only one entry may be different from −∞,
and for the values differing from−∞ in the column i,

∑
l exp(λi,l) ∝ p(vi). The above equation

can be reformulated as a linear equation1:((
v
1

)>
⊗ (h|1>)

)
vec

(
W C
B 0

)
= vecλ , (3.13)

where the vector vecM is the concatenation of all columns of M into a single column, and ⊗
denotes the usual Kronecker product. We tested the existence of solutions to eq. (3.13) for the
special case where all λi,k are set to 0, and all other values are only required to be different
from 0 and have common sign. We treated this linear programming problem with MATLAB and
found the following:

(n,m) (2, 2) (2, 3) (3, 2) (4, 2) (3, 3) (3, 4) (4, 3) (4, 5)

parameter bound satisfied
(Corollary 3.A.2)

yes yes yes no yes yes yes yes

eq. (3.13) has a solution yes yes no no yes yes yes yes

Hence RBM3,2 is not a universal approximator, although it has 3 + 2 + 6 = 11 parameters,
which is more than dim(P3) = 7. In Section 4.B we will discuss this interesting model in
greater detail, and give an analytical proof of the above statement. By Theorem 3.1.1, RBM3,3

is the smallest RBM universal approximator on {0, 1}3. It has 15 parameters, which is more
than twice the dimension of P3.

1The equivalenceAXB = C ⇔ (B>⊗A) vec(X) = vec(C) is sometimes called Roth’s column lemma, see [98].

83



3 Universal Approximation Results

3.C A Numerical Comparison

It is known that deep neural networks can represent certain functions way more compactly than
shallow networks (see, e.g., [17, 62]). It is reasonable that RBMs and DBNs involving the
same number of parameters represent different subsets of the probability simplex and that these
subsets are not contained in each other, unless one of the models is a universal approximator.
It is generally expected that deeper systems can represent more “complicated” functions than
shallow systems, and that deep systems are better at approximating “interesting” probability
distributions. It is not easy to prove or disprove the correctness of this intuition. In the first
place, this demands a formal definition of “complicated” and “interesting”. The currently most
accepted picture is that there is a “right” deepness for each particular class of problems under
consideration. A conclusive assessment of this question would signify an important advance in
the field. The present appendix intends to give an informal, intuitive picture of the maps Rd →
RBMn,m and Rd → DBNn0,n1,...,nl . To this end we visualize one-dimensional submodels and
probability distributions sampled at random from RBMs and DBNs. In Chapter 4 we will pursue
a formal analysis of the classes of probability distributions that can be represented by RBMs and
DBNs, as well as their approximation errors.

δ(00)

δ(11)

δ(10)

δ(01)

RBM2,4

∼ Nµ=0,σ=2 C ∼ N0,2

B,W ∼ N0,10

∼ N0,10

DBN2,2,2

∼ Nµ=0,σ=2

C2,W 2 ∼ N0,2

C0,1,W 1 ∼ N0,10

∼ N0,10

Figure 3.3: Ten thousand probability distributions on {0, 1}2 sampled at random from the uni-
versal approximators RBM2,4 and DBN2,2,2.

In Figure 3.3 we compare the models RBM2,4 and DBN2,2,2. Both models have 2 visible
units, 4 hidden units, and the same number of parameters, 12. Both models are excessively
overparameterized universal approximators (RBM2,1 is a universal approximator contained in
both models, see Theorem 3.1.1). We sampled ten thousand probability distributions from each
model (the top row of Figure 3.3 shows the RBM and the bottom row shows the DBN) using
three different priors on their standard parameter spaces (each column corresponds to a different
prior). The RBM parameters are the bias weights B ∈ R2 of the visible units, the bias weights
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δ(01)

δ(11)

δ(00)

δ(10)

δ(01)

δ(11)

δ(00)

δ(10)

RBM2,4 RBM2,6 RBM2,8 RBM2,10

A

δ(01)

δ(11)

δ(00)

δ(10)

δ(01)

δ(11)

δ(00)

δ(10)

DBN2,2,2 DBN2,2×3 DBN2,2×4 DBN2,2×5

B

Figure 3.4: Random one-dimensional submodels of RBMs and DBNs with two visible units.

C ∈ R4 of the hidden units, and the connection weightsW ∈ R2×3 ' R6. The DBN parameters
are the bias weights C0, C1, C2 ∈ R2 of the visible nodes, first hidden layer, and second hidden
layer respectively, and the connection weights W 1,W 2 ∈ R2×2 ' R4. Nµ,σ denotes the mul-
tivariate normal distribution with mean µ and variance σ2. The figures show that the dispersion
of the probability distributions is different for the two models. The probability distributions with
weights concentrated around 0 and standard deviation 2 lie close to the independence model (left
figures). See Figure 1.1 left for the independence model on {0, 1}2. If the variance of B is too
small, then the sampled distributions concentrate around the uniform distribution (not shown).
If the variance is too large, the sampled distributions eventually concentrate at the boundary of
the independence model (right figures). Since both models are universal approximators, there is
a prior on the parameter space for which the sampled probability distributions are uniformly dis-
tributed on the visible probability simplex (w.r.t., e.g., the Lebesgue measure or Jeffreys prior).
In this experiment we found a simple approximation of such a prior for the DBN, but not for
the RBM (middle). Sampling the parameters of the DBN from a normal distribution produces
a fairly homogeneous distribution of the visible probability distributions in the probability sim-
plex. In the case of the RBM, the visible probability distributions tend to concentrate at some
regions of the probability simplex.

Figure 3.4 A: Each column shows the probability simplex P2 and five one-dimensional sub-
models of the RBM with two visible units and 4 to 10 hidden units. The submodels correspond
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3 Universal Approximation Results

to one-dimensional randomly chosen affine subspaces of the usual parameter space of the RBMs.
Let d be the number of parameters of the RBM. We chose a direction vector r uniformly at ran-
dom in the sphere Sd−1 (i.e., r̂ = r

‖r‖2 , ri ∼ N0,1 ) and an origin vector s ∈ Rd, si ∼ N0,2.
We plotted the probability distributions in RBMn,m for which the parameters W,B and C sat-
isfy vec(W,B,C) = α(r + s), and α ∈ R (the figures show α with norm ≤ 100; most of
the time for |α| ≈ 30 the resulting probability distributions are very close to the boundary of
the probability simplex). These one-dimensional models are marginals of exponential geodesics
on {0, 1}n+m. In contrast to exponential geodesics, these one-dimensional models can have
the same limit point for α → ∞ and α → ∞ (see Chapter 2). Figure 3.4 B shows five one-
dimensional submodels of DBN models with 2 visible units, computed in a similar way as the
submodels of RBMs depicted in Figure 3.4 A.

δ(000)

δ(001)

δ(010)

δ(011)

RBM3,6 RBM3,9 RBM3,12 RBM3,15

A

δ(000)

δ(001)

δ(010)

δ(011)

DBN3,3,3 DBN3,3×3 DBN3,3×4 DBN3,3×5

B

Figure 3.5: Random one-dimensional submodels of RBMs and DBNs with three visible units.

Figure 3.5 A: Each figure shows the projection of the probability simplex P3 onto a polygon
with 23 vertices. The curves are three one-dimensional submodels of the RBM with 3 visible
nodes. These submodels correspond to one-dimensional randomly chosen affine subspaces of
the parameter space of the RBMs, as in Figure 3.4. We plotted all probability vectors with param-
eter vectors of norm less or equal to 100. Figure 3.5 B: Each figure shows three one-dimensional
submodels of DBN (as in the previous figures). In this case we plotted all probability distribu-
tions with parameter vectors of norm less or equal to 200. For parameter vectors with norm less
than 100 the curves were often not very close to the boundary of the polygon. Seemingly, the
DBN submodels are more concentrated in the interior of the polygons than those of the RBMs.
In such a case they can (i) have a derivative with smaller magnitude, (ii) be more “curvy”, or
(iii) their limit points are less likely to approach point measures. Either case is interesting. Note
that a random exponential geodesic has almost surely limit points which are point measures (see
Proposition 2.3.11). The one-dimensional submodels of RBMs are projections of exponential
geodesics.
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4 Expressive Power and Approximation
Errors of RBMs and DBNs

In this chapter we present explicit classes of probability distributions that can be learned by Re-
stricted Boltzmann Machines and Deep Belief Networks depending on the number of hidden
units and hidden layers that they contain. Using these descriptions, we estimate the maximal
Kullback-Leibler divergence between arbitrary probability distributions in the probability sim-
plex and their best approximations within the RBM and DBN models. We show that the maxi-
mal KL-divergence to the RBM model with n visible andm hidden units is bounded from above
roughly by (n − 1) − log(m + 1), and we show analogue results for DBNs. In this way we
can control the number of hidden units and hidden layers that guarantee sufficiently rich models
respecting a given error tolerance.

This chapter begins with a brief discussion of different kinds of errors. Section 4.1 intro-
duces and studies special mixtures of independence models and partition models, the statistical
models that we use to assess RBMs and DBNs. Section 4.2 contains the main results on the
expressive power and approximation errors of RBMs. Section 4.3 contains the main results on
the expressive power the approximation errors of DBNs. In Appendix 4.A we show that the
smallest mixture model of independence models which contains an RBM model is very large.
Appendix 4.B contains an elaboration on the models RBM3,2 and RBM4,2.

Preliminaries

As shown in Section 3, the model RBMn,m withm ≥ 2n−1−1, and the DBN model with 2n/2n
layers of width n are universal approximators. An RBM or a DBN with layers of equal width
which are universal approximators of distributions on {0, 1}n have at least dim(P) = 2n − 1
parameters and d2n/(n+ 1)e − 1 hidden units. The geometry of RBMn,m is intricate, and even
an RBM of dimension 2n−1 is not guaranteed to contain all visible distributions. In Section 3.B
we showed that RBM3,2 is an example of this behavior.

In practice, training such large systems is not desirable or even possible. This was already
pointed out in Freund and Haussler’s seminal paper on RBMs [45]. There are at least two
reasons why in many cases it is not necessary to have universal approximators:

• An appropriate approximation of distributions is sufficient for most purposes.

• The interesting distributions that the system shall simulate belong to a small class of dis-
tributions.

For example, the set of optimal policies in reinforcement learning [111], the set of dynamics
kernels that maximize predictive information in robotics [121], or the information flow in neu-
ral networks [15] are contained in very low dimensional manifolds (see Section 5.2). On the
other hand, usually it is very hard to mathematically describe sets containing the optimal solu-
tions to general problems, or sets of interesting probability distributions (for example the set of
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distributions generating natural images). Furthermore, although RBMs and DBNs are paramet-
ric models and in theory for any choice of the parameters it is possible to compute the resulting
probability distribution, in practice it is difficult to explicitly specify this probability distribution,
or even to estimate it (see [76] for an account on RBMs). Due to these difficulties the number of
hidden units and hidden layers is often chosen on the basis of experience [57], or is considered
as a hyperparameter which is optimized by extensive search.

Approximation Error

When training a system to represent a distribution p, there are mainly three contributions to the
discrepancy between p and the state of the system after training:

• Usually, the underlying distribution p is unknown and only a set of samples generated by
p is observed. These samples can be represented as an empirical distribution pData, which
usually is not identical with p.

• The set RBMn,m, respectively DBN(nl0) does not contain every probability distribution,
unless the number of hidden units is very large, as we outlined above. Therefore, we have
an approximation error given by the distance of pData to its best approximation pData

Model

within the model.

• The learning process may yield a solution p̃Data
Model within the model, which is not the op-

timum pData
Model. This occurs, for example, if the learning algorithm gets trapped in a local

optimum, or if it optimizes an objective different from maximum likelihood, e.g., con-
trastive divergence (CD), see [25].

Le Roux and Bengio [72] show that the log-likelihood of a target distribution can be strictly
improved by increasing the number of hidden units of an RBM unless the RBM is a universal
approximator (see also [17, Chapter 5.3]). We are interested in quantifying the expressive power
of the RBM and DBN models and the Kullback-Leibler divergence from an arbitrary distribution
to its best representation within the models. Estimating the approximation error is difficult,
because the geometry of these models is not sufficiently understood. Our strategy is to find
subsets M ⊆ RBMn,m, M′ ⊂ DBN(nl0) that are relatively easy to describe. The maximal
error when approximating probability distributions with the model is upper bounded by the
maximal error when approximating with the submodels.

Kullback-Leibler Divergence and Reversed Information Projections

If E ⊆ P is a statistical model and p ∈ P , then any probability distribution pE ∈ E satisfying

D(p‖pE) = D(p‖E) := min{D(p‖q) : q ∈ E}

is called a (generalized) reversed information projection, or rI-projection. If p is an empirical
distribution, then one can show that any rI-projection is a maximum likelihood estimate. Expo-
nential families behave nicely with respect to rI-projections. If E is an exponential family, any
p ∈ P has a unique rI-projection pE to E , see [10].

In order to assess some modelM we use the maximal approximation error with respect to the
KL-divergence when approximating arbitrary probability distributions usingM:

DM := sup {D(p‖M) : p ∈ P} .
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4.1 Partition Models and Restricted Mixture Models

For example, if M consists only of the uniform distribution, the maximal KL-divergence is
attained by any Dirac delta distribution δx, x ∈ X , and amounts to:

D{u} = D(δx‖u) = log |X | . (4.1)

Lemma 4.0.1. (Corollary 4.1 of [13]). Let n ∈ N and let E1
n be the independence model on

{0, 1}n. Then DE1
n

= (n−1). The global KL-divergence maximizers are the distributions of the
form 1

2(δx + δy), where x, y ∈ {0, 1}n satisfy xi + yi = 1 for all i ∈ [n].

This result should be compared with eq. (4.1). Although the independence model is much
larger than the set {u}, the maximal divergence decreases only by 1. As shown in [95], if
E is any exponential family of dimension k, then DE ≥ log(|X |/(k + 1)). Thus this notion
of distance is rather strong. The exponential families satisfying DE = log(|X |/(k + 1)) are
partition models.

4.1 Partition Models and Restricted Mixture Models
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Figure 4.1: Left: The blue line represents the partition model Pξ with partition ξ =
{{(11), (01)}, {(00), (10)}}. The dashed lines represent the set of KL-divergence maximiz-
ers for Pξ. Right: The mixture of the product distributions E1 and E2 with disjoint supports on
{(11), (01)} and {(00), (10)} equals the whole probability simplex.

The mixture Mixt(M1, . . . ,Mm) of m modelsM1, . . . ,Mm ⊆ P is the set of all convex
combinations

q =
∑
i∈[m]

αiqi , where qi ∈Mi, αi ≥ 0, ∀i ∈ [m] and
∑
i∈[m]

αi = 1 . (4.2)

In general mixture models are complicated objects. Even if all modelsM1 = · · · = Mm are
equal, it is difficult to describe the mixture (see Chapter 1). The situation simplifies considerably
if the models have disjoint supports. Given any partition ξ = {X1, . . . ,Xm} of X , any p ∈ P
can be written as p(x) = p(Xi)p(x|Xi) for all x ∈ Xi and i ∈ {1, . . . ,m}, where p(·|Xi) is a
probability measure in P(Xi) for all i.

Lemma 4.1.1. Let ξ = {X1, . . . ,Xm} be a partition of X and let M1, . . . ,Mm be statis-
tical models such that Mi ⊆ P(Xi) for i ∈ [m]. Consider any p ∈ P and let pi be an
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4 Expressive Power and Approximation Errors

rI-projection of p(·|Xi) to Mi for i ∈ [m]. Then the rI-projection pM of p to the mixture
M = Mixt(M1, . . . ,Mm) satisfies

pM(x) = p(Xi)pi(x), ∀x ∈ Xi ∀i ∈ [m] .

Therefore, D(p‖M) =
∑

i p(Xi)D(p(·|Xi)‖Mi), and DM = maxi=1,...,mDMi .

Proof. Let q ∈M be as in eq. (4.2). Then

D(p‖q) =

m∑
i=1

p(Xi)D(p(·|Xi)‖qi) +

m∑
i=1

p(Xi) log
p(Xi)
αi

(4.3)

for all p ∈ P . For fixed p the first sum is minimal if and only if each term is minimal. The
second sum vanishes for αi = p(Xi).

Remark 4.1.2. If eachMi is an exponential family onXi, then the mixture Mixt(M1, . . . ,Mm)
is an exponential family of dimension dim(Mixt(M1, . . . ,Mm)) =

∑
i∈[m](dim(Mi)+1)−1

(this is not true if the supports of the modelsMi are not disjoint). If Ai is a sufficient statistics
ofMi, one may assume that Ai contains the row 1Xi . The block diagonal

⊕i∈[m]A
i =

Ai

. . .
Am


is then a sufficient statistics of the mixture Mixt(M1, . . . ,Mm).

Definition 4.1.3. If ξ is a partition of X with blocks {Xi}i∈[m] andMi equals the set containing
just the uniform distribution on Xi for all i ∈ [m], then Mixt(M1, . . . ,Mm) is called the
partition model with partition ξ, denoted with Pξ.

