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1. For partially hyperbolic diffeomorphisms

Let f be a C1 diffeomorphism of a smooth closed manifold M , endowed with an auxiliary
Riemannian metric (with respect to which all of the above definitions are independent). A
splitting E1 ⊕ E2 within two non-zero Df -invariant distributions1 is said to be a dominated
splitting, if there exists λ ∈ ]0 ; 1[ and C > 0 such that for any x ∈ M , any unit vectors v1 ∈ E1

x,
v2 ∈ E2

x, and any n ∈ N, we have:
∥Dxfn(v1)∥ ≤ Cλn ∥Dxfn(v2)∥ .(1.1)

If E1 ⊕ E2 is a dominated splitting, then E1 and E2 are automatically continuous (see for
instance [CP15, Proposition 2.5]). More generally, a Df -invariant splitting ⊕d

i=1Ei is dominated
if Ei ⊕ Ei+1 is dominated for any 1 ≤ i ≤ d − 1. A non-zero Df -invariant distribution E of M
is uniformly contracted by Df if there exists λ ∈ ]0 ; 1[ and C > 0 such that for any x ∈ M , any
unit vectors v ∈ Ex and any n ∈ N, we have:

∥Dxfn(v)∥ ≤ Cλn;(1.2)

and E is uniformly expanded if it is uniformly contracted by Df−1. Finally, f is partially hy-
perbolic, if there exists a Df -invariant splitting TM = Es ⊕ Ec ⊕ Eu within three non-zero
distributions, respectively called the stable, central and unstable distributions of f , such that:

(1) Es is uniformly contracted by Df ,
(2) Eu is uniformly expanded by Df ,
(3) and Es ⊕ Ec ⊕ Eu is a dominated splitting.

Note that partially hyperbolic diffeomorphisms are sometime allowed to have zero stable or un-
stable distributions, while we will assume here each of the three distributions Es, Ec and Eu

to be non-zero (which is sometime called strong partial hyperbolicity). Note also that if f is a
partially hyperbolic diffeomorphism, then f−1 is also partially hyperbolic, and that its stable and
unstable distributions are exchanged with the ones of f , while their central distribution is the
same. We denote Esc := Es ⊕ Ec, Ecu := Ec ⊕ Eu and Esu = Es ⊕ Eu. For P ⊂ M we denote
ω(P ) := {lim fnk(x) | x ∈ P, nk → +∞}.

Lemma 1.1. Let f be a diffeomorphism of a manifold M , E = E1 ⊕ E2 be a Df -invariant
dominated splitting on a compact f -invariant subset P ⊂ M , and H be a continuous Df -invariant
distribution on P contained in E. Then for any y ∈ ω(P ): Hy = (Hy ∩ E1

y) ⊕ (Hy ∩ E2
y).

Proof. Let y = lim fnk(x) ∈ P with x ∈ P and lim nk = +∞, so that lim Dxfnk(Hx) = Hy

by continuity. With d = dim H and e = dim Hx ∩ E1
x, let ui ∈ E1

x, i = 1, . . . , d, and vi ∈ E2
x,

i = e + 1, . . . , d such that ∥vi∥ = 1, satisfying Hx = V 1 ⊕ V 2 with V 1 = Vect {ui | i = 1, . . . , e} =
Hx ∩ E1

x and V 2 = Vect {ui + vi | i = e + 1, . . . , d}. The sequence V 1
k := Dxfnk(V 1) converges to

a subspace V 1
∞ of Hy ∩E1

y of dimension e, the sequence V 2
k := Dxfnk(V 2) converges to a subspace

V 2
∞ of Hy ∩ (E1

y ⊕ E2
y) of dimension d − e, and V 1

k ⊕ V 2
k converges to Hy, hence V 1

∞ + V 2
∞ ⊂ Hy.

