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Abstract

We collect and extend theoretical results on the
representational power of various artificial neural
networks. We focus on universal approximation
bounds for shallow and deep stochastic feedfor-
ward networks and layered Boltzmann machines
in the probabilistic and discriminative settings.

1. Introduction

The importance of deep architectures in modern Al re-
search is hard to overlook. At the same time, it has been
observed more or less consistently that with sufficient data,
any sufficiently powerful model will perform well. Hence
the choice of a model has been more and more critically
influenced by the simplicity with which it can be imple-
mented and trained. An example is the choice of feedfor-
ward networks over undirected networks, or the choice of
simpler activation functions, such as rectified linear, over
more complicated ones. We know from statistical learning
theory that with sufficient data any model will generalize
well, but usually a less complex model will have a lower
variance. However, model selection is a very challenging
theoretical problem for the kinds of models that are used in
deep learning practice. Computing the learning coefficient
and estimating the generalization error of singular models
(models with hidden variables) is notoriously difficult, with
a few exceptions of course.

The goal of this note is much more humble. We are in-
terested in how the representational power of deep artifi-
cial neural networks compares with that of shallow neural
networks in the cases of undirected and directed connec-
tions between the layers. To this end we collect and extend
a number of theoretical results addressing the representa-
tional power of some of these models and discuss some
of the proof ingredients and the insights that they provide.
Some of the results are known, some are very recent, and
some are new. Surprisingly, it does not take long to arrive at
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open questions and cases that have not been covered before,
even for very natural models. We fill some of the missing
details in the periodic table of artificial neural networks and
point at some cases that could be addressed next. The idea
is to provide a concise overview of representation bounds,
which may give indications about the complexity of the dif-
ferent network architectures. Having said this, we certainly
do not attempt to give a full account on the subject. We
hope to soon fill in more details and include important ref-
erences that have been omitted at the current stage.

At an intuitive level, undirected networks are expected to be
more powerful than directed networks, as the latter seem
to be encompassed by the former. This intuition is not
straightforward to verify concretely, but some recent work
has provided theoretical clues in the context of deep Boltz-
mann machines and feedforward networks with sigmoid
activation probabilities. We will try to take this a bit fur-
ther and sketch a few details. The theoretical analysis of
feedforward networks in the literature is most frequently
focused on the deterministic case. Hence, in order to obtain
a good picture we will elaborate a bit on the approximation
of stochastic functions (that is, Markov kernels or simply
conditional probability distributions) by stochastic feedfor-
ward networks and the minimal number of hidden units or
layers that is sufficient for this purpose. While universal
approximation is not typically aimed at in any practical
setting, since it requires an astronomic number of hidden
units, investigating the minimal requirements for achieving
it will serve as our platform to illuminate interesting and
distinctive features of the different models.

In Section 2 we discuss the representation of probability
distributions by restricted Boltzmann machines, deep be-
lief networks, and deep Boltzmann machines. In Section 3
we discuss the representation of stochastic maps by condi-
tional restricted Boltzmann machines, two types of condi-
tional deep Boltzmann machines, and two types of stochas-
tic feedforward networks with sigmoid activation probabil-
ities. In Section 4 we discuss the representation of deter-
ministic maps by deterministic feedforward networks with
linear threshold units and by conditional restricted Boltz-
mann machines. In Section 5 we give a synopsis of the re-
sults. In Section 6 we offer a discussion and consider a few



ideas. We collect the technical definitions of all considered
models in Appendix A.

2. Probability Distributions

We focus on observations from the set {0,1}".

2.1. Restricted Boltzmann Machine

The restricted Boltzmann machine is one of the simplest
types of Boltzmann machines which have the universal ap-
proximation property. It can be regarded as a product of
experts, with each expert being a mixture of two factoriz-
ing distributions. See Figure 1.

Hidden layer

@O0 6® ®)
fw
OO0 ®

Visible layer

Figure 1. Architecture of a restricted Boltzmann machine.

Theorem 1 (Monttfar & Ay 2011). A restricted Boltzmann
machine with n visible binary units and m hidden binary
units is a universal approximator of probability distribu-
tions if m > 2"~1 — 1 and only if m > (nle) - L
This result is based on showing that each hidden unit can
be used independently to model the probability mass as-
signed to a pair of adjacent binary vectors. This approach
is a refinement of previous work were each hidden unit was
assigned to a single vector (Le Roux & Bengio, 2008).

