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My research works and projects lie at the intersection between geometric structures and dynam-
ical systems.

In the one hand, I am interested with rigidity phenomena for hyperbolic or partially hyperbolic
dynamical systems whose invariant distributions are highly regular. In this setting, I obtained
in [MM22b] a classification result for three-dimensional partially hyperbolic diffeomorphisms of
contact type with smooth invariant distributions, presented in Theorem A below. This result is
obtained by studying an invariant rigid geometric structure called path geometry, with the tools of
Cartan geometries. Both of these notions are introduced in paragraph 1.3, together with a related
rigidity result obtained in collaboration with Elisha Falbel and Jose Miguel Veloso in [FMMV21],
see Theorem B. Following these two results, my first broad research project is to pursue a systematic
study of the rigidity of partially hyperbolic diffeomorphisms having smooth invariant distributions,
by the means of rigid geometric structures and Cartan geometries. I will present in paragraphs
2.1 and 2.2 two ongoing projects in this direction.

I am also interested with the dual problem, aiming at describing those compact rigid geometric
structures that have a non-compact automorphism group. The research of new such examples in
the case of flat path geometries led me to construct in [MM22a] a geometric compactification of the
geodesic flow of complete and non-compact hyperbolic surfaces, see Theorem C. These are examples
of closed three-manifolds locally modelled on the flag space PGL3(R)/Pmin (with Pmin the Borel
subgroup of upper triangular matrices), a geometry which is still quite poorly understood. In a
tentative to broader available examples, I will present in paragraph 2.3 an ongoing project with
Elisha Falbel aiming at constructing non-Kleinian, i.e. exotic examples of such flag structures.

The third aspect of my current research described in paragraphs 2.4 and 2.5, is interested with
the interaction of a singular kind of locally de-Sitter Lorentzian metrics on the torus, with the
topological dynamics of the lightlike foliations that they define, and with three-dimensional Anosov
flows. The interaction between geometry and dynamics goes in the other direction in this setting,
and I prove in a paper in preparation that in some cases, the dynamics of the foliations essentially
describe the geometry.

1. Contributions

1.1. Contact-Anosov flows. Let us recall that a non-singular flow (φt) of class C∞ of a closed
manifold M is called Anosov, if its differential preserves a splitting TM = Es ⊕ Ec ⊕ Eu of the
tangent bundle, where Ec is the direction of the flow and Es and Eu are non-trivial distributions
verifying the following estimates (with respect to any Riemannian metric on M).

(1) The stable distribution Es is uniformly contracted by (φt), i.e. there are two constants
C > 0 and 0 < λ < 1 such that for any t ∈ R and x ∈ M :

(1.1)
∥∥∥Dxφt|Es

∥∥∥ ≤ Cλt.

(2) The unstable distribution Eu is uniformly expanded by (φt), i.e. uniformly contracted by
(φ−t).

Important examples of three-dimensional Anosov flows are given by the geodesic flows of closed
hyperbolic surfaces Σ, acting on their unitary tangent bundle T1Σ. These flows have the following
specific properties among Anosov flows: their stable and unstable distributions are C∞ (while they
are in general only Hölder continuous), and the sum Es ⊕Eu is furthermore a contact distribution.
We recall that a plane field ξ of a three-dimensional manifold is called contact if it is nowhere
integrable, or more precisely if it is locally the kernel of a contact form θ, i.e. a one-forme such
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that θ ∧ dθ does not vanish. A beautiful result of Étienne Ghys in [Ghy87] says that, up to finite
coverings and orbit equivalence1, the geodesic flows of closed hyperbolic surfaces are in fact the only
examples of three-dimensional Anosov flows whose stable and unstable distributions are C∞ and
such that Es ⊕Eu is a contact distribution. Ghys actually proves that all these flows are smoothly
conjugated to algebraic examples (the right diagonal flow on compact quotients of PSL2(R)), and
we will thus call them the algebraic contact-Anosov flows.

1.2. Partially hyperbolic diffeomorphisms of contact type. The result of [Ghy87] is a strik-
ing expression of the dynamical rigidity that can be deduced from geometrical assumptions for the
case of flows, i.e. continuous-time dynamical systems. A thrilling question is then to know if
these results generalize to discrete-time dynamical systems. Natural discrete-time analogs for the
Anosov flows are the diffeomorphisms f of closed manifolds M , whose differential preserves a
splitting TM = Es ⊕ Ec ⊕ Eu (within non-zero distributions) such that Es (respectively Eu) is
uniformly contracted (resp. expanded) by Df . These diffeomorphisms are called partially hyper-
bolic2 (see [CP15] for a comprehensive introduction, and [HP18] for a general survey about the
classification problem) and received a lot of attention in the last decades. In this setting, I obtained
the following result.