The partition model Pξ consists of all distributions with constant value on each block Xi, i.e.,
those with p(x) = p(y) for all x, y ∈ Xi for all i. This is the closure of the exponential family
with sufficient statistics

Ax = (1X1(x),1X2(x), . . . ,1Xd(x))> .

A partition model is a convex exponential family with uniform reference measure (see Chap-
ter 2). The partition models include the set of finite exchangeable distributions, where the blocks
of the partition are the sets of binary vectors which have the same number of entries equal to
one. The probability of a vector v depends only on the number of ones, but not on their po-
sition. See [37] for interesting properties of exchangeable distributions. See Figure 4.1 for a
small example of a partition model. A key property of partition models is that they minimize
DE among all exponential families of a fixed dimension. See [95] for interesting properties of
partition models.

As a consequence of Lemma 4.1.1 and eq. (4.1) we have:

Corollary 4.1.4. Let ξ = {X1, . . . ,Xm} be a partition of X . Then DPξ = maxi=1,...,m log |Xi|.

See Figure 4.2 for an intuition on the approximation error of partition models depending on
the block sizes.
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4.1 Partition Models and Restricted Mixture Models

relative error

q = p q = u

0 128
255 1

Figure 4.2: This figure gives an intuition on what the size of an error means for probability
distributions on images with 16 × 16 pixels. Every column shows four samples drawn from the
best approximation q of the distribution p = 1

2(δ(1...1) + δ(0...0)) within a partition model with 2
randomly chosen cubical blocks containing (0 . . . 0) and (1 . . . 1), of cardinality from 1 (first col-
umn) to |X |2 (last column). As a measure of error ranging from 0 to 1 we take D(p‖q)/D(p‖u).
The last column shows samples from the uniform distribution, which is in particular the best ap-
proximation of p within RBMn,0. Note that RBMn,1 can approximate p with arbitrary accuracy,
see Theorem 3.1.1.

Now, assume that X = {0, 1}n. The vertices of a k-dimensional face of the n-cube (a cubical
set) are given by fixing the values of x in n − k positions: {x ∈ {0, 1}n : xi = x̃i, ∀i ∈
I, for some I ⊆ {1, . . . , n}, |I| = n − k}. A cubical subset of cardinality 2k can be naturally
identified with {0, 1}k. This identification allows us to define independence models and product
measures on P(Y) ⊆ P(X ). Note that product measures on Y are also product measures on
X , and the independence model on Y is a subset of the independence model on X . Figure 4.1
shows a small example of a mixture of independence models with disjoint supports.

Corollary 4.1.5. Let ξ = {X1, . . . ,Xm} be a partition of X = {0, 1}n into cubical sets. For
any i let Ei be the independence model on Xi, and letM be the mixture of E1, . . . , Em. Then

DM = max
i=1,...,m

log(|Xi|)− 1 .

The following lemma will be used in the proof of Theorem 4.2.2:

Lemma 4.1.6. Let n1, . . . , nm be non-negative integers satisfying 2n1 + · · · + 2nm = 2n. Let
M be the union of all mixtures of independence models Ei ⊆ P(Xi) i ∈ [m] corresponding
to all cubical partitions of X into blocks {Xi}i∈[m] of cardinalities 2n1 , . . . , 2nm . Then DM ≤∑

i:ni>1
ni−1
2n−ni

.

Proof. The proof is by induction on n. If n = 1, then m = 1 or m = 2, and in both cases it is
easy to see that the inequality holds (both sides vanish). If n > 1, then order the ni such that
n1 ≥ n2 ≥ · · · ≥ nm ≥ 0. Without loss of generality assume m > 1.

Let p ∈ P(X ), and let Y be a cubical subset of X of cardinality 2n−1 such that p(Y) ≤ 1
2 .

Since the numbers 2n1 + · · · + 2ni for i = 1, . . . ,m contain all multiples of 2n1 up to 2n, and
2n/2n1 is even, there exists k such that 2n1 + · · ·+ 2nk = 2n−1 = 2nk+1 + · · ·+ 2nm .

Let M′ be the union of all mixtures of independence models corresponding to all cubical
partitions ξ = {X1, . . . ,Xm} of X into m blocks of cardinalities n1, . . . , nm such that X1 ∪
· · · ∪ Xk = Y . In the following, the symbol

∑′
i shall denote summation over all indices i such
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4 Expressive Power and Approximation Errors

that ni > 1. By induction

D(p‖M) ≤ D(p‖M′) ≤ p(Y)

k∑′

i=1

ni − 1

2n−1−ni + p(X \ Y)

m∑′

j=k+1

nj − 1

2n−1−nj . (4.4)

There exist j1 = k+ 1 < j2 < · · · < jk < jk+1 = m+ 1 such that 2ni = 2nji + · · ·+ 2nji+1−1

for all i ≤ k. Note that
ji+1−1∑′

j=ji

nj − 1

2n−1−nj ≤
ni − 1

2n−1
(2nji + · · ·+ 2nji+1−1) =

ni − 1

2n−1−ni ,

and therefore

(1
2 − p(Y))

ni − 1

2n−1−ni + (1
2 − p(X \ Y))

ji+1−1∑′

j=ji

nj − 1

2n−1−nj ≥ 0 .

Adding these terms for i = 1, . . . , k to the right hand side of eq. (4.4) yields

D(p‖M) ≤ 1

2

k∑′

i=1

ni − 1

2n−1−ni +
1

2

m∑′

j=k+1

nj − 1

2n−1−nj ,

from which the assertion follows.

We can also derive lower bounds for the maximal approximation errors of mixtures:

Lemma 4.1.7. Let M be the union of all mixtures of m independence models with disjoint
supports on X = {0, 1}n (not necessarily partitioning X ). Let M̃ be the union of all partition
models with m cubical blocks. Let C be a binary code of length n, cardinality m + 1, and
minimum distance d. Then

D(uC‖Mixtm(E1
n)) = D(uC‖M) = D(uC‖M̃) =

2(d− 1)

(m+ 1)
.

Furthermore, D(p‖Mixtm(E1
n)) = D(p‖M) for any p with supp(p) = C.

Remark 4.1.8.

(i) By Lemma 4.1.7 2(d−1)
(m+1) is a lower bound for DM̃, DM, and D

Mixtm(E1
n)

.

(ii) If m = 1 and C is a binary code consisting of two antipodal points, i.e., C = {x,1 −
x}, then d = n. The lower and upper bounds on the approximation errors given in
Lemma 4.1.7 and Lemma 4.1.6 yield DE1

n
= n − 1. This resembles the previous results

on the approximation errors of independence models given in Lemma 4.0.1.

Proof of Lemma 4.1.7. (i) Consider an arbitrary family of disjoint cubical blocks {Xi}i∈[m]. We
have

D(uC‖Mixt(E1, . . . , Em)) =
∑
x∈C

1

|C| log

(
1/|C|
p

)
=

1

|C|
∑
i∈[m]

∑
x∈Xi∩C

log

(
1/|C|
λi/|Xi|

)
= log 1/|C| −

∑
i∈[m]

|Xi ∩ C|
|C| log(λi/|Xi|) .
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4.2 Restricted Boltzmann Machines

Here we set p(x) = λi
1
|Xi| for all x ∈ Xi, which is justified by Lemma 4.1.1. The expres-

sion
∑

i∈[m]
|Xi∩C|
|C| (log(|Xi|) − log(λi)) is minimized for λi = |Xi∩C|

|C| (this follows using La-

grange multipliers), and if |C| = m+1, the expression log(1/|C|)+
∑

i∈[m]
|Xi∩C|
|C| (log(|Xi|)−

log( |Xi∩C||C| )) is minimized for |Xi| = 1, for i = 1, . . . ,m − 1, and |Xm| = 2d, where d is the
minimal distance of C, and takes the claimed value.

(ii) Let r have support C, and q be an rI-projection of r to Mixtm(E1
n). The divergence

D(r‖q) depends on q(·|C) and q(C). For any choice of q(·|C) increasing q(C) reduces the
divergence. Any q(·|C) can be realized as a mixture of products with disjoint supports. The
value of q(C) is maximized by mixture whose components have disjoint supports.

Proposition 4.1.9. LetM be the union of all mixtures of m independence models with disjoint
supports on X = {0, 1}n (not necessarily partitioning X ). Then

D(uZ±,n‖M) = 1− K

2n−1
, (4.5)

where K is the maximal number of blocks of cardinality two in a cubical partition of X with
m blocks. In particular, K = 0 for m < n, K = 2 for m = n, K = 4 for m = n + 1, and
K = 2n−1 only for m ≥ 2n−1.

Proof. Let
∑m

i=1 αiqi be an rI-projection of uZ±,n to M. This is the rI-projection to some
Mixt(EX1 , . . . , EXm). We may assume that a collection of disjoint cubical blocks {Xi} which
covers Z±,n is in fact a partition of {0, 1}n. If a block Xi has cardinality two, we may choose a
point measure for qi in EXi . We write uZ±,n(x) = |Xi|

2n
1

|Z±,n∩Xi| for any x in the block Xi. As in
eq. (4.3), the divergence is given by

D(uZ‖q) =
m∑
i=1

|Xi|
2n

D(uZ(·|Xi)‖qi) +
m∑
i=1

|Xi|
2n

log
|Xi|/2n
αi

The second sum vanishes for an appropriate choice of α. The term D(uZ(·|Xi)‖qi) is 1 when-
ever |Xi| > 2 and vanishes for |Xi| = 2. Hence the total divergence is 1 minus the number of
times that a block has cardinality two.

Example 4.1.10. Let X = {0, 1}3 and letM be the union of all mixtures of three independence
models with disjoint supports. The set X can be partitioned into one face of dimension two and
two faces of dimension one. The binary code Z±,3 has cardinality four and minimum distance
two. Lemma 4.1.6 and Lemma 4.1.7 yield

D(uZ±‖Mixt3(E1
3 )) = D

Mixt3(E1
3 )

= D(uZ±‖M) = DM =
1

2
. (4.6)

Hence uZ± are the global maximizers of KL-divergence for Mixt3(E1
3 ) andM.

4.2 Restricted Boltzmann Machines

Consider a set ξ = {Xi}mi=1 of m disjoint cubical subsets of X (not necessarily partitioning X ).
We write Gm for the collection of all such sets of sets. We have the following:
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Theorem 4.2.1. RBMn,m contains the following distributions:

• Any mixture of one arbitrary product distribution, k product distributions with support on
arbitrary but disjoint faces of the n-cube, and (m−k) arbitrary distributions with support
on any edges of the n-cube, for any 0 ≤ k ≤ m. In particular:

• Any mixture of (m + 1) product distributions with disjoint supports. In consequence,
RBMn,m also contains the partition model of any partition in Gm+1.

Restricting the supports of the second item to pairs of vectors differing in one entry shows
that an RBM with m ≥ 2n−1 − 1 hidden units is a universal approximator on {0, 1}n. Hence
Theorem 4.2.1 contains Theorem 3.1.1 from the previous chapter as a special case.

Assume m + 1 = 2k and let ξ be a partition of X into (m + 1) disjoint cubical sets of equal
size. Denote Pξ,1 the set of all distributions which can be written as a mixture of (m+1) product
distributions with support on the blocks of ξ. The dimension of Pξ,1 is given by

dimPξ,1 = (m+ 1) log

(
2n

m+ 1

)
+m = (m+ 1) · n+m− (m+ 1) log(m+ 1) .

The dimension of the set of visible distributions represented by an RBM is at most equal to the
number of parametersm·n+m+n. Since dimPξ,1−dim RBMm−1 ≥ n+1−(m+1) log(m+
1), the set Pξ,1, which by Theorem 4.2.1 can be represented by RBMn,m, is not contained in
RBMn,m−1 when (m+ 1)m+1 ≤ 2n+1.

Proof of Theorem 4.2.1. The proof draws on ideas from Section 3.1. An RBM with no hidden
units can represent precisely the independence model, and in particular any uniform distribution
on a face of the n-cube.

Consider an RBM withm−1 hidden units. For any choice of the parametersW ∈ R(m−1)×n, B ∈
Rn, C ∈ Rm−1 we can write the resulting distribution on the visible units as:

p(v) =

∑
h z(v, h)∑

v′,h′ z(v
′, h′)

, (4.7)

where z(v, h) = exp(hWv +Bv +Ch). An additional hidden unit with connection weights w
to the visible units and bias c, produces a new distribution which can be written as follows:

pw,c(v) =
(1 + exp(wv + c))

∑
h z(v, h)∑

v′,h′(1 + exp(wv′ + c))z(v′, h′)
. (4.8)

Consider now any set I ⊆ [n] := {1, . . . , n} and an arbitrary visible vector u ∈ X . The
values of u in the positions [n] \ I define a face F := {v ∈ X : vi = ui , ∀i 6∈ I} of the
n-cube of dimension |I|. Let 1 := (1, . . . , 1) ∈ Rn and denote by uI,0 the vector with entries
uI,0i = ui, ∀i 6∈ I and uI,0i = 0,∀i ∈ I . Let λI ∈ Rn with λIi = 0 , ∀i 6∈ I and let λc, a ∈ R.
Define the connection weights w and c as follows:

w = a(uI,0 − 1

2
1I,0) + λI ,

c = −a(uI,0 − 1

2
1I,0)>u+ λc .
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4.2 Restricted Boltzmann Machines

For this choice and a→∞ eq. (4.8) yields:

pw,c(v) =


p(v)

1+
∑
v′∈F exp (λI ·v′+λc)p(v′) , ∀v 6∈ F

(1+exp(λI ·v+λc))p(v)
1+
∑
v′∈F exp (λI ·v′+λc)p(v′) , ∀v ∈ F

. (4.9)

If the initial p from eq. (4.7) is such that its restriction to F is a product distribution, then
p(v) = K exp(ηI · v) ,∀v ∈ F , where K is a constant and ηI is a vector with ηIi = 0 ,∀i 6∈ I .
We can choose λI = βI − ηI and exp(λc) = α 1

K
∑
v∈F exp(βI ·v)

. For this choice, eq. (4.9)
yields:

pw,c = (α− 1)p+ αp̂ ,

where p̂ is a product distribution with support in F and arbitrary natural parameters βI , and
α is an arbitrary mixture weight in [0, 1]. Finally, the product distributions on edges of the
cube are arbitrary, see Chapter 1, and hence the restriction of any p to any edge is a product
distribution.

Maximal Approximation Errors of RBMs

Let m < 2n−1− 1. By Theorem 4.2.1 all partition models for partitions of {0, 1}n into (m+ 1)
cubical sets are contained in RBMn,m. Applying Corollary 4.1.4 to a cubical partition where the
cardinality of all blocks is at most 2n−blog(m+1)c yields the boundDRBMn,m ≤ n−blog(m+1)c.
Similarly, using mixtures of product distributions, Theorem 4.2.1 and Corollary 4.1.5 imply the
smaller bound DRBMn,m ≤ n− 1− blog(m+ 1)c. Using Lemma 4.1.6 we derive an improved
bound which strictly decreases, as m increases, until 0 is reached:

Theorem 4.2.2. Let m ≤ 2n−1 − 1. Then the maximal Kullback-Leibler divergence from any
distribution on {0, 1}n to RBMn,m is upper bounded by

max
p∈P

D(p‖RBMn,m) ≤ n− blog(m+ 1)c − (m+ 1)

2blog(m+1)c ≈ (n− 1)− log(m+ 1) .

Conversely, given an error tolerance 0 ≤ ε ≤ 1, the choice m ≥ 2(n−1)(1−ε)+0.1 − 1 ensures a
sufficiently rich RBM model that satisfies DRBMn,m ≤ εDRBMn,0 .

For m = 2n−1 − 1 the error vanishes, corresponding to the fact that an RBM with that many
hidden units is a universal approximator (see Theorem 3.1.1).

Proof of Theorem 4.2.2. From Theorem 4.2.1 we know that RBMn,m contains the unionM of
all mixtures of independent models corresponding to all partitions with up to m + 1 cubical
blocks. Hence DRBMn,m ≤ DM. Let k = n − blog(m + 1)c and l = 2m + 2 − 2n−k+1 ≥ 0;
then l2k−1 + (m+ 1− l)2k = 2n. Lemma 4.1.6 with n1 = · · · = nl = k− 1 and nl+1 = · · · =
nm+1 = k implies

DM ≤
l(k − 2)

2n−k+1
+

(m+ 1− l)(k − 1)

2n−k
= k − m+ 1

2n−k
.

This completes the proof of the main statement.
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Figure 4.3: This figure demonstrates Theorem 4.2.2 for n = 3 and n = 4 visible units. The red
curves indicate the bounds from the theorem. We fixed uZ+ as target distribution, the uniform
distribution on binary length n vectors with an even number of ones. The inset of the left figure
shows the resulting KL-divergence D(uZ+‖prand

RBM) for a random initialization of the parameters
(for n = 4 the resulting KL-divergence was larger). After training the RBMs the result (blue
circles) is often not better than the uniform distribution, for which D(uZ+‖u) = 1. For each m,
the best set of parameters was used to initialize a further CD training with a smaller learning
rate (green squares, mostly covered) followed by a short maximum likelihood gradient ascent
(red filled squares).