Another approach (Younes, 1996) is based on showing that
each hidden unit can be used to model the pure interaction
between a group of visible units (the coefficient of a term
[I;c) vi in the logarithm of the probability distribution).
This leads to weaker universal approximation bounds, but it
allows to describe some interesting complementary classes
of distributions that can be represented by restricted Boltz-
mann machines with relatively few hidden units. The intu-
ition of this approach is illustrated in Figure 2.

Theorem 2. A restricted Boltzmann machine with n visible
binary units and m hidden binary units can approximate
any Markov random filed involving m or less pure higher
order interactions arbitrarily well.

2.2. Deep Belief Network

The deep belief network (Hinton et al., 2006) is the archi-
tecture to have pioneered the deep revolution taking place
in recent years. As a generative model, the deep belief net-
work stacks a restricted Boltzmann machine on top of a
stochastic feedforward network, as shown in Figure 3.
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Figure 2. Restricted Boltzmann machine for modeling interac-
tions. Each hidden unit corresponds to a term in the free energy
of the restricted Boltzmann machine, which can be used to model
the interaction of a group of visible units.
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Figure 3. Architecture of a deep belief network.

Theorem 3 (Montifar & Ay 2011). A deep belief net-
work with n visible binary units and L hidden layers of
n binary units each is a universal approximator if L >

Wforsomengn’:ﬁ—i—k—&—l,kel\l,
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This result is based on showing that each feedforward layer
can transform its input distribution in various ways, which
amounts to modeling the probability mass that is assigned
to roughly 2n observations. This approach is a refinement
of previous work where each layer was assigned to fewer
vectors (Sutskever & Hinton, 2008; Le Roux & Bengio,
2010). The transformations that are computable by a single
feedforward is a manifold of Markov kernels. Some of the
properties of this set are still not sufficiently well under-
stood. In fact, the same is true for layers of linear threshold
units.

2.3. Deep Boltzmann Machine

The deep Boltzmann machine is an attractive choice of a
deep architecture based on an exponential family. It is the
natural generalization of a restricted Boltzmann machine
to a deep architecture. This architecture is illustrated in
Figure 4.

Theorem 4 (Montufar 2015). A Deep Boltzmann Machine
with a visible layer of n binary units and L hidden layers
of n binary units each is a universal approximator if L >
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Figure 4. Architecture of a deep Boltzmann machine.

and only if L > 71(7217:1) — %

This result is fairly recent and settles some intuitions about
deep Boltzmann machines being as powerful as deep be-
lief networks. It is based on showing that deep Boltzmann
machines can indeed represent many of the probability dis-
tributions that can be represented by deep belief networks
of the same size. The main argument is that it is possible to
effectively fix the marginal distribution represented at some
intermediate layer of the network, regardless of how the pa-
rameters are chosen in the lower part of the network. Once
this is achieved, the lower part of the network can be used
to model a feedforward transformation of that intermediate
marginal distribution. In this particular situation; that is,
for these particular choices of fixed intermediate marginals,
the deep Boltzmann machine and the deep belief network
coincide.

3. Stochastic Maps

A stochastic map from {0, 1}* to {0,1}" assigns a prob-
ability distribution p(y|z) over y € {0,1}" to each input
vector z € {0, 1}

Boltzmann machines can be used to define stochastic maps
by means of clamping the states of some units to the input
values x, and taking the resulting conditional probability
distribution over the states y of some other units as the out-
put distribution.

While it is straightforward to translate results on the rep-
resentation of probability distributions to the conditional
case, this naive approach will not account for the important
fact that a conditional model does not need to model the
input distributions.

3.1. Conditional Restricted Boltzmann Machine

The conditional restricted Boltzmann machine is a di-
rect generalization of the restricted Boltzmann machine to
model stochastic maps. It is defined by dividing the visi-

ble layer of a restricted Boltzmann machine into input and
output units, as shown in Figure 5.
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Figure 5. Architecture of a conditional restricted Boltzmann ma-
chine.