Theorem A ([MM22b, Theorem A]). Let f be a partially hyperbolic diffeomorphism of a three-
dimensional connected compact manifold M , whose invariant distributions Es, Eu and Ec are
smooth, such that Es ⊕ Eu is a contact distribution, and whose non-wandering set NW (f) equals
M . Then, up to finite coverings and iterates, f is C∞-conjugated to one of the following examples:

(1) the time-one map of a three-dimensional algebraic contact-Anosov flow;
(2) or a partially hyperbolic affine automorphism of a nil-Heis(3)-manifold.

Note that any diffeomorphism preserving a volume form satisfies the assumption NW (f) = M .
The second family of examples are defined on compact quotients Γ\Heis(3) of the three-dimensional
Heisenberg group by cocompact lattices, and induced by affine automorphisms of Heis(3) preserving
Γ (see for instance [MM22b, §1.1] or [Sma67, Ham13] for a description of such algebraic examples).

Actually, the Theorem A does not rely on any uniformity concerning the contraction (respec-
tively expansion) of Es (resp. Eu) by Df . More precisely, let f be a diffeomorphism of a
three-dimensional closed manifold M having a dense orbit in M (this replaces the hypothesis
NW (f) = M), preserving a smooth splitting TM = Eα ⊕ Ec ⊕ Eβ with Eα ⊕ Eβ a contact
distribution, and assume that for any x ∈ M we have, for ε = α and ε = β:
(1.2) lim

n→+∞
∥Dxfn|Eε∥ = 0 or lim

n→−∞
∥Dxfn|Eε∥ = 0

with respect to some Riemannian metric on M . Then the conclusions of Theorem A hold on f (see
[MM22b, Theorem B]). Let us emphasize that the assumption (1.2) is related to, though different
from, the notion of quasi-Anosov diffeomorphism of Mañé in [Mañ77].

1.3. Path geometries and Cartan geometries. The triplet S = (Es, Ec, Eu) preserved by
a partially hyperbolic diffeomorphism f of contact type as in Theorem A happens to be a rigid
geometric structure, and the rough idea is that the dynamical properties of the automorphism f
of S will imply a geometrical classification of S, giving in return a dynamical classification of f .

On a three-dimensional manifold, a pair L = (Eα, Eβ) of transverse line fields whose sum
is a contact distribution is called a path geometry. These structures are intimately linked with
the homogeneous space X of full flags of R3, endowed with a natural path geometry invariant
under the natural action of PGL3(R) on X. The flag space X plays for path geometries the role
played by the euclidean space for Riemannian metrics: it is the flat model. The notion of Cartan
geometry (originally due to Élie Cartan, see [Car10, Sha97, ČS09]) allows indeed to give a precise
meaning to the following idea: every three-dimensional path geometry L is a “curved version” of
the homogeneous space X, and enjoys a curvature whose vanishing is equivalent to L being flat,

1Two flows are orbit equivalent if there exists a diffeomorphism conjugating their orbits.
2The denomination partially hyperbolic actually refers in the litterature to the case where the invariant splitting
Es ⊕ Ec ⊕ Eu is furthermore dominated. This assumption being however unnecessary in Theorem A and elsewhere
in this text, we allow ourselves to elude it to simplify the terminology, and refer the interested reader to [CP15].
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i.e. locally isomorphic to X. The tools of Cartan geometries play a crucial role in the classification
of Theorem A.

In Theorem A, even if the diffeomorphisms are only assumed to preserve the triplet (Es, Eu, Ec),
the classification shows a posteriori that they preserve in fact a global contact form θ of kernel
Es ⊕ Eu. In other words, they preserve the triplet T = (Es, Eu, θ), that we call a strict path
structure. In [GD91], a general program was introduced for studying, and possibly classifying
those compact rigid geometric structures having a non-compact automorphism group. In this
direction, we obtained with Elisha Falbel and Jose Miguel Veloso the following result concerning
strict path structures.

Theorem B ([FMMV21, Theorem 1.1]). Let (M, T ) be a three-dimensional closed and connected
strict path structure, whose automorphism group is non-compact and has a dense orbit. Then
(M, T ) is isomorphic to one of the family of examples appearing in Theorem A.