To see that the choice m ≥ 2(n−1)(1−ε)+0.1 − 1 ensures the given approximation error: The
maximal approximation of RBMn,0 is (n− 1). Furthermore, elementary analysis shows

n− blog(m+ 1)c − (m+ 1)

2blog(m+1)c ≤ (n− 1)− log(m+ 1) + c ,

with c = (− log(ln(2))− ( 1
ln(2) − 1)) < 1

10 .

In Figure 4.3 we use computer experiments to illustrate Theorem 4.2.2. For n = 3 and
n = 4 we fixed uZ+,n as target distribution, the uniform distribution on binary length n vectors
with an even number of ones. The distribution uZ+ is not necessarily the KL-maximizer from
RBMn,m, but it is difficult to represent. Qualitatively, samples from uZ+ look like uniformly
distributed, and representing uZ+ requires the maximal number of product mixture components
(see Chapter 1 and Appendix 3.B). For both values of n and eachm = 0, . . . , 2n/2 we initialized
500 resp. 1000 RBMs at parameter values chosen uniformly at random in the range [−10, 10].
Randomly chosen distributions in RBMn,m are likely to be very far from the target distribution.
We trained these randomly initialized RBMs using contrastive divergence with 500 training
epochs, learning rate 1 and a list of even parity vectors as training data. The resulting KL-
divergence respects the bound given in Theorem 4.2.2.

4.3 Deep Belief Networks

There are three reasonable approaches to find explicit submodels of DBN(nl0): First, to study the
models arising form probability sharing on RBMs, as in the constructions of universal approxi-
mators provided in Chapter 3, but with a restricted number of sharing steps (i.e., for a specified
number of hidden layers and widths). Second, to study the set DBN(nl0) as a mixture of condi-
tional probability distributions with mixing distributions from DBN(nl1). Third, to study the set
of joint probability distributions D(nl0) and especially the elements P (v, h) = p(v)δhv(h). In
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4.3 Deep Belief Networks

this section we explore the three approaches for DBNs with layers of equal width. Our approach
can be extended to treat DBNs with layers of different sizes. For reasons of simplicity we omit
this generalization.

Probability Sharing in Layers of Equal Width

We consider the set of all unions of k edges of the n-dimensional unit cube:

Ek,n := {∪j∈[k]{x(1), x̂(1)} : x(j), x̂(j) ∈ {0, 1}n and dH(x(j), x̂(j)) = 1} . (4.10)

By Theorem 3.1.1, each element of Ek+1,n is an S-set of RBMn,k, i.e., the RBM with n visible
and k hidden units can approximate any distribution with support on one of these sets arbitrarily
well.

An n-bit Gray code of cardinality l is a collection of l binary vectors of length n such that
subsequent elements have Hamming distance one to each other. This can be understood as a
path of length l on the graph of the n-dimensional cube. A Gray code is conveniently written as

a (l × n)-binary matrix. The transition sequence of a Gray code G =

G1
...
Gl

 ∈ {0, 1}l×n is a

list of numbers Tk ∈ [n] for k ∈ [l − 1] indicating the position where the vectors Gk and Gk+1

differ. The vertex visited by the path at time t is the binary vector Gt. The bit changed a time t
is the number Tt.

The following collection of sets consists of unions of paths on the vertices of the n-cube, with
(i) the starting points of the paths are contained in a set of Ek,n, and (ii) at some time t any two
paths change different bits, unless they are visiting neighboring vertices.

Definition 4.3.1. Let l be a natural number and let G(i) be an n-bit Gray code of length l(i) ≤ l
with first element G(i)

1 = s(i) ∈ {0, 1}n and transition sequence T (i) ∈ [n]l
(i)−1 for all i ∈ [k].

Slk := {G(1) ∪ · · · ∪G(r)}, where

• s(i) 6= s(j) ∀i ∈ [r], and ∪i∈[r] s
(j) ⊆ E ∈ Ek,n,

• G(i)
1 = s(i) for all i ∈ [r]

• T (i)
t 6= T

(j)
t unless dH(G

(i)
t , G

(j)
t ) = 1

(4.11)

This definition is motivated by the probability sharing scheme used in Section 3 based on [73].
For any l ≥ 1, the family Sl(n+1) contains any union of (n + 1) pairs of vectors with Hamming
distance one.

Lemma 4.3.2. (S-sets of DBNs). Let l ∈ N and n1 = n2 = · · · = nl = n. DBN(nl0) contains
any p ∈ Pn with supp(p) ∈ Sl(n+1).

Proof. The result is an adaptation of Theorem 3.2.1 (see pg. 79). The claim follows using
Lemma 3.2.5, where we just need to replace “p∗ ∈ P” by “p∗ ∈ ∪i,k{Si,k}” and “2n

a ” by “l”.
The requirements of that lemma can be checked using Theorem 3.2.2, Theorem 4.2.1, and the
definition of Slk given in eq. (4.11).
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4 Expressive Power and Approximation Errors

We call the set of vertices incident to a K-dimensional face of the n-dimensional unit cube a
K-face of the n-cube.

Lemma 4.3.3. For the collection of sets Sl(n+1) ⊆ 2{0,1}
n

we have:

(i) If n = R+ 2k + k + 1 and l ≥ 22k for some k ∈ N, then any (n−R)-face of the n-cube
is in Sl(n+1).

(ii) If n ≥ N ·K, K = 2k + k + 1, and l ≥ 22k for some k ∈ N, then Sl(n+1) contains any
union of N K-cylinders [y[n]\λi ] with disjoint sets λi ⊆ [n], i = 1, . . . , N .

(iii) If k < n and l ≥ 2k for some k ∈ N, then Sl(n+1) contains any (k + log 2k)-face of the
n-cube.

Proof. (i) Use [87, Lemma 1]. (ii) Use the first part. (iii) If k ≤ n and l ≥ 2k for some k ∈ N,
then Sl(n+1) contains the union of any k cylinder sets [y[n]\λ], |λ| = k. Use a k-bit Gray code
G on the bits λ (corresponding to any face with fixed values on [n] \ λ). The entries [n] \ λ are
arbitrary. The k codes satisfy T ik 6= T jk if we shift the columns of G cyclically. If k < n and
l ≥ 2k for some k ∈ N, then Sl(n+1) contains the union of 2k k-dimensional cylinder sets [y[n]\λ],
[ỹ[n]\λ], |λ| = k, H(y[n]\λ, ỹ[n]\λ) = 1. We use the same Gray codes for neighboring y[n]\λ and
ỹ[n]\λ. Clearly, these codes change the same bit iff they are visiting neighboring points. Any
(k + log 2k)-dimensional cube can be decomposed as a union of that form.

Lemma 4.3.2 and Lemma 4.3.3 describe S-sets of DBNs. Notice that Slk is not necessarily
inclusion complete, and yet if Y ∈ Slk, then all subsets of Y are S-sets of the DBN. A particular
instance of Lemma 4.3.3 item (i) is the following: If n = 2k + k + 1 and l ≥ 22k for some
k ∈ N, then {0, 1}n ∈ Sl(n+1), which corresponds to [87, Lemma 1] and recovers precisely the
result abut universal approximators [87, Theorem 2].

In order to compute meaningful approximation error bounds for DBNs we need to account
for full support distributions contained in this model, since D(q‖p) = ∞ whenever supp(q) )
supp(p). This is done in the following subsection:

Hierarchical Mixtures

Proposition 4.3.4. Consider any {nk ∈ N}lk=−1. DBN(nl−1) is the closure of the set of distri-
butions of the following form:

p(v) =
∑

h∈{0,1}n0

exp((hW + b)v)

ZhW+b
q(h) , (4.12)

where q ∈ DBN(nl0) ⊆ Pn0 , W ∈ Rn0×n−1 and b ∈ Rn−1 .

Proof. From eq. (3.4) we have that P (hl−1) = P (hl0)P (h−1|h0). Furthermore,
∑

hl1
P (hl−1) =
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4.3 Deep Belief Networks

P (h−1|h0)
∑

hl1
P (hl0) = P (h−1|h0)q and

P (h−1|h0) =

n−1∏
j=1

P ((h−1)j |h0) =

n−1∏
j=1

exp((bj + h0Wj,:)(h
−1)j)

1 + exp(bj + h0Wj,:)

=
exp(

∑
j(bj + h0Wj,:)(h

−1)j)∏
j(1 + exp(bj + h0Wj,:))

=
exp((b+ h0W )h−1)∑
h−1 exp((b+ h0W )h−1)

,

where Wj,: denotes the j-th row of W .

Consider any n,m ∈ N, as well as W ∈ Rm×n, b ∈ Rn, and the set {ph}h, defined in the
following way:

ph ∈ Pn : ph(v) =
exp((h>W + b>)v)

Z(hW+b)
∀h ∈ {0, 1}m . (4.13)

Every such ph is a product distribution of n binary variables and hence, Proposition 4.3.4 de-
scribes a mixture of products. The difficulty involved here is that the ph share the parameters
W and b and hence the set {ph}h∈{0,1}m is not an arbitrary (2m)-tuple of product distributions.
More precisely, only the (2m)-tuples of product distributions with natural parameters given by
the Minkowski sums of the origin and m points in Rn, the rows of W , shifted by the vector b
are allowed. By Lemma 4.3.2, the mixing distribution q in eq. (4.12) can be chosen arbitrarily,
contingent to having a limited support.

Let ei be the binary vector for which only the i-th entry is equal to one.

Lemma 4.3.5. Consider the set {ph} from eq. (4.12). Any of the following items is satisfied to
an arbitrary accuracy for a corresponding choice of W and b:

(i) ph=ei , i ∈ [m], are any m product distributions (on arbitrary faces of the n-cube).

(ii) Let C be any K-dimensional face of the m-cube, for any K ≤ m. {ph}h∈C contains all
uniform distributions supported in the flats (intersection semilattice) of K arbitrary faces
of the n-cube.

(iii) Let C be any K-dimensional face of the m-cube for some K ≤ m,n. Consider any
λ ⊆ [n] with |λ| = K. The sets {x : xλ = h}h∈C have cardinality 2n−K and build a
partition of {0, 1}n. The element ph is the uniform distribution on {x : xλ = h} for every
h ∈ C.

(iv) Letm = n and consider anym disjoint edges of them-cube {f i, gi}i∈[m]. pf i is arbitrary
on {f i, f i + ei mod 2}, pgi is arbitrary on {gi, gi + ei mod 2}, and ph is the point
measure on {v = h} for all h 6∈ {f i, gi}.

Proof. (i) Consider a faceF = {x : xλ = yλ}, where λ ⊂ [n]. ChoosingWi,: = limα→∞(α(yλ−
1
21), β[n]\λ) results in a ph=ei which has support F and ph=ei(yλ, x[n]\λ) ∝ exp(β[n]\λ · x[n]\λ)
for (yλ, x[n]\λ) ∈ F .

(ii) To simplify the notation we identify a vector h with its support set (e.g., ei is identified
with {i}). Choose parameters such that p{i} is a uniform distribution on the face Fi of the n-
cube for all i ∈ [m]. pλ is uniformly distributed with support argmax(

∑
i∈λ eFi). Hence, if

Fλ := ∩i∈λFi 6= ∅, then supp(pλ) = Fλ.
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(iii) Let W:,λ denote the entries of W in the columns j ∈ λ. The statement follows from
choosing b = −α1, W:,λ = αEλ (where Eλ the unit matrix), and W:,[n]\λ = 0.

(iv) Consider any l ∈ [n]. Consider a pair of vectors {f, g} which is an edge of {0, 1}m.
Let r ∈ [m] be the entry where they differ. Let s ∈ [m] be arbitrary. Denote by f̂ the vector
f̂i = fi ∀i 6= r, s and f̂r = 0, f̂s = 0. Choosing

W:,l = ω(2f̂ − 1̂ + (1− 2fs)mes + (p− q)er)
bl = −ω(|supp(f)| − 1 + fsm) + q

yields in the limit ω → ∞ that P (vl = hs|h 6= f, g) = 1, P (vl = 1|h = f) = p, and
P (vl = 1|h = g) = q, i.e.,

P (vl|h 6= f, g) = δhs(vl)

P (vl|h = f) = p(vl)

P (vl|h = g) = q(vl) .

Consider the case m = n. Let {f i, gi}mi=1 be m disjoint edges of {0, 1}m. Let si = i ∀i ∈
[m]. Consider any l ∈ [n]. From the above discussion we get

P (v|h = f l) =
n∏
i=1

P (vi|f l) =
∏
i 6=l

δf l
si

(vi) · pl(vl) , (4.14)

which is an arbitrary distribution with support on the edge given by fixing vi = f li ∀i 6= l. For
h 6∈ ∪mi=1{f i, gi} and si = i∀i we get

P (v|h 6= f l, gl ∀l) =
n∏
i=1

P (vi|h) =
∏
i

δhsi (vi) = δh(v) , (4.15)

which is the point measure on {v = h}.

Main Results

Theorem 4.3.6. Consider a DBN containing l hidden layers of the same width as the visible
layer, n. Let k be the largest natural number for which l−1 ≥ 22k and let K = 2k +k+ 1 ≤ n.
The DBN model contains:

• Any p ∈ Pn with support contained in an element of Sl(n+1).

• Any partition model with blocks of the form {[yλ]}yλ∈{0,1}K , λ ⊆ [n], |λ| = K.

Proof. The result summarizes statements from Lemma 4.3.2 and Lemma 4.3.5.

By this result, if K ≥ n, the DBN is a universal approximator, which is consistent with
Theorem 3.2.1. Since the DBN contains P(Y) for all Y ∈ Sl(n+1), the cardinality of any such Y
(minus one) is a lower bound on the dimension of the DBN model.

Theorem 4.3.7. The DBN from Theorem 4.3.6 satisfies

max
p∈Pn

D(p‖DBN) ≤ n−K ,

where K = 2k + k + 1 = log(2l log(l)).

Proof. The claim follows from Corollary 4.1.1 and the second item of Theorem 4.3.6.
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The DBN Joint Model

In this short passage we discuss a third approach to the expressive power of DBNs (the other
two being the previously discussed probability sharing and hierarchical mixtures). Consider any
natural numbers {n0, . . . , nl} and the corresponding architecture ofD(nl0). Let E1 ⊆ PN denote
the set of product distributions of N units. Let E∗ be the hierarchical model with interaction
family ∆ consisting of {i} for all i ∈ N , the pairs {i, j}, where i and j belong to subsequent
layers of the DBN, and additionally, all subsets of units from the same hidden layer k, k ∈
{1, . . . , l − 1}. We have the following:

Proposition 4.3.8. E1 ⊂ D(nl0) ⊆ E∗.

Proof. The first inclusion is clear. For the second inclusion: P ∈ D is of the form

P (hl0) = exp
(
hlW lhl−1 + blhl + bl−1hl−1 − logZl

+
l−2∑
k=0

(hk+1W k+1 + bk)hk − logZk+1(hk+1)
)
,

where Zl =
∑

hl,hl−1 exp(hlW lhl−1 + blhl + bl−1hl−1) is a constant, and Zk+1(hk+1) =∑
hk exp((hk+1W k+1 + bk)hk) is a function of hk+1. From the definition of E∗, all these

functions must be contained in the span of the sufficient statistics of E∗.

The functions logZk+1 do not necessarily belong to any specific subspace of the span of the
sufficient statistics of E∗. This suggests that any exponential family containing D also contains
E∗.

4.A A Comparison of Restricted Boltzmann Machines and Mixture
Models

RBMs generate mixtures of product distributions, according to the relation

p =
∑

h∈{0,1}m
p(v|h)p(h) , where p(v|h) ∈ E1

n , (4.16)

and p(h) is the marginal distribution on the hidden states {0, 1}m of the RBM. This implies
RBMn,m ⊆ Mixt2m(E1

n). The mixtures produced by the RBM have restricted weights p(h) and
restricted mixture components p(·|h). In general RBMn,m 6= Mixt2m(E1

n), as can be seen from
dimension arguments (the mixture model has dimension 2mn+ 2m − 1 for all m, see [26]). In
the particular case m = 1 we have (by Theorem 4.2.1):

RBMn,1 = Mixt2(E1
n) ∀n ∈ N . (4.17)

The statement of eq. (4.17) also appeared in [31, Proposition 3.1]. More generally [31] shows
that RBMn,m = (RBMn,1)[m]. Given some setM ⊂ P ,M[m] is the m-th Hadamard product
of M, i.e., the renormalized entry-wise product of m probability distributions in M. In this
sense an RBM model is a product of mixtures. Hinton [55] places RBMs in a class of models
called product of experts, where the experts belong to Mixt2(E1

n).
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If we fix the number of parameters, are RBM models better than mixtures of products at
approximating interesting probability distributions? Hinton [55] explains advantages of products
of experts compared to mixtures of experts (directed acyclic graphical models in that context).
It is well known that RBMs create a multi-clustering [17, Section 5.3], where each hidden unit
linearly divides the input space, and the resulting partition corresponds to input regions where
p(h|x) is maximized by different hidden states. However, not every hidden state corresponds to
a non-empty region of the input space [17]. What kind of partitions are possible, and how do
they relate to the modes that an RBM can realize on the input states?