Theorem 5 (Montifar et al. 2014). A conditional restricted
Boltzmann machine with an input layer of k binary units,
a hidden layer of m binary units, and an output layer of n
binary units is a universal approximator of stochastic maps
ifm> 322" — 1) and k > 1, orm > 32827 — 1) +1
and k > 3, orm > 12F(2" — 14 1/30) and k > 21, and
2k(2"—1)—n

only if m > =Sy

There exist tighter bounds for £ > 21, but we omit the de-
tails here. The result is based on showing that each hidden
unit can be used to model the probability mass assigned
to any particular output vector for up to k different input
vectors simultaneously. Ultimately the reason why this is
possible is that for all input vectors the corresponding out-
put distributions are normalized independently. Hence this
approach is able to disregard the input distribution, in the
way that is desirable when analyzing conditional models.

3.2. Shallow Stochastic Feedforward Network

Shallow feedforward networks have been discussed exten-
sively in the literature. The vast majority of papers ad-
dress the representation of deterministic functions. We
shall briefly discuss the stochastic setting. We consider sig-
moid activation probabilities. A shallow feedforward net-
work is illustrated in Figure 6.
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Figure 6. Architecture of a shallow stochastic feedforward net-
work.

Theorem 6. A shallow stochastic feedforward network
with an input layer of k binary units, a hidden layer of
m binary units, and an output layer of n binary units



is a universal approximator of stochastic maps if m >
2k=1(2n — 1) and only if m > 2

One way of proving this result is as follows. Associate a
block of 2™ —1 hidden units to each of 2°~! disjoint pairs of
adjacent input vectors. It is possible to finds weights such
that, for each input vector, the associated block of hidden
units has an arbitrary factorizing probability distribution,
while all other hidden units are zero with probability close
to one. The second layer can be defined in such a way
that it integrates the probability of all vectors at the active
block, whose largest entry with value one coincides, into
the probability of an output vector. What this does is to map
the set of factorizing distributions over length N = 2" — 1
binary vectors, to the set of all distributions over length n
binary vectors. The construction is illustrated in Figure 7.
It is interesting to note that the weights of the second layer
can be kept fixed and only the weights of the first layer
need to be adjusted in order to approximate any particular
stochastic map.
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Figure 7. Illustration of the construction used for proving Theo-
rem 6. The set of input vectors is divided into 2! disjoint pairs.
Each pair has an associated block of N = 2™ — 1 hidden units.
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3.3. Deep Stochastic Feedforward Network

A natural question that arises is whether one can exchange
the width of the hidden layer of a feedforward network for
depth, to obtain a model as the one shown in Figure 8. This
is indeed possible. One way of doing this is by assigning an
active column of hidden layers of width n to each possible
input vector. This would reduce the width 2¥=1(2" — 1) of
the shallow network to 257, which is at least not exponen-
tial in n, although it still is exponential in k.

Theorem 7. A deep stochastic feedforward network with
an input layer of k binary units, L hidden layers of n2F
binary units, and an output layer of n binary units is a uni-

versal approximator of stochastic maps if L > 2" and only
. 2" —14n?4n(k+1)

lfL = n(2Fn+1) .

A proof can be given as follows. As for the shallow net-
work, one finds weights such that, for each input vector,
the associated block in the first hidden layer has an arbi-
trary factorizing distribution, while all other units in the
first hidden layer are zero with probability arbitrarily close

to one. Choosing an appropriate factorizing distribution on
that block, one can define L’ feeforward layers of width n,
which map that distribution into any arbitrary distribution
over length n binary vectors. A loose sufficiency bound is
L'>1+2+224... 4271 =27 _ 1, This corresponds
to using each layer to model one observation. Finally, the
output of the active column can be passed unmodified to
the output layer of the entire network.
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Figure 8. Architecture of a deep stochastic feedforward network.

The proof given above constructs a deep network with 2%
independent columns of hidden layers. This is a rather sim-
plistic construction and hence we expect that the result can
be improved. Nevertheless, the result shows that it is possi-
ble to trade the exponential width, with respect to the num-
ber of output units, for exponential depth.

An interesting question that is left open at this point is to
what extent one can also trade the exponential width with
respect to the number of input units for depth.

3.4. Conditional Deep Boltzmann Machine
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Figure 9. Architecture of a conditional deep Boltzmann machine
with input and output units at the bottom layer.