1.4. Compactifications of path geometries. All the diffeomorphisms of Theorem A are con-
servative (i.e. preserve a volume form), and moreover preserve a line field Ec transverse to the
contact distribution Es⊕Eu. A first reasonable problem to understand the diversity of path geome-
tries with large automorphism groups is thus to exhibit path geometries enjoying non-conservative
automorphisms that are non-equicontinuous (i.e. generate a non-compact subgroup of the auto-
morphism group) and moreover essential: they preserve no line field transverse to the contact
distribution. For any (complete) hyperbolic surface Σ, the unitary tangent bundle T1Σ is endowed
with a natural path geometry LΣ invariant by the geodesic flow, for which I obtained the following.

Theorem C ([MM22a, Theorem A]). Let g1, . . . , gd be hyperbolic elements of PSL2(R) with pair-
wise distinct fixed points on the boundary ∂∞H2. Then there exists integers ri > 0 such that the
hyperbolic surface Σ = ⟨gr1

1 , . . . , grd
d ⟩\H2 verifies the following.

(1) The path geometry (T1Σ, LΣ) admits a compactification (M, L).
(2) Furthermore, the geodesic flow of T1Σ extends to a non-equicontinuous, non-conservative

and essential automorphism flow of (M, L).

The first statement of this theorem relies on the study of the action of “Schottky” discrete sub-
groups of PGL3(R) on the flag space X, which provides an independent and elementary proof of
the existence of open subsets of the flag space with proper and cocompact action of these Schot-
tky subgroups. These domains of discontinuity, also provided by general results about Anosov
representations in [GW12, KLP18, BPS19], are here obtained by constructing explicit fundamen-
tal domains for the action. This is done by a precise analysis of the dynamics of PGL3(R) on
X, allowing to obtain the dynamical properties of the compactified geodesic flow in the second
statement.

2. Ongoing and future projects

2.1. Rigidity of three-dimensional partially hyperbolic diffeomorphisms. Ghys actually
classifies in [Ghy87] all three-dimensional Anosov flows with smooth stable and unstable distri-
butions. A natural project is then to extend Theorem A by classifying all the three-dimensional
partially hyperbolic diffeomorphisms having smooth invariant distributions Es, Ec and Eu – wether
Es ⊕ Eu is contact or not. A first result was obtained in this direction in [CPRH20] under the
following strong additional restrictions on the partially hyperbolic diffeomorphism f : Df reads as
a constant (diagonal) matrix in some global frame of vector fields generating (Es, Ec, Eu), and f
has a dense orbit. This result was recently precised in [AM21]3 with a new geometrical proof, which
is a motivation to look at the general question with geometrical eyes, i.e. to consider (Es, Ec, Eu)
as a geometric structure whose behaviour differs between the open subset O ⊂ M where Es ⊕ Eu

is contact and its complement. The case O = M is the one of contact-type partially hyperbolic
diffeomorphisms classified in Theorem A. The only known examples for which O is a strict open
subset of M are C∞-conjugated to the suspension of an Anosov automorphism of the two-torus, in
which case the distribution Es ⊕ Eu is integrable and O is thus empty. This suggests that O ̸= ∅
should imply that O = M , in other words that “if Es ⊕Eu is contact somewhere, then it is contact
3In [AM21], the framing only needs to be C1 instead of C2 and the topological transitivity assumption is dropped.
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everywhere”. While I am able to obtain a very precise geometric description of O, even in the
absence of compacity, the main difficulty of this problem is to find a global information to extract
from the partially hyperbolic behaviour in order to study points of ∂O.