Question 4.A.1. Given some n,m ∈ N, what is the smallest k for which the k-mixture of product
distributions contains the RBM model, min{k : Mixtk(E1

n) ⊇ RBMn,m}?
In the following we explore the kinds of modes that can be realized by probability distributions

in an RBM model. Then we use that information to assess Question 4.A.1 and show that in
essentially all cases of practical interest, an exponentially larger mixture model, requiring an
exponentially larger number of parameters, is required to represent the distributions that can be
represented by the RBM (Proposition 4.A.13).

We start with some general observations about the joint probability distributions on the visible
and hidden states of an RBM:

Sufficient Statistics of the RBM Joint Model

The joint probability distributions on the states of hidden and visible units of RBMn,m have the
following form:

pW,C,B (v, h) =
1

ZW,C,B
exp

(
h>Wv + C>h+B>v

)
∀(v, h) ∈ {0, 1}n+m .

Denote by Kn,m the full bipartite graph with n + m vertices. This defines the hypergraph of
interactions of RBMn,m. The RBM joint model is EKn,m ⊆ Pn+m, the hierarchical model with
interaction sets Kn,m.

Denote by h the matrix with the states of the hidden units as columns h = (h1| · · · |h2m) ∈
{0, 1}m×2m , and v ∈ {0, 1}n×2n the matrix with the states of the visible units as columns.
Denote by 1a×b the a× b matrix with all entries equal to one. The sufficient statistics of EKn,m
is

Tn,m =


11×2n+m

11×2m ⊗ v
h⊗ 11×2n

h⊗ v

 , (4.18)

where the columns are indexed by (h1, v1), (h1v2), . . . , (h1, v2n), . . . , (h2m , v2n). The block(
11×2m ⊗ v
h⊗ 11×2n

)
is the sufficient statistics of the independence model on (n + m) binary vari-

ables. The last block represents the interactions between pairs of visible and hidden units. The
convex support cs(EKn,m) is a (nm + n + m)-dimensional polytope (see Chapter 1). The face
lattice of this polytope corresponds to the support sets of probability distributions contained in
EKn,m and the simplex faces correspond to faces of P which are contained in EKn,m . The RBM
joint model contains the independence model and is contained in the pairwise interaction model.
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It appears natural to use this information to assess the expressive power of RBMs. This approach
presents difficulties, mainly because the face lattice of the convex support is itself a complicated
object and not sufficiently well understood.

Modes of Distributions in the RBM

Corollary 1.3.3 and eq. (4.16) imply the following:

Proposition 4.A.2. If RBMn,m can represent some p ∈ P(C), where C is an n-bit code
of minimum distance two, then EKn,m has a facial set {(xi, yi,j)}j,i ⊆ {0, 1}n+m satisfying
∪ixi = C and yi,j 6= yi

′,j′ for all j, j′ whenever xi 6= xi
′
. In particular:

(i) The model RBMn,m doesn’t contain any probability distribution supported by an n-bit
code C of minimum distance two and cardinality |C| > 2m. If m ≤ n− 2, then RBMn,m

doesn’t contain any distribution supported by Z±,n.

(ii) If m = n − 1 and RBMn,m ⊃ P(Z±,n), then EKn,m has an S-set Y ⊆ {0, 1}n+m with
Y[n] := {y ∈ {0, 1}n : ∃z ∈ {0, 1}m with (y, z) ∈ Y} = Z±,n.

Consider the particular case m = n − 1. If RBMn,n−1 is a universal approximator, then
n − 1 ≥ 2n−n−1

n+1 (parameter counting, see Corollary 3.A.2). Now, if RBMn,n−1 is a universal
approximator, then it can represent P(Z±,n) and by Proposition 4.A.2 there is some S-set Y ⊂
{0, 1}n+(n−1) of EKn,n−1 which restricts to Z+,n on the visible entries. In this case Y is a facial
set and the matrix Tn,n−1

Y (which consists of the columns Y of the sufficient statistics Tn,n−1)
has full rank 2n−1. We computed the rank of Tn,n−1

Y for a set Y ∈ {0, 1}n+(n−1) which restricts
to Z+,n in the visible variables and to {0, 1}m in the hidden variables, for several values of n:

n 2 3 4 5 6 7 8 9 10
rk(Tn,n−1

Y ) 2 4 8 16 27 56 72 90 110
2n−1 2 4 8 16 32 64 128 256 512
n− 1 ≥ 2n−n−1

n+1 yes yes yes no no no no no no

We see that RBMn,n−1 is not a universal approximator for n ≥ 5, and that it does not contain
P(Z±,n) for n ≥ 6. For n ≤ 3, the number of parameters and the rank of the matrix do not
contradict P(Z±,n) ⊂ RBMn,n−1. However, we still have to check that Y is a facial set. We
will return to this later in this section.

The following definition captures properties of probability distribution that we will use in
Proposition 4.A.7.

Definition 4.A.3. For any C ⊂ {0, 1}n we define IC ⊂ Pn as the set of probability distributions
for which any representation as mixture of product distributions contains |C| components with
unique maximizers at the different elements of C:

IC :=
{
p ∈ Pn : p =

∑
i

αip
i, pi ∈ E1

n ⇒ for each x ∈ C there is some pi with argmax(pi) = x
}
.

Example 4.A.4. If C ⊂ {0, 1}n is a binary code of minimum Hamming distance at least two,
then by Lemma 1.B.8 the set HC of distributions with strong modes C is a subset of IC . In
particularHn,2n−1 , the set of distributions with 2n−1 strong modes on Z±,n, is a subset of IZ±,n .
We write I±n for IZ±,n .

103



4 Expressive Power and Approximation Errors

Example 4.A.5. In the case n = 2 we have that the set I±2 is equal to G±2 ; the set of distributions
p = (p(x))x∈X ∈ P2 with two modes, i.e., the set of distributions for which p(z) > p(y) for all
z ∈ Z± for all y with dH(x, y) = 1. In this case G±2 =

⋂
x∈Z± Vx ∩ P , where Vx ⊂ RX is the

cell of δx in the Voronoi diagram of RX with centers {δv}v∈{x}∪Z∓ . G±2 is the convex hull of
{δx}x∈Z± ∪ C, where C is the set of centroids of the faces of P2 which contain {δx}x∈Z± . See
also Figure 1.5.

If C is a code of minimum distance two, then the mixture model of product distributions
Mixtk(E1

n) intersects IC if and only if k ≥ |C|, see Lemma 1.B.8. In the following we give a
condition for RBM models to intersect IC .
Definition 4.A.6. Given any m,n ∈ N and vectors {wi}i∈[m] ⊂ Rn and b ∈ Rn, the set
Z := conv({b +

∑
i∈I wi}I⊆[m]) is an m-generated zonotope. The set {b +

∑
i∈I wi}I⊆[m] is

called the set of points of Z .

Zonotopes have many interesting properties; in particular, they can be identified with hyper-
plane arrangements and oriented matroids, see [21, 122]. An orthant of Rn is the set of all
vectors in (R \ {0})n which have the same sign in each entry. Each orthant is labeled by its sign
vector. We say that an orthant has even (odd) parity if its sign vector has an even (odd) number
of +. Rn has 2n orthants, 2n−1 even and 2n−1 odd. A binary vector x is identified with the sign
vector sgn(x− 1

2).

Proposition 4.A.7. Let C be a binary code of minimum distance two. If the model RBMn,m

contains some p ∈ IC , then there is a zonotope Z in Rn with m generators such that the set of
points of Z intersects every orthant of Rn of sign C. If |C| = 2m and there exists a zonotope
with points of equal l1 norm, which intersect the orthants C of Rn, then RBMn,m contains uC
(and intersects IC).

Proof. If some p ∈ IC is contained in RBMn,m, then for each x ∈ C there is an h ∈ {0, 1}m
such that p(v|h) ∝ exp(hWv +Bv + Ch) is uniquely maximized at v = x. Hence

hWx+Bx+ Ch > hWv +Bv + Ch ∀v 6= x , (4.19)

and equivalently, sgn(hW + B) = sgn(x − 1
2). Therefore, the existence of a zonotope as de-

scribed in the claim of this proposition is equivalent to the satisfiability of the inequalities (4.19).
On the other hand, if the inequalities (4.19) are satisfied for a set of parameters W,B,C and all
vectors hW +B have the same one-norm, then the parameters αW,αB, C = −W (1, . . . , 1)>,
and α→∞ produce uC as visible distribution of the RBM.

Remark 4.A.8. The model RBMn,m is symmetric under relabeling of the variable x1. If RBMn,m

intersects I+
n , then it also intersects I−n .

The convex hull of a pair b1 ∈ R2
+ and b2 ∈ R2

− is a one-generated zonotope whose points
intersect all even orthants of R2. We will show that if n is an odd number larger than one,
there don’t exist (n − 1)-generated zonotopes with points intersecting all even orthants of Rn
(Propostion 4.A.12). We will show however that such a zonotope does exist for n = 4, and we
will use it as “building block” to construct zonotopes in R4k which intersect many even orthants
of Rk4.

Definition 4.A.9. A hyperplane arrangement A in Rn is a finite set of (affine) hyperplanes
{Hi}i∈[k] in Rn. Choosing an orientation for each hyperplane yields for each vector x ∈ Rn a
sign vector sgnA(x) ∈ {+,−, 0}k, where (sgnA(x))i indicates whether x lies on the positive

104



4.A A Comparison of Restricted Boltzmann Machines and Mixture Models

side of Hi, on its negative side, or inside. The set of all vectors in Rn with the same sign vector
are called a cell of A, see [21].

(+ + +)

(+ − −) (− − +)

(− + −)

(− + +)(+ + −)

(+ − +)

Figure 4.4: Intersection of a 2-dimensional affine subspace of R3 with normal vector (111) and
7 orthants of R3; four of odd parity and three of even parity.

Given some set C ⊆ {±1}n, if there is an m-generated zonotope with points in the orthants C
of Rn, then the vertices of an m-cube are in the C-cells of an arrangement of n hyperplanes in
Rm. A subset C ⊂ {±1}m ⊂ Rm is linearly separable iff there exists an affine hyperplane H
in Rm such that C lies on one side of H and {±1}m \ C lies on the other side of H .

In the following examples we label the vertices of the m-cube by the decimal number that
they represent, plus one. A linear separation of the vertices is written as an array of decimal
numbers from 1 to 2m with a bar above the vertices which lie below the separating hyperplane
(this notation is common for covectors in the context of oriented matroids).

Example 4.A.10. Let n = 3 and m = 2. If there exists a 2-generated zonotope with vertices
intersecting all even orthants of R3, then there is an arrangement of three hyperplanes A in
R2 (each hyperplane is just a line) such that the vertices of the 2-cube are in the even cells of
A. In this case clearly, each hyperplane separates the vertices of the 2-cube into two sets of
cardinality two. There are only two ways to linearly separate the vertices of the 2-cube into sets
of cardinality two (up to opposites):

1234 and 1234 .

Hence there does not exist a 2-generated zonotope with vertices in the four orthants of even (odd)
parity of R3. In combination with Proposition 4.A.7 this shows that RBM3,2 can’t represent
distributions with four strong modes. The next Proposition 4.A.12 generalizes this example.
Later we will study the special case n = 3 and n = 2 in more detail.

Example 4.A.11. Let n = 4 and m = 3. There are 104 ways to linearly separate the vertices
of the 3-cube, see [89]. A complete list can be found in [21, Section 3.8]. The vertices of the
3-cube are in the Z+,4 cells of an arrangement of four hyperplanes which separate the vertices
as follows:

12345678 , 12345678 , 12345678 , 12345678 .

Hence there is a 3-generated zonotope with vertices in the 8 orthants of even (or odd) parity of
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R4. In fact, the following parameters

w =

−1 −1 −1 1
−1 −1 1 −1
−1 1 −1 −1

 , b =
1

2

(
3 1 1 1

)
, (4.20)

generate a zonotope in R4 with the following points:

1

2



3 1 1 1
1 −1 −1 3
1 −1 3 −1
1 3 −1 −1
−1 −3 1 1
−1 1 −3 1
−1 1 1 −3
−3 −1 −1 −1


.

Every even orthant of R4 contains exactly one of these row vectors. This is a contrast to the previ-
ous example. The convex hull of the vertices of the 4-dimensional unit cube which have an even
number of ones is (combinatorially equivalent to) the 4-dimensional cross polytope (the dual of
the 4-cube). The n-dimensional cross polytope is defined as conv{(0, . . . , 0,±1

i
, 0, . . . , 0)}i∈[n].

The convex hull of the vertices of the d-dimensional unit hypercube which have an even number
of ones is called the parity polytope. It has dimension d when d ≥ 3.

Proposition 4.A.12. If n is an odd natural number larger than one, there is no (n − 1)-
generated zonotope with points intersecting all even (odd) orthants of Rn. In particular, the
model RBMn,n−1 can’t represent distributions with strong modes on Z±,n.

Proof. Let Z be a candidate zonotope. Since Z has n − 1 generators, it has dimension at most
n − 1 and lies in a hyperplane H of Rn. Let η denote the normal vector of that hyperplane.
Assume first that H contains the origin. All vectors with sign sgn(η) lie outside of H (where
we may assign arbitrary sign on the zero entries of η). This is Stiemke’s theorem, see [44].
By linear algebra, the opposite orthant with sign vector − sgn(η) also lies outside H . Since n
is odd, one of the two opposite orthants has even parity and the other has odd parity. Hence Z
can’t intersect every orthant of even (or odd) parity. Consider now an affine hyperplaneH which
intersects all even orthants. Assume wlog that the normal vector of H has only negative entries.
The intersection H ∩Rn(−···−) is a (bounded) (n− 1)-simplex. The orthant Rn(−···−) is separated
by (n − 1) hyperplanes from the orthants Rnsi with signs si = (+ · · · + −

i
+ · · ·+) for i ∈ [n].

Since n is odd and larger than one, (n−1) is a positive even number. Any collection of n points
which intersects H ∩ Rnsi for all i ∈ [n] contains H ∩ Rn(−···−) in its convex hull. On the other
hand, any (n− 1)-generated zonotope Z of dimension (n− 1) is combinatorially equivalent to
the (n− 1)-cube. In particular, all points of Z are vertices.

See Figure 4.4 for a small example of the objects discussed in Proposition 4.A.12.

The Smallest Mixtures of Products Containing the RBM Model

An analysis of the (strong) modes of probability distributions within an RBM model allows us
to derive inclusion relations with mixtures of independence models. We show that, in general,
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small RBMs can represent probability distributions with many strong modes, which are only
contained in very large mixtures of product distributions.

Starting from a small zonotope with points in all even orthants of Rn one can construct a larger
zonotope with points intersecting many even orthants of a larger space (see Proposition 4.A.7):

For each i ∈ [k] let ni,mi be some natural numbers and W (i) ∈ Rmi×ni , B(i) ∈ Rni . If for
every i the points of the zonotope generated by (W (i), B(i)) intersectKi ∈ N even (odd) orthants
of Rni , then (diag(W (1), . . . ,W (k)), (B(1), . . . , B(k)) generates a zonotope in Rn1+···+nk with
points intersecting

∏
iKi even (odd) orthants of Rn1+···+nk .

Proposition 4.A.13. Let n,m ∈ N.

• If 4dm/3e ≤ n, then RBMn,m ∩Hn,2m 6= ∅ and

Mixtk(E1
n) ⊇ RBMn,m if and only if k ≥ 2m .

• If 4dm/3e > n, then

Mixtk(E1
n) ⊇ RBMn,m only if k ≥ min{2l +m− l, 2n−1} ,

where l := max{l ∈ N : 4dl/3e ≤ n}.

Recall that Hn,l denotes the set of probability distributions on {0, 1}n which have at least l
strong modes (Definition 1.B.1).

Remark 4.A.14. The first item remains true ifm mod (3)=1 and 4bm/3c+2 ≤ n. Furthermore,
if n = 1, 2, then Mixtk(E1

n) = RBMn,k−1 for all k.

Proof. Let 4dm/3e ≤ n. Consider the following parameters with a, b ∈ R andW ∈ Rm×n, B ∈
Rn, C ∈ Rm:

W = α


w

w
. . .

w
w̃

0

 , w =

−1 −1 −1 1
−1 −1 1 −1
−1 1 −1 −1

 ,

where w̃ consists of the first or the first two rows of w. We use the following bias:

B =α
(
b b · · · b (−1, . . . ,−1)

)
,

b =
1

2

(
3 1 1 1

)
,

C =−W (1, . . . , 1)> = α(2, . . . , 2)> .