One way of using deep Boltzmann machines to define
stochastic maps is by dividing the visible units in the bot-
tom layer into input and output units, as shown in Figure 9.

Theorem 8 (Montifar 2015). A deep Boltzmann machine
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Figure 10. Architecture of a conditional deep Boltzmann machine
with inputs at the top and outputs at the bottom.

with a visible layer of k input binary units and n binary
output units and L hidden layers of (k + n) units each is
a universal approximator of stochastic maps, provided L is
as in Theorem 4.

This result is a direct implication of Theorem 4, since
p(v) = p(z,y) stands in one-to-one relation with the pair
(p(x), p(y|x)) (for strictly positive distributions). A refine-
ment that ignores the input distribution is pending. Inter-
estingly, this architecture is extremely narrow.

Another way of defining stochastic maps is to use the top
layer as input and the bottom layer as output, as shown in
Figure 10. We consider hidden layers of the same width as
we did for the deep feedforward network.

Theorem 9. A deep Boltzmann machine with an input
layer of k binary units, L hidden layers of n2* binary units,
and an output layer of n binary units is a universal approx-
imator of stochastic maps, provided L is as in Theorem 7

This is based on the ability of deep Boltzmann machines to
represent certain types of transformations that can be rep-
resented by feedforward networks (Montifar, 2015) and on
the proof of Theorem 7. Any refinement of the latter will
directly translate to a refinement of this result.

4. Deterministic Maps

A universal approximator of stochastic maps is also a uni-
versal approximator of deterministic maps. Indeed, every
deterministic map  — y = f(x) can be regarded as the
special type of stochastic map x ~ ¢ (,)(y), where 67 ()
is the Dirac delta assigning probability one to y = f(z).

However, the set of deterministic maps is finite, and one
can expect that representing it requires fewer hidden units
than representing the set of all stochastic maps, which is
infinite. In particular, the number of model parameters does
not directly relate to the ability of a model to represent a
finite set of functions. Instead, this is conceptually closer

related to some sort of VC dimension.

4.1. Shallow Feedforward Linear Threshold Network

The stochastic feedforward networks considered in the
previous sections define deterministic networks when all
weights are multiplied by a large constant (assuming a
generic choice of weights). In this limit the network be-
comes a linear threshold network, where each unit is either
on or off with probability one.

Theorem 10 (Wenzel et al. 2000). A shallow feedforward
linear threshold network with an input layer of k units, a
hidden layer of m units, and an output layer of n units
can represent all functions {0,1}* — {0,1}" if m > 3 -
ok —1=llog2(k+1)] gnd only if m > 2¥/2 — %

4.2. Conditional Restricted Boltzmann Machine

Theorem 11 (Montifar et al. 2014). A conditional re-
stricted Boltzmann machine with an input layer of k
binary units, a hidden layer of m binary units, and
an output layer of n binary units can approximate all
functions {0,1}* — {0,1}" arbitrarily well if m >
min {2% — 1,n - 3. 2k=1=lee2(k+DI% and only if m
2k/2 _ ("'25‘7]:)2

V

The sufficiency bound is based on two observations. The
first is that each hidden unit can be used to model the de-
terministic output of an input vector. The second is the
interesting fact that, in the case of modeling determinis-
tic maps, conditional restricted Boltzmann machines are at
least as powerful as feedforward networks of the same size.
Let us formulate this in some more detail.

Theorem 12. A conditional restricted Boltzmann machine
with k input binary units, m hidden binary units, and n out-
put binary units can approximate a given stochastic map
arbitrarily well, whenever it can be represented by a feed-
Sforward network with k input binary units, m hidden linear
threshold units, and n output stochastic sigmoid units.

In particular, the conditional restricted Boltzmann machine
can represent any given deterministic function arbitrarily
well, whenever it can be represented by a feedforward lin-
ear threshold network of the same size. On the other hand,
it can be show that for a conditional restricted Boltzmann
machine to approximate a given deterministic function ar-
bitrarily well, this function has to satisfy a certain combina-
torial constraints which are quite similar to those that apply
for linear threshold networks.