By domination, we have
∥Dxfnk(ui)∥
∥Dxfnk(vi)∥

≤ C( max
1≤i≤d

∥ui∥)λnk →
k∞

0
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1We call distribution a field of subspaces of the tangent spaces of M of a given constant dimension.
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for any i = e + 1, . . . , d, hence with uk
i = Dxfnk (ui)

∥Dxfnk (vi)∥ and vk
i = Dxk

fnk (vi)
∥Dxk

fnk (vi)∥ ,
∥∥∥uk

i

∥∥∥ → 0 and

the limit V 2
∞ of V 2

k = Vect({uk
i + vk

i | e + 1 ≤ i ≤ d}) ⊂ Dxfnk(Hx) equals thus the one of
Vect(

{
vi

k

∣∣ e + 1 ≤ i ≤ d
}
) ⊂ E2

fnk (x), which is contained in E2
y by continuity of E2. In the end

V 2
∞ ⊂ E2

y and the sum V 1
∞ ⊕ V 2

∞ ⊂ Hy is direct, implying that Hy = V 1
∞ ⊕ V 2

∞ by equality of
dimensions, therefore Hy ⊂ (Hy ∩ E1

y) ⊕ (Hy ∩ E2
y) which concludes the proof. □

Corollary 1.2. Let f be a topologically transitive diffeomorphism of a closed manifold M , and
E = E1 ⊕ E2 ⊕ E3 a Df -invariant dominated splitting on M . Then for any ordering (i, j, k) of
(1, 2, 3), Ei ⊕ Ej is the only continuous Df -invariant distribution H on M contained in E and
such that: dim H = dim E − dim Ek and Ek ∩ H = {0}.

Proof. Let H be such a distribution, and let us denote H lm := H ∩ (El ⊕ Em). Since every
point of M is a ω-limit point of f and H ∩ Ek = {0}, Lemma 1.1 shows that H ik = H ik ∩ Ei

(= H ∩ Ei), Hjk = Hjk ∩ Ej(= H ∩ Ej). A computation of dimensions shows then that
dim(H ∩ Ei) + dim(H ∩ Ej) = dim(Ei ⊕ Ej), and thus that H = Ei ⊕ Ej . □

Corollary 1.3. Let f be a topologically transitive partially hyperbolic diffeomorphism of a three-
dimensional closed manifold M , of invariant distributions Es, Ec, Eu. Then the only continuous
Df -invariant plane fields of M are Esc, Ecu and Esu.

Proof. Let H be a continuous Df -invariant plane field, and assume by contradiction that it is
none of these three ones. Let us first assume that Ec is not included in H by contradiction. By
continuity of H, there exists thus a non-empty open set U such that for any x ∈ U , Hx∩Ec

x = {0}.
If H was by contradiction equal to Esu on U , then by topological transitivity, a dense orbit of f
would meet U and H would thus be equal to Esu on M , contradicting our hypothesis. Possibly
restricting U , we can thus assume that for any x ∈ U , we have furthermore Hx ̸= Esu

x . Hence Hx

cannot contain both Es
x and Eu

x , and thus, possibly restricting U again and replacing f by f−1,
it holds now that for any x ∈ U , the line Dx := Hx ∩ Esc

x is distinct from Es
x and from Ec

x. Now f
being transitive, the set of recurrent points of f is dense in M , and there exists thus a recurrent
point x ∈ U . But Lemma 1.1 implies then Dx = {0}, which is a contradiction.

Hence Ec ⊂ H. Since H is distinct from both Esc and Ecu, and arguing as before, there exists
by continuity of H a non-empty open set U such that for every x ∈ U , the line Dx = Hx ∩ Esu

x is
neither Es

x nor Eu
x . Then as before, U contains a recurrent point x of f and Lemma 1.1 implies

Dx = {0}. This last contradiction concludes the proof. □

2. For Anosov flows

A non-singular flow (φt) of a smooth closed manifold M whose derivative vector field X is of
class C1 will be called Anosov if there exists a Dφt-invariant splitting TM = Es ⊕ RX ⊕ Eu,
where and Es and Eu are two non-zero distributions for which there exists λ ∈ ]0 ; 1[ and C > 0
such that for any x ∈ M and t ∈ R+:

(2.1)
∥∥∥Dxφt|Es

x

∥∥∥ ≤ Cλt,
∥∥∥Dxφ−t|Eu

x

∥∥∥ ≤ Cλt.