2.2. Higher-dimensional partially hyperbolic diffeomorphisms of contact type. Theo-
rem A is an analog for partially hyperbolic diffeomorphisms of Ghys classification in [Ghy87] of
three-dimensional contact-Anosov flows with smooth invariant distributions. In 1992, Ghys the-
orem was generalized in higher dimensions by Benoist, Foulon and Labourie in [BFL92]: any
contact-Anosov flow with smooth stable and unstable distributions is, up to finite coverings and
orbit equivalence, the geodesic flow of a closed locally symmetric Riemannian manifold of strictly
negative curvature. It is thus natural to look for a discrete-time analog of this classification, that
is for partially hyperbolic diffeomorphisms f in any (odd) dimension, having a dense orbit, smooth
invariant distributions, and for which Es ⊕ Eu is a contact distribution. The known examples of
such contact-type partially hyperbolic diffeomorphisms are of two kind: the time-one maps of the
geodesic flows cited above, and higher-dimensional versions of nil-manifold automorphisms appear-
ing in Theorem A. The pair (Es, Eu) of integrable distributions defines again in this case a rigid
geometric structure, called Lagrangian contact structure and equivalent to Cartan geometries mod-
elled on some higher-dimensional flag space X2n+1, homogeneous under the action of PGLn+2(R).
Going from the case of Anosov flows to the one of partially hyperbolic diffeomorphisms makes
however the situation deeply different in various regards. The algebraic dichotomy between the
two families of examples, respectively coming from simple and nilpotent Lie groups, reflects for
instance in dimensions ≥ 5 into a geometric dichotomy. Indeed, while the path geometries of
both kind of examples are flat in dimension 3, the Lagrangian-contact structure preserved by the
geodesic flows is not flat in dimension ≥ 5, whereas the one of nil-manifolds is. Furthermore,
topologically transitive Anosov flows enjoy numerous strong global dynamical properties (among
which the density of periodic points and of stable and unstable leaves) which disappear in the
partially hyperbolic case. These remarks illustrate the need to preceed any global arguments (of
homogeneous dynamics especially) by a detailed study of the curvature of the Lagrangian-contact
structure (Es, Eu), which is currently my main focus.

2.3. Surgeries of flag structures on closed 3-manifolds. The examples constructed in The-
orem C are a motivation to construct new flat path geometries, i.e. (PGL3(R), X)-structures
which we will call flag structures, on closed 3-manifolds. A basic and important question about
any (G, X)-structure on a closed manifolds, is the one of the existence of non-Kleinian structures,
i.e. one which cannot be written as a cocompact quotient Γ\Ω of an open set of the model by a
properly discontinuous action. The flag structures constructed by Barbot in [Bar10] are Kleinian
structures with Anosov holonomies, and it is not known wether the examples constructed by Fal-
bel and Thebaldi in [FT15] are Kleinian or not. To the best of our knowledge, only one family
of non-Kleinian flag structures on closed 3-manifolds is in fact known. In an ongoing work with
Elisha Falbel, we try to construct non-Kleinian examples through surgeries of flag manifolds.

2.4. Rigidity of singular de-Sitter tori with respect to their lightlike foliations. Because
of a Lorentzian version of Gauss-Bonnet formula, the only constant curvature Lorentzian metrics
that can arise on the torus are flat. Inspired from flat Riemannian metrics with conical singularities,
it is thus natural to look at singular de-Sitter Lorentzian metrics on T2, namely constant curvature
1 Lorentzian metrics, defined on T2 but at a finite number of singularities around which the
metric has a non-trivial holonomy called the angle. In other words, a singular de-Sitter metric is
a constant curvature 1 Lorentzian metric on a finitely-punctured torus, with standard models for
the neighbourhoods of the punctures. Our interest for these singular de-Sitter tori is motivated
by the existence of topological foliations, which extend at the singularities the lightlike foliations
of the metric. This allows for an interaction between the geometry of the singular metric and the
topological dynamics of its lightlike foliations. These foliations form a natural isometry-invariant
beside the angles of the singularities and in a paper in preparation, we consider the case of a single
singularity and prove then that in some cases (including the one of minimal lightlike foliations),
these are the only invariants of de-Sitter tori with one singularity. Namely, that two de-Sitter tori
with one singularity, having the same angles and topologically equivalent lightlike foliations, are
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isometric. In an ongoing work with Selim Ghazouani, we pursue this work in the case of multiple
singularities.

2.5. Singular de-Sitter surfaces and Anosov flows. According to a work of Ghys, transitive
three-dimensional Anosov flows with a transverse de-Sitter structure are essentially geodesic flows
of closed hyperbolic surfaces, and it is an important open question of Fried to know if any three-
dimensional transitive Anosov flow is connected to such a geodesic flow by finitely many surgeries.
Using the singular de-Sitter Lorentzian metrics introduced in the previous paragraph, our first goal
with Pierre Dehornoy and Selim Ghazouani, is to use the Birkhoff sections of a transitive Anosov
flow and the one-dimensional foliations that its strong stable and unstable foliations print on these
surfaces, to define a singular de-Sitter structure transverse to the flow. Our aim would then be to
show that a surgery of the flow links to a desingularization of this structure, opening the road to
a strategy to investigate Fried’s conjecture.
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