5. Summary

Tables 1, 2, and 3 summarize the bounds on the number
of hidden units and layers of universal approximators of



probability distributions, stochastic maps, and determinis-
tic maps presented in the previous sections. In these tables,
SFF stands for shallow feedforward, DFF stands for deep
feedforward, and the other abbreviations have the obvious

meanings.

network width depth Thm.
RBM |21 -1 1 1
277,
DBN n 2(71—10%%(71)—1) 3
DBM n 2(n—logy(n)—1)

Table 1. Upper bounds on the minimal size of universal approxi-
mators of probability distributions on {0, 1}".

network width depth Thm.
CRBM | 2F-1(2" —1) 1 5
SFF | 2F=1(2n — 1) 1 6
DFF n2k 2" 7
k+n
CDBM k+n 2(k+n—1ig§(k+n)—l) 8
CDBM2 n2k 2n 9

Table 2. Upper bounds on the minimal size of universal approxi-
mators of stochastic maps from {0, 1}* to {0, 1}™.

network width depth | Thm.
CRBM | min{2F -1, 252k} 1 11
SFF ok 1 7

Table 3. Upper bounds on the minimal size of universal approxi-
mators of deterministic maps from {0, 1}* to {0, 1}™.

6. Discussion

The results of the previous sections lead us to the following
observations. Consider the setting of representing stochas-
tic maps. For the conditional restricted Boltzmann machine
we have the sufficiency bound 2¥~1(2" — 1), and if the
number k of input units is large enough, $2% (2" —1+1/30)
suffice. These bounds sandwich the corresponding bound
for shallow stochastic feedforward networks (28—1(2" —
1)). Considering that the derivation of both results is quite
different, the similarity of the bounds is remarkable and
suggests a deep similarity of both models. A definite veri-
fication of the tightness of these bounds would be desirable,
although at the moment this seems to be very challenging.

As mentioned after Theorem 4, an undirected network can
represent many of the Markov kernels that can be repre-
sented by a stochastic feedforward network of the same
size. We suspect that actually the two architectures repre-
sent quite similar sets of stochastic maps, when restricting
attention to a certain level of stochasticity. This intuition
derives from Theorem 4 and Theorem 12. Especially, when
it comes to representing deterministic functions, we have

seen that shallow feedforward networks and conditional re-
stricted Boltzmann machines are quite similar if not iden-
tical. We suspect that using undirected networks has the
most benefit over using directed networks only when one
is aimed at representing functions with a certain degree of
stochasticity. Here, by stochasticity we refer loosely to the
number of nonzero probability output vectors per input vec-
tor.

Of course universal approximation bounds are a very
coarse characteristic of neural network architectures, and
taking more information into account will allow more pre-
cise statements. However, we think that these bounds can
be regarded as a sort of complexity measure, similar to the
dimension of a manifold, or a measure of effective degrees
of freedom, which are fundamental quantities in learning
theory.

Various interesting problems remain open at this point. For
instance, generalizing Theorem 2 to describe interactions
in the case of deep Boltzmann machines. Also, estimating
how narrow can be a conditional deep Boltzmann machine
with input at the top and output at the bottom, while retain-
ing the universal approximation capability.
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A. Definitions
e An RBM:

_ 1 T T T
p(v)_;Z(W,b,c) exp(h Wz +c h+b' v)

e A DBN:

1
p(v=ho) = Z Z(Wpr_1,br,br_1)

1,--,hp
x exp(h, Wihy_1+blhy +b hy)
L—-1

1
X - exp(h)/ {Wh,+b'h
H) Z(hi+1 W, by) Pl Wh 2

e A DBM:

p(v = ho) = Z ZWb

X exp Z thWlhl +bh+blhr)
l

e A CDBM:
p(y = (hok+1;- - - hortn)|z = (hot, ..., hor))

1
Z Z hOla"'7h0]€)5b)

X exp Z Rl Wik + b b +blhp)
l

e A CDBM2:
p(y = holr =hr) =

x exp(>_ hjy Wik + b i+ bl hr)
l

e A Markov random field with interactions I C 2ln].

p(v) 70 P ONIED

el PEN

e An SFF:
(ylz) = Z exp(h"W;x +b] h) exp(y " W,h +b/y)
PR = 27 (Wi + by) Z(W,h + b,)
e A DFF:

p(y = hple = ho) =

Z HP hl+1|hl

Lhp—1 1
exp(hl+1wlhl +b/ )
Z(Wix +biiq)

p(higa|hy) =