Denote by λi the set of entries {1, 2, 3, 4} + 4(i − 1) ⊂ [n]. For α → ∞ the joint distribution
of the RBM satisfies:

p(v, h) ∝
{

1 , if
∑

j∈λi xj is even for all i and xj = 0 for all j > 4dm/3e
0 , else

.

107



4 Expressive Power and Approximation Errors

This implies that the visible probability distribution generated by the RBM is the uniform distri-
bution with support on a subset of Z+,n of cardinality 2m.

Now let 4dm/3e ≥ n. By the first part of this Proposition, the RBM with l hidden units can
represent probability distributions with 2l strong modes C ⊆ Z±,n. If p is in RBMn,l , then
RBMn,l+1 contains αp+(1−α)δx for any arbitrary state x and α ∈ [0, 1], see [72]. Hence each
hidden unit additional to l allows us to increase the probability of any state in Z±,n \ C while
uniformly reducing the probability of all other states, and so increase the number of strong
modes by one.

Dimension of the RBM Model

Proposition 4.A.15.

RBMn,m+1 = {Mixt(p, p ∗ E1
n) : p ∈ RBMn,m} ⊇ Mixt(RBMn,m \∂Pn, S(E1

n)) ,

where p ∗ q := p·q∑
x p(x)q(x) and S(E1

n) = {p ∈ Pn : supp(p) = {x, y}, dH(x, y) ≤ 1} consists

of all faces of Pn which are contained in E1
n.

Proof. The first equality follows from eq. (4.8) in pg. 94. The inclusion relation follows from
p ∗ S(E1

n) = S(E1
n) for all p ∈ Pn.

Corollary 4.A.16. dim(RBMn,m) strictly increases with m until reaching the value 2n − 1.

Proof. If dim(RBMn,m) = d, then there exists a subset of RBMn,m which has a tangent space
of dimension d. If a setM ⊆ P is closed under mixtures with δx for all x, thenM = P . For
any p ∈ P , any proper subset of {δx − p : x ∈ X} consists of linearly independent vectors. The
claim follows from the last inclusion in Proposition 4.A.15.

Remark 4.A.17. In [31] it was shown that

dim(RBMn,m) = min{nm+ n+m, 2n − 1}
when m ≤ 2n−dlog2(n+1)e or when m ≥ 2n−blog2(n+1)c . (4.21)

This formula holds if m is not too large, which is the case in most applications. If (n− 1) is not
a power of two, the result doesn’t hold for a number of values of m. In [31] it is conjectured that
dim(RBMn,m) = min{nm + n + m, 2n − 1} for all n and m. Our Corollary 4.A.16 slightly
extends the scope of the dimension formula (4.21).

4.B The Models RBM3,2 and RBM4,3

The Model RBM3,2

In Section 3 we showed that RBMn,m = Pn only if m ≥ d2n/(n+ 1)e − 1, and that if
m ≥ 2n−1 − 1, then RBMn,m = Pn. The RBM model with three visible units is the small-
est example for which there is a gap between bounds for the sufficient and necessary number
of hidden units of an RBM universal approximator. By [31] the dimension of RBM3,2 equals
2n − 1. Proposition 4.A.12 implies that RBM3,2 doesn’t contain distributions with four strong
modes (see also Appendix 3.B). In this section we take a closer look at the model from various
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perspectives; the RBM joint model, its convex support and support sets, the KL-divergences to
the RBM3,2, and the question how many probability distributions are not contained in RBM3,2?

By Theorem 4.2.1, RBM3,2 contains:

(i) Any mixture of an arbitrary product distribution and two further product distributions with
disjoint supports.

(ii) Any mixture of two arbitrary product distributions and a further arbitrary distribution with
support on a pair with Hamming distance one.

This includes any distribution with support of cardinality at most three, all distributions with
support of cardinality four, except for those supported by Z±,3, and any distribution with sup-
port contained in the union of three pairs with Hamming distance one.

For the complement of RBM3,2 we have:

Proposition 4.B.1. RBM3,2 ∩I3 = ∅. Furthermore, I3 ) H3, vol(H3) = 0.0078 · vol(P3),
and ex(H±3 ) ⊂ RBM3,2.

In particular, RBM3,m is a universal approximator of distributions on {0, 1}3 if and only if
m ≥ 3.

Proof of Proposition 4.B.1. The first statement is a direct consequence of Proposition 4.A.12
and Proposition 4.A.7. More explicitly, if RBM3,2 ∩I3 6= ∅, then:

sgn


B

W1 +B
W2 +B

W1 +W2 +B

 !
= rowperm .


+ − −
− + −
− − +
+ + +

 . (4.22)

This is a contradiction, because (B) + (W1 +W2 +B) = (W1 +B) + (W2 +B) and the sign
of the two addends in the left hand side of this expression must agree in at least one entry while
on that same entry the two addends on the right hand side also must agree, but have the opposite
sign. The analysis of the polytopesH±3 is given below.

For three units and four strong modes we have:

H3,4 = H+
3 ∪H−3 , H±3 :=

⋂
z∈Z±

{
p ∈ P3 : p(z) >

∑
dH(z,ẑ)=1

p(ẑ)
}
. (4.23)

By eq. (4.23), H+
3 is the intersection of 8 half-spaces (this is a h-polytope) defined through

the inequalities p(z) ≥ ∑y:dH(z,y)=1 ∀z ∈ Z+ and p(y) ≥ 0 ∀y ∈ Z−. Using Polymake

we find thatH+
3 is a 7-dimensional simplex with volume vol(H+

3 ) = 0.0039 · vol(P3) and with
vertices ex(H+

3 ) given by the uniform probability distributions on the following sets:

{000, 001, 011, 101}, {011, 101, 110, 111}, {000, 010, 011, 110}, {000, 100, 101, 110},
{000}, {011}, {101}, {110} (4.24)

All vertices ofH+
3 are also vertices of G+

3 . The vertices of G+
3 are listed in Table 1.1, page 32.
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Figure 4.5: Top left: This figure shows the face P(Z+,3) of the probability simplex on {0, 1}3.
The color indicates the KL-divergence to the best approximation that we found within RBM3,2

using contrastive divergence, maximum likelihood and extensive initializations of parameters
(similar to the computations shown in Figure 4.3 from Section 4.2). The color is interpolated
between a couple of hundreds of regularly spaced computed points. Top right: Similar compu-
tations for probability distributions contained in the simplex with vertices from the first group of
extreme points of H+

3 listed in eq. (4.24). Bottom: Detail to the computations shown in the top.
The figures show the KL-divergence from target distributions on the lines λδ(000)+(1−λ)p2 and
λp1 +(1−λ)p2, which are edges of the polytopeH+

3 , to distributions within RBM3,2. The small
inset figures show the results after training the RBM for each of the parameter initializations (the
best approximations, shown in red, correspond to the large figures).

The first four vertices listed in eq.(4.24) are mixtures of two point measures and one uniform
distribution on a pair of Hamming distance one. The last four vertices are point measures. By
Theorem 4.2.1, all vertices are contained in RBM3,2. The edges of the simplex H3 connecting
two vertices from the second group are all in RBM3,2. The distributions in the relative interior
of the edges of H3 between two vertices from the first group are in I+

2 and not in RBM3,2.
At the lower right of Figure 4.5 we show the numerically computed KL-divergence from the
points on such an edge to the model. The relative interior of edges connecting one vertex from
the first group and one vertex from the second group are in RBM3,2 if they have support of
cardinality four and they are not if they have support of cardinality five. Figure 4.5 bottom left
shows the divergence from points on an edge of distributions with support of cardinality five to
the model.

The upper left corner of Figure 4.5 illustrates Proposition 4.B.1. It shows the simplexP(Z+,3)
whose vertices are the probability distributions from the second group listed in eq. (4.24). The
centroid is uZ+ . Consider any distribution q = 1

4δz1 + 1
4δz2 + 1

2u{z3,z4,y1,y2}, with {zi}4i=1 =
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Figure 4.6: Left: Histogram of KL-divergences from random targets to RBM3,2 after train-
ing. Inset and Right: KL-divergence from random targets to random probability distributions
within RBM3,2 (black circles), to the probability distribution p∗RBM3,2

that results from training
RBM3,2 with data generated from the targets (blue circles). The best approximation of the tar-
gets after training is shown by the green squares and by the red empty squares after additional
ML training. The red squares are filled if the final KL-divergence is larger than 0.075.

Z± and {z3, z4, y1, y2} a 2-face of C3. The divergence from such a distribution to uZ± is
D(uZ±‖q) = 1

2 . Furthermore, such a q is contained in RBM3,2, because it is the mixture of
two point measures and the uniform distribution on a face of C3. In the upper right part of
Figure 4.5 we show the simplex with vertices given by the first group of probability distribu-
tions: p1 = u{(000),(001),(011),(101)}, p2 = u{(011),(101),(110),(111)}, p3 = u{(000),(010),(011),(110)},
p4 = u{(000),(100),(101),(110)}.

Figure 4.6 shows the result of a computer aided examination of D(p‖RBM3,2) for many
targets p. We recorded the largest KL-divergences for the following three targets (out of 1000
randomly generated):

(0.0298, 0.1836, 0.2325, 0.0359, 0.1232, 0.0161, 0.0409, 0.3381)
(0.0936, 0.2955, 0.1452, 0.0301, 0.1959, 0.0599, 0.0059, 0.1739)
(0.2170, 0.1716, 0.0236, 0.2491, 0.0083, 0.1958, 0.1185, 0.0161)

(000) (001) (010) (011) (100) (101) (110) (111)

The first two vectors are close to uZ− . The third vector is close to one of the edges described with
eq. (4.24) (a probability distribution which is the convex combination of two vertices ofH±3 and
has support of cardinality five). The mean KL-divergence from the targets to the trained RBM
was 0.0208, the variance 3.8589 · 10−4, the maximum 0.1406, and the minimum 8.0745 · 10−4.
Only 9 of 1000 random targets were farther than 0.075 to the trained RBM.

A Comparison of RBM3,2 and Mixture Models

We compare the KL-divergences from various distributions in P3 to (i) RBM3,2, (ii) Mixt3(E1
3 ),

(iii) the union of all mixtures of three product distributions with disjoint supports, and (iv) the
union of all partition models with three blocks {Pξ : |ξ| = 3}. Figure 4.7 shows the result of our
computations.
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Figure 4.7: Circles: KL-divergence from p = (1−λ)δ(000)+λuZ+ , 0 ≤ λ ≤ 1, (the distributions
in the line connecting a vertex to the centroid of the simplex P(Z+)), to (i) RBM3,2 (blue empty
circles), computed using CD and ML, (ii) Mixt3(E1

3 ) (purple filled circles), computed using
EM methods, (iii) the union of partition models ∪ξ:|ξ=3|Pξ (purple empty circles), computed
analytically. Squares: KL-divergence from (1−λ)u{(000),(011),(110)}+λuZ+ (the line connecting
a centroid of a facet to the centroid of P(Z+)) to RBM3,2 (blue empty squares) and Mixt3(E1

3 )
(purple filled squares). Diamonds: KL-divergence from (1 − λ)u + λuZ+ , (distributions on
the line from the uniform distribution to centroid of P(Z+)), to RBM3,2 (blue diamonds) and
Mixt3(E1

3 ) (purple filled diamonds). The KL-divergence was larger than zero whenever λ > 0.

The divergences to the union of partition models with three blocks was computed analytically,
(using Lagrange multipliers), on the line p = (1 − λ)δ(000) + λuZ+ , 0 ≤ λ ≤ 1. The solutions
are of the form: q = α1δ(011) + α2u{(110),(101),(100),(111)} + (1− α1 − α2)δ(000), with mixture
weights α1 = − 2

λ(1− 1
4λ)α2 + 1 and α2 = (−4−2λ

λ + 1)/(1− (4− 2λ)(1− 1
4λ)/(1

2λ
2)). The

resulting KL-divergence is a linear function of λ, see Figure 4.7.

For the model Mixt3(E1
3 ) the KL-divergences are computed using a custom EM implemen-

tation. The divergence to this model was always positive (except for the target u). This reflects
Proposition 1.B.15, which shows that Mixt3(E1

3 ) contains no distributions with four modes. All
the computed rI-projections to Mixt3(E1

3 ) are in fact mixtures of three uniform distributions
with disjoint supports (except for a few sub-optimal numerical results found for small values of
λ). The projections into RBM3,2 were very similar. This suggests that the submodels of RBMs
proposed in Theorem 4.2.1 contain the class of rI-projections of distributions with four modes
into the RBM model.

The KL-divergence for targets in the line connecting the uniform distribution and the uniform
distribution on Z+ are always positive (except for the uniform distribution (λ = 0)), and virtu-
ally identical for all models.

The results from this section motivate the following conjecture:

Conjecture 4.B.2. The model RBM3,2 doesn’t contain any distribution with four modes. In par-
ticular, the uniform distribution is not an inner point of the model. The maximal KL-divergence
to the model is maxp∈P3

(p‖RBM3,2) = 1
2 and there are exactly two maximizers; the uniform
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4.B The Models RBM3,2 and RBM4,3

distributions supported by the perfect binary codes of minimum distance two Z+ and Z−.

The dimension of RBM3,2 and Mixt3(E1
3 ) is seven. The model RBM3,2 contains many sub-

models of Mixt3(E1
3 ), as explained in Theorem 4.2.1. It also contains mixtures of (four) ele-

ments in E1
3 with natural parameters in a two-dimensional subspace of R3. Such models don’t

contain any distribution of the form λu + (1 − λ)uZ±,3 . See Corollary 1.B.20. By Proposi-
tion 4.B.1 and Proposition 1.B.15, the set of distributions with four strong modes is contained
in the complement of both RBM3,2 and Mixt3(E1

3 ). We showed in Proposition 4.A.13 that in
general Mixtm+1(E1

n) 6⊇ RBMn,m. However, for the special case m = 2 and n = 3 we venture
the following question: Is the model RBM3,2 equal to Mixt3(E1

3 )?

Convex Support of EK3,2

We used the computer software Polymake [47] to compute the f -vector of cs(EK3,2), (the
number of proper faces of the polytope in each dimension, starting from dimension zero):

f(cs(EK3,2)) = (32, 416, 2880, 10940, 24448, 33448, 28272, 14500, 4310, 684, 48) .

The polytope cs(EK3,2) is not two-neighborly, since in that case it would have
(

32
2

)
= 496

one-dimensional faces, instead of 416. In fact, the maximal dimension in which all faces are
simplices is 1 (this also implies that the polytope is not two-neighborly, see [51, Theorem 7.4.3]),
and the maximal dimension in which all faces are simple polytopes is 2. All vertices have degree
26 and every vertex is contained in 30 facets. The face lattice of this polytope fills a 11.2MB
plain text file.

There are 24 ways to get the 4 visible states of positive parity, Z+,3, in combination with four
different hidden states (in other words, there are 24 sets of binary vectors in {0, 1}7 of cardinality
four which restrict to Z+,3 on the first three entries and to four different vectors on the last two
entries). Below we give one of them. The convex support cs(EK3,2) is symmetric with respect
to relabeling of the states of the hidden nodes, and also with respect to permutation of nodes in
the visible layer or in the hidden layer. These operations applied to one of the instances exhaust
the 24 different cases:

h1

h2

v1

v2

v3


0 0 1 1
0 1 0 1
0 0 1 1
0 1 0 1
0 1 1 0

 =: (x1, x2, x3, x4) . (4.25)

We can check whether these four vectors build a facial set or even an S-set of EK3,2 . If {xi}4i=1

is an S-set, then the columns of the sufficient statistics matrix build a full rank matrix (see
Proposition 1.A.3). The submatrix T 3,2

{xi}4i=1
of the sufficient statistics of EK3,2 (see eq. (4.18))

has full rank 4. However, {x1, x2, x3, x4} is not a facial set of EK3,2 for the following reason:
We computed the vertices contained in the 48 facets of cs(EK3,2). Each facet has either 16
or 24 incident vertices. The smallest face (intersection of facets) containing the four vertices
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{T 3,2
xi
}i=1,2,3,4 is spanned by eight columns with the following indices:

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1


0 1 2 3 4 5 6 7

. (4.26)

This means that the set {x1, . . . , x4} from eq. (4.25) is not facial, as claimed. This gives an
alternative proof of the fact that RBM3,2 can’t represent any distribution with support Z±,3,
which we established in Proposition 4.B.1. The visible parts of the eight vectors in eq. (4.26)
cover all {0, 1}3 (the subscripts give the decimal representation of the visible parts). This does
not mean that any distribution from RBM3,2 taking positive values on Z± has full support on
{0, 1}3, because we don’t rule out facial sets for which two vectors have the same values on the
hidden units and different values in Z± in the visible units.

The face of cs(EK3,2) described by the column vectors from eq. (4.26) is a three-neighborly
simplicial polytope of dimension 6. It has 16 simplex facets of cardinality 6, which correspond
to the following S-sets of EK3,2 :

{012346}, {012345}, {012456}, {123456}, {234567}, {134567}, {123567}, {024567},
{023457}, {023467}, {014567}, {013457}, {013467}, {012567}, {012357}, {012367}.

These sets represent precisely the S-sets of RBM3,2 which are the disjoint union of 3 pairs of
vectors of with Hamming distance one (see Theorem 3.1.1).

The Model RBM4,3

The model RBM4,1 is a binary tree model and is equivalent to Mixt2(E1
4 ) (see Theorem 4.2.1).

The geometry of binary tree models was recently studied in [123]. The model RBM4,2 was
studied in [32]. It has 14 parameters and codimension one in P4. In Corollary 1.B.17 we
showed that RBM4,2 doesn’t contain any distribution with eight modes. The model RBM4,3 is
the smallest candidate of an RBM universal approximator with four visible units. This model has
19 parameters, while dim(P4) = 15. On the other hand (n− 1), in this case 3, is a lower bound
for the number of hidden units of a universal approximator on {0, 1}n. By Corollary 1.3.3, if
the RBM represents a distribution with support Z+,4, then each hidden state must produce a
summand which is a point measure.

The computations shown in Figure 4.8 suggest that RBM4,3 = P4. We recorded a mean
KL-divergence of 0.0359, a maximum value 0.1046, a minimum value 0.0064, and a corrected
variance 1

n−1

∑n
i=1(xi − x̄)2 of 1.8458 · 10−4. For comparison, in a similar experiment for

RBM4,0 we recorded a mean KL-divergence 0.2054 and variance 0.0074. However, similar
experiments for RBM3,2 also resulted in a low mean KL-divergence, and that model is not a
universal approximator.

Proposition 4.B.3. EK4,3 has an S-set which restricts to Z+,4 on the four visible entries. Hence
RBM4,3 ⊃ P(Z±,4).
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Figure 4.8: Histogram of the KL-divergence from random target distributions to RBM4,3 after
training. In this experiment we generated 1000 random target distributions in P4. Each target
is the normalization of 16 uniformly distributed entries in [0, 1]. For each target, RBM4,3 was
initialized at 300 different random parameters and trained on data generated from the target
using contrastive divergence and ML methods. Whenever the KL-divergence was less than 0.05,
the main training (and random initialization) was interrupted.

Proof. The inclusion uZ+ ∈ RBM4,3 follows from Proposition 4.A.13. It implies that there is a
facial set Y ⊆ {0, 1}7 of EK4,3 with YV = Z+ and YH = {0, 1}3. The columns of the sufficient
statistics matrix T 4,3 of EK4,3 corresponding to the state vectors within Y has full rank 8 (see
the tabular in pg. 103). Hence Y is an S-set of EK4,3 (see Lemma 1.2.5). This completes the
proof.

In particular, Proposition 4.B.3 emphasizes that the support sets of p∗E for p ∈ RBMn,(m−1)

are not equal to the support sets of E . The computation of F(cs(EK4,3)) is quite expensive. We
only computed the number of facets, which is 12480.
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5 Model Design

In this chapter we are interested in the following quantity:

max
p∈G

D(p‖M) , (5.1)

whereM ⊆ P is a statistical model under consideration and G ⊆ P is a class of target prob-
ability distributions. An extensive evaluation of this function is an important and challenging
problem. The case where M is an exponential family and G = P was treated in [95]. In
Chapter 1 and Chapter 3 we focused on universal approximation of probability distributions by
mixtures of hierarchical models, RBMs and DBNs. The universal approximation problem is to
reduce the expression (5.1) to zero for G = P as a function of hyperparameters of M within
some class of models. In Chapter 4 we studied the representational power of mixtures of inde-
pendence models, RBMs, and DBNs which are not necessarily universal approximators and we
estimated the approximation errors when approximating arbitrary probability distributions. This
is, we estimated (5.1) for G = P and a fixedM within the mixture, RBM, and DBN classes.
This chapter provides a basis for even more extensive treatments of eq. (5.1).

In Section 5.1 we discuss a few examples as a proof of concept for the case where G 6= P . We
discuss optimization problems for which there is always an optimizer within a specific region G
of the search space, and we investigate the representation of deterministic kernels by RBMs. In
Section 5.2 we treat the problem of reducing the number of parameters ofM, subject only to
the condition that every point in G can be reached following a gradient, but not to the condition
thatM belongs to a particular class of models (e.g., the condition thatM is represented by a
stochastic network).

5.1 Restricted Boltzmann Machines and Deep Belief Networks

If G = E1
n and M = RBMn,m (or M = DBNn,n1,...,nl), the expression from eq. (5.1),

maxp∈G D(p‖M) has the trivial solution 0 for all m (and n1, . . . , nl), because RBMn,0 = E1
n.

The cases G = E2
n and G = Mixt2(E1

n) have an easy solution too: The model Mixt2(E1
n) contains

any mixture of two point measures and we know that the convex support of E2
n is 3-neighborly

(see Chapter 1). Therefore, E2
n and Mixt2(E1

n) contain the probability distributions of the form
1
2(δx + δ1+x (mod 2)), which are the global maximizers of D(·‖E1

n) within the full simplex Pn
(see Chapter 4). Therefore,

max
p∈G

D(p‖E1
n) = (n− 1) for G = E2

n and G = Mixt2(E1
n) . (5.2)

By Theorem 4.2.1 RBMn,1 = Mixt2(E1
n), and we get:

max
p∈Mixt2(E1)

D(p‖RBMn,m) =

{
(n− 1), if m = 0

0, if m ≥ 1
. (5.3)
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Distributions with support of bounded cardinality. An interesting case is when G contains
only probability distributions with support of cardinality at most k for some k ≤ |X |. If k = 1,
then the solution is trivial, because all point measures are product distributions. For some other
k, we have

max
p∈Pn:|supp(p)|≤k

D(p‖RBMn,m) ≤
{

0, for k ≤ (m+ 1) or (m+ 1) ≥ 2n−1

min{(dk,n − 1), DRBMn,m}, for k > (m+ 1)
(5.4)

where dk,n is the maximal minimum distance of a binary code of length n and cardinality k, and
DRBMn,m is bounded from above according to Theorem 4.2.2 (roughly by (n−1)−log(m+1)).

Partition Models. Consider two partitions of X
ξ = {X1, . . . ,Xm} and ζ = {Y1,1, . . . ,Y1,k,Y2,1, . . . ,Ym,k} ,

such that all blocks of ξ have the same cardinality and each of them is the union of k blocks of
ζ, Xi = ·∪kj=1Yi,j , with Yi,j all of equal cardinality. Note that Pζ = Mixt(Pζ1 , . . . ,Pζm). By
Lemma 4.1.1, we get the following:

max
p∈Pζ

D(p‖Pξ) = max
i=1,...,m

max
p∈Pζi

D(p‖uXi)

= max
p∈Pζi

D(p‖uXi) = D(uY1,1‖uX1) = log(k) . (5.5)

In fact, if ζ is a refinement of ξ, such that each blockXi of ξ is the union of ki blocks {Yj,1, . . . ,Yi,ki}
of ζ, then maxp∈Pζ D(p‖Pξ) = maxi=1,...,m,j=1,...,ki log(|Xi|/|Yi,j |). If ξ consists of at most
(m+ 1) cubical sets, then this is an upper bound for maxp∈Pζ D(p‖RBMn,m).

Exchangeable Distributions. Consider now as target G the set of exchangeable distributions:

Pexch,n := {p ∈ Pn : p(x) = p(y) whenever ‖x‖1 = ‖y‖1} . (5.6)

This is the partition model whose blocks allocate the binary vectors of equal one norm ‖x‖1 :=∑n
i=1 xi. We denote the corresponding partition by ξexch,n. All vectors within a block of ξexch,n

belong either to Z+ or to Z−. There are exactly (n + 1) blocks with cardinalities
(
n
k

)
for

k = 0, . . . , n and Pexch,n is an n-simplex. In particular we have

Mixtm(E1
n) ⊃ Pexch,n only if m ≥

(
n

bn2 c

)
' 2n/

√
π
2n . (5.7)

The exact representation of all exchangeable distributions as mixtures of products requires al-
most as many components as the exact representation of all Pn. This is because Pexch,n contains
distributions with a large support in Z+. This should be compared to [36].

We now compare Pexch,n with partition models contained in RBMn,m and DBN(nl0). Let
ξ = {X1, . . . ,Xm} be a partition model with m fixed cubical blocks. For any p ∈ Pexch,n, an
rI-projection ontoPξ is supported by the smallest union of blocksXi which contains the support
of p. Consider a p ∈ exPexch,n, i.e., p = uC for some C ∈ ξexch,n. The best approximation
within Pξ is (uC)Pξ =

∑
i∈[m]

|Xi∩C|
|C| uXi and the KL-divergence is

D(uc‖Pξ) = −H(uC) +H
(

( |Xi∩C||C| )i=1,...,m

)
−
∑
i∈[m]

|Xi∩C|
|C| log 1

|Xi| , (5.8)
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where H(p) denotes the Shannon entropy H(p) := −∑x p(x) log(p(x)). This expression van-
ishes if (i) C = Xi for one i (in this case C ∩ Xj = ∅ for j 6= i), or if (ii) m ≥ |C| and C is
covered by |C| blocks of cardinality one. The case (ii) never occurs if Xi are cubical sets, since
C has minimum distance two.

Input Output Maps. Given non-empty finite sets X and Y , the stochastic matrices from X
to Y are maps (x, y) 7→ π(x; y) satisfying

π(x; y) ≥ 0 for all x ∈X , y ∈ Y , and∑
y∈Y

π(x; y) = 1 for all x ∈X .

The set of stochastic matrices is denoted by C := C(X ; Y ). Stochastic matrices are very
general objects and can serve as models for individual neurons, neural networks, and policies.
Each extreme point of this convex set corresponds to a deterministic function g : X → Y given
as

π(g)(x; y) =

{
1, if y = g(x)

0, else
. (5.9)

We consider the problem of maximizing an objective function f : C → R defined on the set
C of stochastic matrices. A model N ⊆ C is consistent with f , if the set of maximizers of f
can be reached through the learning on N . This implies that the maximizers of f should be
contained in the closure of N . If f is convex on C, then each locally maximal value is attained
at an extreme point of C, and corresponds to a deterministic function. We refer to the following
three examples in which optimal systems also turn out to be close to deterministic functions: (i)
Optimal policies in reinforcement learning [111], (ii) dynamics with maximal predictive infor-
mation as considered in robotics [121], and (iii) dynamics of neural networks with maximal
network information flow [15]. This suggests to consider models that can approximate all ex-
treme points of C. In the following we concentrate on the first example to illustrate the main idea.

We divide the visible units of a network into an input and an output region, such that the con-
ditional distributions of the output nodes given the state of the input nodes describe stochastic
kernels. There are many ways of doing this. We restrict the discussion to dividing the visible
layer of an RBM into two regions. B. Sallans and G. E. Hinton [100] used this ansatz for select-
ing good actions for Markov decision processes. Let n be the number of visible units, nin the
number of input units and nout the number of output units. As outlined above, the deterministic
kernels comprise the optimal solutions to various interesting problems. We are interested in the
number of hidden units needed to represent the class of deterministic kernels. Let v = (x, y)
denote the state vector of all visible units, where x ∈ {0, 1}nin and y ∈ {0, 1}nout . The deter-
ministic kernels are represented by the probability distributions p ∈ Pn for which the following
holds:

p(·|x) = δy for some y ∈ {0, 1}nout ∀x ∈ {0, 1}nin . (5.10)

There are (2nin)2nout deterministic maps {0, 1}nin → {0, 1}nout ;x 7→ yx. Any particular func-
tion g is represented by any probability distribution contained in the following simplex:

∆g :=
{∑

x

α(x)δ(x,yx) :
∑
x

α(x) = 1, α(x) > 0 ∀x
}
⊂ Pn . (5.11)
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The RBM model can represent any g if and only if it intersects all open simplices of the form
given in eq. (5.11). The set ∆g consists of all probability distributions p ∈ Pn strictly supported
by a binary code which has exactly one element in each cylinder set {(x, y) ∈ {0, 1}n : y ∈
{0, 1}nout} ∀x ∈ {0, 1}nin . Denote ξnin,nout this collection of cylinder sets. Hence, the rep-
resentation of deterministic kernels is a special case of representation of probability distribu-
tions with support of cardinality bounded by 2nin . Any element from ∆g is a mixture of 2nin

point measures. Since RBMn,m contains any mixture of (m + 1) product distributions with
disjoint supports (see Theorem 4.2.1), it can represent any deterministic function whenever
(m + 1) ≥ 2nin . In this case, however, each function is considerably overparameterized. In
fact, RBMn,m ⊃ ∆g ∀g, and the fiber of each g has dimension at least 2nin − 1. This is just an
upper bound on the minimal number of parameters, but at the same time:

Whenever 1 ≤ nin ≤ n − 1, there is a deterministic kernel which is represented by the
probability distributions supported by a binary code of minimum distance at least two, because
each block in the partition ξnin,nout intersects Z+,n. We can state the following:

Proposition 5.1.1. Let n ∈ N and 1 ≤ nin ≤ n − 1. The model Mixtm(E1
n) can represent all

deterministic kernels if and only if m ≥ 2nin . If (m + 1) ≥ 2nin , then RBMn,m can represent
all deterministic kernels. If the conditions on m are satisfied, then for either model the fiber of
each deterministic kernel has dimension larger or equal to 2nin − 1.

This result should be compared to the results form Appendix 4.A. The number of hidden
units of an RBM can be potentially reduced for specific classes of deterministic kernels, even
if nin is as large as n − 1. For example the parity function f : (x1, . . . , xn−1) 7→ ∑

i∈[n−1] xi
mod 2 is represented by distributions supported on Z±,n, which can be contained in RBMn,m

for m� 2n−1 − 1 depending on n.

5.2 An Approach to Reduce the Parameter Space of Learning
Systems

We propose ways of defining models of stochastic matrices that are compatible with the maxi-
mization of expected reward in reinforcement learning theory. Our approach is based on infor-
mation geometry and aims at the reduction of model parameters as a way to improve gradient
learning processes. We present two-dimensional models which contain all extreme points from
the set of stochastic matrices, and which allow a simple implementation of natural gradient
methods.

5.2.1 Geometric Idea

We first consider general convex sets and return to stochastic matrices in Section 5.2.2. The
convex hull of a finite set ξ(1), . . . , ξ(n) in Rd is

C :=
{ n∑
i=1

p(i) ξ(i) : p(i) ≥ 0 ∀i and
n∑
i=1

p(i) = 1
}
. (5.12)

The set of extreme points of this polytope C is a subset of {ξ(1), . . . , ξ(n)}. In general, there are
many ways to represent a point x ∈ C as a convex combination of the extreme points. Here, we
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are interested in convex combinations obtained from an exponential family. To be more precise,
denote P the set of probability measures p = (p(1), . . . , p(n)) ∈ Rn and consider the map

m : P → C, p 7→
n∑
i=1

p(i) ξ(i) .

Consider an exponential family Eφ with sufficient statistics φ = (φ1, . . . , φl) on {1, . . . , n}.
Denote Cφ the image of Eφ by the map m. With the choice φ∗k(i) := ξ

(i)
k for i = 1, . . . , n and

k = 1, . . . , d, the closure of Eφ can be identified with the polytope C (see Section 1.1). This
allows to define natural geometric structures on C, such as a Fisher metric, by using the natural
structures on the simplex P . In the context of stochastic matrices this leads to a Fisher metric
that has been studied by Lebanon [74] based on an approach by Čencov. The above construction
also motivates the following definition: We call a family Cφ an exponential family in C if the
vectors φk, k = 1, . . . , l, are contained in the linear span of the vectors φ∗k, k = 1, . . . , d.

In general, the families Cφ are not exponential families but projections of exponential fami-
lies. We are mainly interested in models that are compatible with the maximization of a given
function f : C → R in the sense that the closure of Cφ should contain the maximizers of f . This
is clearly not the only consistency condition, but here we focus on this assumption only.

As stated above, in many cases the local maximizers of f are elements of the set {ξ(1), . . . , ξ(n)},
and hence the problem stated above reduces to finding a family φ = (φ1, . . . , φl) of functions
such that Cφ contains that set in its closure. This is always possible with only two functions
φ1, φ2. One such family can be constructed as follows: Consider a one-to-one map ϕ of the n
points ξ(1), . . . , ξ(n) into R, for instance ξ(i) 7→ i, i = 1, . . . , n, and the following family of
distributions:

pα,β(i) =
e−β(ϕ(ξ(i))−α)

2

∑n
j=1 e

−β(ϕ(ξ(j))−α)
2 =

eλ1 φ1(i)+λ2 φ2(i)∑n
j=1 e

λ1 φ1(j)+λ2 φ2(j)
, (5.13)

where φ1(i) := ϕ(ξ(i)), φ2(i) := ϕ2(ξ(i)), and λ1 := 2αβ, λ2 := −β. It is easy to see that for
α = ϕ(ξ(i)) and β →∞, the distribution pα,β converges to the point measure concentrated in i.
The convex combination

∑n
j=1 pα,β(i) ξ(i) therefore converges to the point ξ(i). This proves

that the closure of this two-dimensional family in C contains all the points ξ(i), i = 1, . . . , n.
In general, the geometric properties of this family strongly depend on ϕ, as we discuss in the
following section.

Figure 5.1 shows the set Cφ for the choice φ(i) =

(
sin(2πi/n)
cos(2πi/n)

)
and n = 4 (left), n = 8

(center) and n = 16 (right). In this case, the convex support of the exponential family Eφ is a
regular polygon. The left part shows {ξ(i)} = {δi}4i=1, for which Cφ = Eφ ⊆ Pn. For the given
choice of φ, Eφ corresponds precisely to the independence model of two binary variables. For
the figure in the center we set {ξ(i)}8i=1 = {0, 1}3. In the right figure we set {ξ(i)}16

i=1 = {0, 1}4.
In this case C is isomorphic to the set of n× 2 stochastic matrices (see eq. (5.15)).

Remark 5.2.1. (Hamiltonian exponential families). In the remainder of this section we will only
need the above introduced two-dimensional exponential families. However, we want to discuss a
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Eφ

ξ(1)

ξ(2)

ξ(3)

ξ(4)

φ(1)

φ(2)φ(3)

φ(4)

Cφ({1, 2, 3}; {0, 1}) Cφ({0, 1}2; {0, 1})

Figure 5.1: Two-dimensional models approaching all vertices of various polytopes. The models
are defined as in eq. (5.13) for various choices of n, {ξ(i)}ni=1, and φ. We use two-dimensional
exponential families which have a regular polygon as convex support. The left model corre-
sponds to an exponential family in the probability simplex P({1, 2, 3, 4}) and corresponds to
the independence model of two binary variables. The figures in the center and in the right cor-
respond to two-dimensional families of stochastic matrices with three, respectively four inputs
and two outputs. The figures in the bottom show the convex support of the exponential family
Eφ, cs(Eφ) = conv{φ(i)}ni=1.

natural extension of the idea: We can use low-dimensional exponential families which approach
all probability distributions of support of cardinality κ. The smallest such exponential fam-
ily on X has a convex support which is lowest dimensional among all κ-neighborly polytopes
with |X | vertices. For the cyclic polytope C(d, n) every k vertices determine a (k − 1)-face
for all k ≤ d

2 , and its f -vector (containing the number of faces in each dimension) satisfies
fi(C(v, d)) =

(
v
i+1

)
for 0 ≤ i ≤

⌊
1
2d
⌋
. The remaining fi are completely determined by the

Dehn-Sommerville equations [51, Theorem 4.7.1, Theorem 9.2.1]. The Upper bound theorem
states that cyclic polytopes have, among all convex d-polytopes with n vertices, the largest num-
ber of faces in each dimension, see [81, 82]. The polytope C(n, d) is realized as the convex hull
of {x(ti) ∈ Rd}, where t1 < · · · < tn, and x is the moment map x(t) = (t1, . . . , td). Hence,
the following sufficient statistics defines a κ-neighborly exponential family E of dimension 2κ.

φk(i) = tki i = 1, . . . , n, k = 1, . . . , d . (5.14)

The family from eq. (5.13) fits in this framework, since a two-dimensional exponential family
approaching all point measures has a convex support which is a polygon, and any polygon is
combinatorially equivalent to a cyclic polytope (any n different points on (t, t2), t ∈ R are the
vertices of an n-gon). See Figure 5.1. An additional comment: Combinatorially equivalent
polytopes do not necessarily induce the same exponential family (this is the case for affinely
equivalent polytopes).

5.2.2 An Application to Reward Maximization

Although the number of extreme points of the set of stochastic matrices C(Y ; Y ) is |Y ||X |,
according to Section 5.2.1 there always exists a two-dimensional manifold that reaches all of
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them. Note that in the particular case of N binary neurons we have X = Y = {0, 1}N and
therefore (2N )(2N ) extreme points.

To illustrate the geometric idea we consider the example X = {1, 2, 3} and Y = {1, 2}.
This can, for instance, serve as a model for policies with three states and two actions. In this
case C is a subset of RX ×Y ∼= R6 which can be identified with the hypercube [0, 1]3 through
the following parametrization (see Figure 5.2 A):

[0, 1]3 3 (r, s, t) 7→
 r 1− r

s 1− s
t 1− t

 . (5.15)

To test the properties of that family with respect to the optimization of a function, we consider
a map (s, a) 7→ Ras , which we interpret as reward that an agent receives if it performs action
a after having seen state s. The policy of the agent is described by a stochastic matrix π(s; a).
The expected reward can be written as

f(π) =
∑
s

pπ(s)
∑
a

π(s; a)Ras . (5.16)

In reinforcement learning, there are several choices of pπ (see [112]). Here we simplify our
study by assuming pπ to be the uniform measure.

We investigate the influence of the map ϕ and compare the natural gradient flow (gradient
with respect to the Fisher metric, see [5]) with the ordinary gradient. For the experiments we
drew a random reward matrix R and applied gradient ascent (with fixed step size) on f(π)
restricted to our model and several choices of ϕ (see Figures 5.2 A/B for typical outcomes).
The optimization results strongly depend on ϕ. We restricted ourselves to the case that ϕ maps
the vertices of C onto the numbers {1, . . . , n}. Such a map is equivalent to an ordering of the
vertices. We recorded the best results when ϕ corresponds to a Hamiltonian cycle on the graph
of the polytope C, i.e., a closed path on the edges of the polytope’s graph that visits each vertex
exactly once and returns to the starting vertex. This way ϕ preserves the locality in C, and
the resulting model Cφ is a smooth manifold. In Figure 5.2 A, both methods reach the global

optimum
 0 1

1 0
0 1

. In Figure 5.2 B, ϕ is ‘unordered’. In this case the landscape f(πα,β) is more

intricate and contains several local maxima. The natural gradient method only converged to a
local but not global optimum, and the ordinary gradient method failed.

A reflected Gray code is defined recursively as follows (see [27]): (i) Take the n− 1 bit Gray
code (a list of binary vectors of length (n− 1)), reflect the list (first vector becomes last vector).
(ii) Set the prefix 0 to the original list, and 1 to the reflected list. (iii) Concatenate the two
prefixed lists.

Proposition 5.2.2. Let |X | = n, |Y | = 2, and let f(π) =
∑

s

∑
a π(s; a)Ras . If ϕ enumerates

ex(C(X ,Y )) according to an n-bit reflected Gray code and R is a random, generic reward
matrix, then the uniform stochastic matrix π ∝ 1 is not a local optimizer of f |Cφ , and the
gradient points in the direction of the global maximizer.

Proof. See pg. 129.

Figure 5.3 illustrates Proposition 5.2.2 for two small families.
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β

α

A

β

α

B

Figure 5.2: Optimization with ordinary (green learning curves) and natural (magenta learning
curves) gradient on the model Cφ for two different choices of ϕ. Each vertex ξ of the cube
is labeled by ϕ(ξ). A: A Hamiltonian cycle ϕ = (1, 2, 3, 4, 5, 6, 7, 8). B: An arbitrary map
ϕ = (1, 7, 3, 5, 2, 8, 4, 6).

5.2.3 A Construction of Neuromanifolds

Here we approach implementations of policies π in the context of neural networks. We start
with the case of two binary input neurons and one binary output neuron (Figure 5.4, left). All
neurons are considered to be binary with values 0 and 1. The input-output mapping is modelled
in terms of a stochastic matrix π. The set of such 4× 2-matrices forms a four-dimensional cube.
A prominent neuronal model assumes synaptic weightsw1 andw2 assigned to the directed edges
and a bias b. The probability for the output 1, which corresponds to the spiking of the neuron, is
then given as

π(x1, x2; 1) =
1

1 + e−(w1x1+w2x2−b) . (5.17)

This defines a three-dimensional model in the four-dimensional cube, see Figure 5.5. Some
extreme points are not contained in this model, e.g. the matrix π(0, 0; 1) = π(1, 1; 1) = 0,
π(0, 1; 1) = π(1, 0; 1) = 1. This corresponds to the well-known fact that the standard model
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A B

Figure 5.3: This figure illustrates Proposition 5.2.2. Shown are the level surfaces of the expected
reward for a random reward matrix Ras (see eq. (5.16)) as a function of the natural parameters
of the two-dimensional exponential family Eφ for systems with two outputs and three (A), re-
spectively four (B) inputs. Here the enumeration ϕ of the deterministic functions corresponds to
a reflected (cyclic) binary Gray code. The corresponding models of stochastic matrices Cφ are
shown in Figure 5.1 (center and right). The center of the depicted region of the parameter space
corresponds to the uniform matrix π(s, a) = 1

2 ∀s, a.

x1

x2

y

x1

x2

y1

y2

Figure 5.4: Two simple neural networks.

cannot represent the XOR-function. On the other hand, it is possible to reach all extreme points,
including the XOR-function, with the two-dimensional models introduced previously in this
section. However, there are various drawbacks of our models in comparison with the standard
model. They are not exponential families but only projections. Moreover, we do not have a
neurophysiological interpretation of the parameters.

We now discuss models for the case of one additional output neuron. The system is modelled
by stochastic 4× 4 matrices, which form the 12-dimensional polytope C := C({0, 1}2; {0, 1}2).
A natural assumption is the independence of the outputs Y1 and Y2 given the input pair X1, X2.
This is the case if and only if the input-output map of each neuron i is modelled by a separate
stochastic matrix πi, i = 1, 2. The stochastic matrix of the whole system is given by

π(x1, x2; y1, y2) = π1(x1, x2; y1) · π2(x1, x2; y2).

This defines an 8-dimensional modelNproduct that contains all extreme points of C. Furthermore,
it contains the submodel Nstandard given by the additional requirement that π1 and π2 are of the
form (5.17). The model Nstandard is an exponential family of dimension 6. However, as in
the one-neuron case, Nstandard does not reach all extreme points. Another submodel Nnew of
Nproduct is defined by modelling each of the stochastic matrices πi in terms of two parameters as
described above. The following table gives a synopsis:
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A

π∗

B

Figure 5.5: A: The standard model given in eq. (5.17) for three values of the bias parameter
b. The deterministic policy π∗ is not contained in this model. B: The new model introduced in
Section 5.2.1. The color indicates the value of the long-term expected reward for a randomly
chosenR.

model dim. exponential family reaches all extreme points

C 12 yes yes
Nproduct 8 yes yes
Nstandard 6 yes no
Nnew 4 no yes

We conclude this section with the maximization of a reward function in the family Nnew,
as in the previous section. Figure 5.6 shows a histogram of the results for a fixed randomly
chosen reward R after 500 steps for ordinary gradient and natural gradient methods. We chose
a constant learning rate and 5,000 different random initial values. Both methods find 3 local
maxima. The natural gradient process tends to converge faster. Furthermore, it finds the global
maximum for a majority of the initial values, which is not the case for the ordinary gradient.

Figure 5.6: Histogram of the objective value f(π) after 500 steps of gradient ascent in Nnew.
Magenta: natural gradient. Green: ordinary gradient.

5.A Proofs and Details

Fisher Information and Parameter Updates

This appendix contains details to the computations presented in the Sections 5.2.2 and 5.2.3.
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Two-dimensional Models

We consider the set of stochastic matrices which can be written as convex combinations of a set
of extreme stochastic matrices {ξ(i)}ni=1, whereas the mixture weights are given by probability
distributions from a two dimensional model {pβ,α ∈ Pn : β, α ∈ R} : πβ,α =

∑
ξ pβ,α(ξ)ξ. For

the mixture weights we take the following two dimensional set:

pβ,α(ξ) =
1

Z
exp(β cos(α− ϕ(ξ))) , (5.18)

where ϕ(ξ) = 2π
kξ
n , {kξ} = {0, . . . , n − 1}, is an enumeration of the extreme points. In

this parametrization, α has the interpretation of an angle and β corresponds to the inverse tem-
perature as used in stochastic relaxation and in the Gibbs-Boltzmann distribution of statistical
physics. Note that this model corresponds to the exponential family Eφ with sufficient statistics
φ1 = cos(ϕ), φ2 = sin(ϕ), and sometimes it is more convenient to use the natural parameters
of the sufficient statistics φ1 and φ2.

The derivatives of the log-probability from eq. (5.18) are:

∇ log pβ,α(ξ) = (∂β, ∂α) log pβ,α(ξ)

=

(
cos(α− ϕ(ξ))− Eβ,α[cos(α− ϕ)]

−β sin(α− ϕ(ξ)) + Eβ,α[β sin(α− ϕ)]

)>
,

where Eβ,α[f ] :=
∑

ξ pβ,α(ξ)f(ξ). Clearly we also have ∇pβ,α(ξ) = (∇ log pβ,α(ξ))pα,β(ξ).
We abbreviate pβ,α by p and Eβ,α by E. The Fisher information matrix is given by:

G(β, α) =

(
E[∂β(log p) ∂β(log p)] E[∂β(log p) ∂α(log p)]
E[∂β(log p) ∂α) log p)] E[∂α(log p) ∂α(log p)]

)
=:

(
g11 g12

g12 g22

)
,

where gij = gij(β, α). In this case (two parameters), the inverse matrix can be written explicitly:

G−1 =

(
g22 −g12

−g12 g11

)
(g11g22 − g12g12)−1 .

The gradient of π is given by∇π =
∑

ξ(∇p(ξ))ξ, and the derivative of the objective (simpli-
fied long-term expected reward for a reward matrixR ∈ R|X |×|Y|) is:

∇ρπ =
∑
s

∑
a

(∇π(s, a))R(s, a) . (5.19)

The parameter updates are (β, α) ← (β, α) + η∇̃ρπ, where for the natural gradient we set
∇̃ = G−1∇, and for the ordinary gradient we set ∇̃ = ∇.

Product Model for Multiple Output Units

We now discuss the product modelNnew for an action space of cardinality larger than two, as the
stochastic maps arising from a feedforward network with several output neurons. For clarity we
focus on the case of two binary inputs and two binary outputs. The model is given by product
distributions of the form: p(a1, a2|s1, s2) = p(a1|s1, s2) · p(a2|s1, s2), and stochastic matrices
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of the form: π = π1 · π2 ∈ C(X ;Y) ⊂ R|X |×|Y|, where Y = Y1 × Y2 = {0, 1} × {0, 1},
X = {s1, s2} = {0, 1}2, and

πl =

|Yl||X|∑
i=1

ex
(i)
Cl pl(i), for l = 1, 2 , (5.20)

where Cl := C(X ;Yl) and ex
(i)
Cl ∈ {0, 1}

|X |×2 denotes the i-th extreme point of Cl (given some
enumeration). The probability distribution pl belongs to a two-dimensional model in P(|Yl||X |);
for example the one defined in eq. (5.13):

pl(i) =
1

Z
exp(−λl1(ϕ(i)− λl2)2) , (5.21)

and where we can set ϕ(i) = i − 1. The extreme stochastic matrices ex
(i)
Cl correspond to deter-

ministic binary functions with a single output. A sensible enumeration is the following:

ex
(i)
Cl = (G>i , 1−G>i ) , (5.22)

where Gi are the rows of a cyclic Gray code, (each Gi is a binary vector of length |X |, and
subsequent rows differ in exactly one entry). This enumeration defines a Hamiltonian cycle on
the graph of the |X |-dimensional unit cube and intends to preserve locality (for ex

(i)
Cl and ex

(i+1)
Cl

are near by each other). Finally

π = π1 · π2 =

|Y1||X|∑
i,j=1

(
ex

(i)
C1 ⊗̃ ex

(j)
C2

)
p1(i) · p2(j) , (5.23)

where for A ∈ Rn×m, and B ∈ Rn×k with rows Ai and Bi we write A⊗̃B for the matrix with
rows Ai ⊗Bi, (i.e., ⊗̃ is a row-wise Kronecker product). Note that

{ex
(i)
C1 ⊗̃ ex

(j)
C2 }
|Y1||X|
i,j=1 = exC(X ;Y1×Y2) , (5.24)

and the elements of exC(X ;Y) can be indexed by the tuple (i, j).

The ordinary gradient with respect to the given parametrization is:

∇p(i, j) =
(
∂λ1

1
, ∂λ1

2
, ∂λ2

1
, ∂λ2

2

)
p(i, j)

=


(−(ϕ(i)− λ1

2)2p1(i) + p1(i)(p1((ϕ− λ1
2)2)′))p2(j)

(2λ1
1(ϕ(i)− λ1

2)p1(i)− p1(i)(p1(2λ1
1(ϕ− λ1

2))′))p2(j)
(−(ϕ(j)− λ2

2)2p2(j) + p2(j)(p2((ϕ− λ2
2)2)′))p1(i)

(2λ2
1(ϕ(j)− λ2

2)p2(j)− p2(j)(p2(2λ2
1(ϕ− λ2

2))′))p(i)


For the policy matrix we have

∑
ij ∇p(i, j) ex

(i,j)
C = (∂λ1

1
π, ∂λ1

2
π, ∂λ2

1
π, ∂λ2

2
π), and the deriva-

tive of the long-term expected reward is:

∇ρπ =

(∑
s

∑
a

∂λπ(s, a)R(s, a)

)
λ=λ1

1,λ
1
2,λ

2
1,λ

2
2
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The Fisher information matrix is given by gαβ =
∑

i,j=1 p(i, j)∂α log p(i, j)∂β log p(i, j),
where

∂λ1
1

log p(i, j) = −(ϕ(i)− λ1
2)2 + (p1((ϕ− λ1

2)2)′)

∂λ1
2

log p(i, j) = 2λ2
1(ϕ(i)− λ1

2)− (p1(2λ1
1(ϕ− λ1

2))′)

∂λ2
1

log p(i, j) = −(ϕ(j)− λ2
2)2 + (p2((ϕ− λ2

2)2)′)

∂λ2
2

log p(i, j) = 2λ2
1(ϕ(j)− λ2

2)− (p2(2λ2
1(ϕ− λ2

2))′)

The parameter updates are then given as λ ← λ + η∇̃ρπ, where for the natural gradient we
set ∇̃ = g−1∇, and η is the learning rate.

Gradient and Global Optimizers

We consider the two-dimensional model Cφ = πβ,α =
∑

ξ pβ,αξ, where {ξ} are the extreme
points of the polytope of stochastic matrices C and Eφ = {pβ,α} is the two-dimensional expo-
nential family from eq. (5.18). If the extreme point ξ̃ is the global optimizer of ρπ =

∑∑
πR,

does ρπt strictly increase (not decrease) along the trajectory

πt =
∑
ξ

1

Z
exp(t cos(ϕ(ξ̃)− ϕ(ξ)))ξ , t = [0,∞) (5.25)

until reaching its global maximum ρξ̃? Note that if ξ̃ is the optimum for ρπ, then the entries with
value 1 in each row of ξ̃ are at the same places as the maxima of R in each row, and hence: If
the velocity of (5.25) is a vector in the interior (closure) of the orthant with signs sgn(2ξ̃ − 1),
then ρπt strictly increases (does not decrease) as t increases.

We show that the sign condition given above is satisfied at the origin, in the case that C are
n × 2 stochastic matrices and ϕ(ξ) numbers the extreme matrices (2n binary vectors of length
n) along a reflected Gray code, which is the content of Proposition 5.2.2.

Proof of Proposition 5.2.2. We simplify the notation of the extreme n×2 matrices: ξ 7→ (2ξi,1−
1)i=1,...,n (we consider only the first column, and replace zeros by negative ones). For the
velocity we have the following:

∂tπt = ∂t
∑
ξ

1

Z
exp(t cos(ϕ(ξ̃)− ϕ(ξ)))ξ

=
∑
ξ

(
cos(ϕ(ξ̃)− ϕ(ξ))− Et,ϕ(ξ̃)[cos(ϕ(ξ̃)− ϕ(ξ))]

)
pt,ϕ(ξ̃)ξ .

At time t = 0 this expression is simplified to:
∑

ξ cos(ϕ(ξ̃) − ϕ(ξ)) 1
2n ξ, and we need to show

that: ∑
ξ

cos(ϕ(ξ̃)− ϕ(ξ))(ξ)i

 (ξ̃)i ≥ 0 . (5.26)

Consider a reflected n-bit Gray code (we replace the zeros by minus ones): G = (Gx,i)x,i ∈
{−1, 1}2n×n. Denote the x-th row by Gx,: and the i-th column by G:,i. We introduce the
abbreviation (cx̃)x := (cos(2π

2n (kx − kx̃)))x, and rewrite (5.26) for arbitrary ξ̃ as:

〈cx̃, G:,i〉Gx̃,i ≥ 0 ∀x̃,∀i . (5.27)
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For i < n the i-th column is:

G:,i = (−1− 1︸ ︷︷ ︸
2i−1

11︸︷︷︸
2i

−1− 1︸ ︷︷ ︸
2i

... 11︸︷︷︸
2i︸ ︷︷ ︸

2n−i−1

−1− 1︸ ︷︷ ︸
2i−1

)> ,

and for i = n it is G:,n = (−1, . . . ,−1︸ ︷︷ ︸
2n−1

, 1, . . . , 1︸ ︷︷ ︸
2n−1

)>.

We see that for any i and an arbitrary x̃, the column G:,i is a cyclic concatenation of blocks
of length 2i (or 2n−1 for i = n) with alternating sign. If 2i < 2n−1, then (5.27) vanishes for
all x̃. This is because the frequency of G:,i is a multiple of the frequency of cx̃. If 2i = 2n−1,
then (5.27) is strictly greater than 0 for all x̃. This is because (cx̃)x=x̃ = 1, such that for at
least half of all x the signs of cx̃ and G:,i are equal, and in particular for x̃, where cx̃ attains its
maximum. This is the case for exactly two columns of G, namely i = n and i = n − 1. This
completes the proof.
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Outlook
Mixtures of discrete exponential families. Our results from Chapter 1 show that the combina-
torics of support sets of exponential families provide a powerful tool to assess the expressive
power of mixture models. This approach enabled us to compute sharp bounds on the number
of mixtures of exponential families which can represent an arbitrary target distribution. The
computation of support sets of hierarchical models is intimately related to the computation of
Markov bases of graphical models, which is a challenging problem of today in algebraic statis-
tics, see [38, 35, 40, 48, 65, 64, 66, 96]. Our approach poses the following problem: What is the
minimal number of simplex faces of the convex support of a hierarchical model which suffices
to cover all vertices? We showed this covering number is equal to the Carathéodory number of
independence models. We showed that this is not true for general exponential families, even if
they contain all point measures in their closures (see Proposition 1.2.8). Notwithstanding, we
conjecture that the statement holds for hierarchical models more general than the independence
models.

Our analysis of mixtures of k-interaction models shows that it is possible to control the repre-
sentational power of stochastic networks involving higher-order interactions. The idea of using
higher-order interactions in learning systems is not new [102], but it attracts new interest in the
community, as new learning methods are being developed along with specific network design
for predetermined tasks, like the restricted three-way interaction Boltzmann Machines [84, 83].

One of the ideas presented in this thesis is to study mixture models using a restriction to mix-
tures of models with disjoint supports. This allows a considerable simplification of the analysis.
This approach allows us to assess the maximum Kullback-Leibler divergence of mixture models
and to find maximum likelihood projections into the mixtures using the existing framework for
exponential families [95] and coding theory. In Chapters 1 and 4 we made the following observa-
tion: If E denotes an independence model, Mixtm(E) = P if and only if Mixtm(∂E) = P , and
furthermore, maxp∈P D(p‖Mixtm(E)) = maxp∈P D(p‖{Mixt(E1, . . . , Ek) : k ≤ m and Ei ⊂
E}) for various values of m, where Ei are supported by disjoint facial sets of E . A more detailed
analysis of this circumstance and eventual generalizations of our results can result in even more
powerful tools to treat models with latent variables.

We demonstrated that the analysis of the modes of mixture models is a good way to recognize
and describe the complement of mixture models. The further elaboration of the ideas presented
in Appendix 1.B is a promising research direction.

Convex Subsets, Secants, Geodesics and Convex Hulls. The geometry of exponential fami-
lies has been studied for a long time, resulting in beautiful mathematical results and important
implications to applied fields [16, 4, 9, 113, 6, 7]. The study of mixtures of exponential fami-
lies poses a great number of challenging questions about the geometry of exponential families
which demand yet further research. In Chapter 2 we posed a number of questions motivated
by the problem of computing inclusion relations of mixture models of exponential families. We
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developed a series of tools to attack these questions. In particular, we trust that our results on
secants of exponential families and convex subsets of exponential families find applications in
identifiability of parameters of mixtures of exponential families, computation of volumes and
dimensions of mixture models, and finally in estimation of model approximation errors. For ex-
ample, there are closed form solutions of DE for convex exponential families. Many interesting
continuations of our ideas from Chapter 2 are conceivable. Interesting extensions include the
treatment of intersections of exponential families and α-families of dimension d ≥ 2, and more
extensive treatment of our analysis of α-mixtures of exponential families, especially in the case
of strictly positive basis points.

Universal Approximation Results for RBMs and DBNs. In this thesis we provided new upper
bounds for the minimal number of parameters of universal approximators of type RBM and
DBN. These bounds show striking similitudes to the sharp bounds that we computed for mix-
tures of product distributions. Our method exploits the ansatz of probability sharing proposed
in [73] exhaustively and therefore, an approach based only on similar ideas will unlikely allow
for improvements. Although our bounds are sharp for small models, we still don’t know if our
results represent the minimal size of DBN and RBM universal approximators. Establishing the
minimal size of universal approximators would be a major theoretical contribution to this re-
search field.

Expressive Power and Approximation Errors of RBMs and DBNs. We related the expressive
power of RBMs and DBNs to mixtures of product distributions and unions of partition mod-
els. This picture of the models allows us to compute important quantities, such as the model
approximation errors. We provided for the first time an account on the KL-approximation errors
of these models. We bounded the approximation errors from above in terms of the number of
hidden units and hidden layers of the systems. These results represent a significant advance in
the task of model selection and assessment of the performance of learning algorithms. A desir-
able continuation of our results would be to find the maximal representatives from the proposed
classes of submodels, which are contained in RBMn,m, respectively DBNn,n1,...,nl . In particu-
lar: What is the largest k for which Mixtk(E1

n,bin) ⊆ RBMn,m? An important contribution and
natural extension of our results, would be to bound the maximal KL-divergence for RBMs and
DBNs from below. Clearly, this relates to the problem of finding the smallest RBM and DBN
approximators discussed above and is a difficult problem. Nevertheless, we computed lower
bounds for the maximal KL-approximation errors of mixtures of independence models, and give
thereby a starting point for treating more complicated mixtures.

We believe that our approximation error bounds for narrow DBNs can be improved through a
more detailed analysis of the proposed submodels. A more fine-grained analysis of the proposed
submodels, especially for DBNs containing only few hidden layers of different widths (which
are most common in practice) would be an immediate and promising continuation of our work.
Another interesting extension would be the treatment of higher-order machines and other deep
architectures used in machine learning.

Model design for RBMs and DBNs. The problem of model design is most relevant for ap-
plications. This problem is inherently related to the problems of universal approximation and
expressive power of statistical models. The results contained in this thesis represent a substan-
tial advance in this direction. At the same time, model design entails considerable challenges;
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including the assessment of lower bounds on the approximation errors, as discussed in Chap-
ter 4, and the problem of mathematically describing a set of candidate target distributions. We
showed that our approach to the representational power of mixture models, RBMs, and DBNs
qualifies to attack general problems of model design. However, a more extensive treatment of
the problem remains to be accomplished in future work.

In Section 5.2 we showed that it is possible to define low-dimensional learning systems which
are guaranteed to find the solutions of diverse optimization problems. This approach is related
to the realizability of neighborly polytopes. A specific problem arising from our considerations
is the following: Find polytopes which are as regular as possible and combinatorially similar
to cyclic polytopes. A cyclic polytope usually is much more elongated along one direction than
the others. For example, the polygons realized as the convex hull of points {(ti, t2i )}i∈I are not
regular. As a consequence, the exponential families defined through such polytopes are “asym-
metric”. This can have an impact on applications. The two dimensional case is solved by the
regular polygons. However, in three dimensions there are only 5 regular polyhedra (the Platonic
solids), and in dimension larger than four, the only regular polytopes are the cross polytope, the
simplex and the hypercube [30].

A related problem is the following: Find an exponential family with the smallest possible
dimension for which Mixtm(E) ⊇ ∪Y⊆X :|Y|≤κP(Y). Note that this problem is not necessar-
ily solved by the smallest dimensional d κme-neighborly exponential families. In particular, a
k-neighborly polytope is (2k − 1)-simplicial. If any κ vertices can be covered by m (2k − 1)-
faces, and k < d κme, then this would be a better solution. This can be compared with the S-set
coverings for hierarchical models computed in Section 1.

Model Dimensions. From the perspective of algebraic statistics, the dimension and identifiabil-
ity of parameters in statistical models are most fundamental problems. The dimension of the
RBM model was treated in [31], revealing that this model has the expected dimension in many
cases. Nevertheless, still for certain combinations of the number of visible and hidden units,
the dimension remains unknown. We provided a slight extension of the result from [31] us-
ing Proposition 4.A.15. This proposition can be used to derive an RBM version of Terracini’s
lemma, which is a standard tool for estimating the dimension of secant varieties. Evaluating this
approach is subject of our current research.

The dimension of the submodels of DBNs that we proposed in this work yield a lower bound
on the dimension of the DBN model. These submodels do not target the estimation of the model
dimension and are not likely to be optimal. However, currently there are no other results on the
dimension of DBN models. The problem of computing the dimension of deep learning systems
is a major target of current mathematical research. Our results can be used as starting point to
assess the dimension of DBN models.

Singular model selection. Singular models are statistical models with a parametrization which is
non-trivially degenerated. Models within a nested hierarchy are likely to be singular. The learn-
ing coefficients of singular models, in the sense of S. Wantanabe [119], can be used in a form of
extended Bayes Information Criterion and provide a means to compare the learning performance
of different models. A target of current mathematical research on RBMs and DBNs is to com-
pute the corresponding learning coefficients. M. Aoyagi [11] studies the learning coefficients of
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Outlook

special RBMs. An analysis of DBNs still remains to be accomplished. The learning coefficients
are functions of the fibers of the target distributions, and therefore, of the target distributions
themselves. The computation of the learning coefficients represents a challenging problem in
this emerging field of research. In to-date considerations, the target distributions are mostly
assumed to be contained in the models. A treatment of asymptotic likelihood integrals which
accounts for the expressive power of the models under consideration represents a challenging
problem for future research.

134



Bibliography
[1] H. Abo, G. Ottaviani, and C. Peterson, Induction for secant varieties of segre varieties,

Transactions of the American Mathematical Society 361 (2009), 767–792.

[2] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, A learning algorithm for Boltzmann
Machines, Cognitive Science 9 (1985), no. 1, 147–169.

[3] N. Alon, On the rigidity of Hadamard matrices, unpublished, 1990.

[4] S. Amari, Differential-geometrical methods in statistics, Lecture Notes in Statistics,
vol. 28, Springer-Verlag, New York, 1985.

[5] , Natural gradient works efficiently in learning, Neural Computation 10 (1998),
no. 2, 251–276.

[6] , Information geometry on hierarchy of probability distributions, IEEE Trans. Inf.
Theory 47 (2001), no. 5, 1701–1711.

[7] , Conditional mixture model for correlated neural spikes, Neural Computation 22
(2010), 1718–1736.

[8] S. Amari, O. E. Barndorff-Nielsen, R. E. Kaas, S. L. Lauritzen, and C. R. Rao, Differential
geometry in statistical inference, Lecture Notes Monograph Ser., vol. 10, Inst. Math.
Statistics, Hayward California, Hayward, California, 1987.

[9] S. Amari, K. Kurata, and H. Nagaoka, Information geometry of Boltzmann machines,
IEEE Tran. Neural Netw. 3 (1992), no. 2, 260–271.

[10] S. Amari and H. Nagaoka, Methods of information geometry, Translations of Mathemati-
cal Monographs, vol. 191, American Mathematical Society, 2007.

[11] M. Aoyagi, Stochastic complexity and generalization error of a Restricted Boltzmann
Machine in Bayesian estimation, J. Mach. Learn. Res. 99 (2010), 1243–1272.

[12] N. Ay, An information-geometric approach to a theory of pragmatic structuring, The
Annals of Probability 30 (2002), no. 1, pp. 416–436 (English).

[13] N. Ay and A. Knauf, Maximizing multi-information, Kybernetika 42 (2006), 517–538.
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List of Symbols

[n] The set {1, . . . , n} for some n ∈ N

[yλ] The cylinder set {x ∈ ×i∈[n]Xi : xi = yi ∀i ∈ λ} for some λ ⊆ [n]

1 Constant function 1 ≡ 1

1Y Characteristic function on Y

2[n] The power set of [n]

A A sufficient statistics matrix with columns Ax ∈ Rd for x ∈ X and rows
Ai ∈ RX , page 14

Aq(n, d) Maximal cardinality of a q-ary code of length n and minimum distance d,
page 21

CarV (V ′) Carathéodory number of V ′ w.r.t. V , page 65
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