Note that any non-zero time of an Anosov flow is a partially hyperbolic diffeomorphism, with the
same stable and unstable distributions than φt, and the central distribution being equal to RX.
The stable and unstable distributions Es and Eu of an Anosov flow are automatically continuous.
Moreover if dim Es = 1 then: Ecu := Ec ⊕ Eu is C1, and if (φt) moreover preserves a continuous
volume form then both Euc and Esc := Es ⊕ Ec are C1 with Hölder derivatives (see [Has94,
Corollary 1.8 and 1.9]). In particular if dim M = 3, then Esc and Euc are always C1.

The following consequence of Livšic results in [LS72, Liv74] (see also [LMM86]) on the coho-
mological equation for Anosov flows is well known (see for instance [HK90, Theorem 2.3]), but
we explain it again here for sake of completeness.

Lemma 2.1. Let ω be a continuous field of densities on M and µ(U) =
∫

U ω its associated Borel
measure. If µ is preserved by a C2 Anosov flow (φt), then either ω = 0, or:

– ω does not vanish, is (φt)-invariant, and is of class C1 (and even C∞ if (φt) is C∞);
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– and moreover (φt) is topologically transitive.
Proof. If ω non-zero, then |ω| defines a (φt)-invariant finite non-zero Borel measure µ, having
a continuous density with respect to the measure m defined by a Riemannian metric on M .
According to Poincaré recurrence Theorem, the set of recurrent points of (φt) contains the support
of µ, which has non-empty interior since µ has a continuous density. But an Anosov flow whose
non-wandering set has non-empty interior is topologically transitive, as shown in [Pla72, Lemma
4.2]. Now according to Livšic and de la Llave-Marco-Moriyon results, a C2 topologically transitive
Anosov flow has at most one invariant Borel probability measure which is absolutely continuous
with respect to the Riemannian volume m. And moreover if such a measure exists, then it
actually has a non-vanishing density with respect to m, which is C1 and even C∞ if (φt) is C∞

(see for instance [LMM86, Corollary 2.1], and also [Bow08, Corollary 4.13 and Theorem 4.14] for
the case of Anosov diffeomorphisms). There exists thus on M a C1 field d of densities (which
is C∞ if (φt) is), whose integration on any open set equals the one of |ω|. With f ≥ 0 the
continuous function such that |ω| = fd, if we had f(x) ̸= 1 at some point by contradiction,
say for instance f(x) > 1, then f > 1 on a non-empty open set U (by continuity) which would
contradict

∫
U fd =

∫
U |ω| =

∫
U d. Hence ω = d does not vanish, and has the regularity properties

stated above. □

For H a codimension-one distribution of M invariant by the Anosov flow (φt) and transverse to
it, we define the canonical one-form θ of H by θ(X) ≡ 1 and θ|H≡ 0 (and the canonical one-form
of (φt) as the canonical one-form of Esu = Es ⊕ Eu). Note that the canonical one-form of a
(φt)-invariant distribution is by construction itself (φt)-invariant, and that dθ(X, ·) ≡ 0 thanks
to Cartan’s formula (since X preserves H). The following is due to Plante in [Pla72, Theorem
3.1], and to Franks-Newhouse in [Fra70, New70].

Theorem 2.2. Let k ∈ N∗ ∪ {∞}, (φt) be a Ck Anosov flow of a closed manifold M , and H be
a φt-invariant codimension-one continuous distribution on M transverse to (φt).

(1) If (φt) is topologically transitive, then H = Es ⊕ Eu.
(2) Let assume that H is Ck. Then with θ the canonical form of H: H is integrable if, and

only if dθ|H≡ 0 if, and only if dθ ≡ 0 if, and only if θ ∧ dθ ≡ 0. Moreover if H is
integrable, then:
(a) (φt) is Ck-orbit equivalent to the suspension of an Anosov diffeomorphism.
(b) If (φt) is codimension-one (for instance if dim M = 3), then H = Es ⊕ Eu and

(φt) is C0-conjugated to the suspension of a hyperbolic toral automorphism, hence is
topologically transitive.

Proof. 1. This a consequence of Corollary 1.2.
2. This is a direct consequence of Cartan’s formula, which yields dθ(X, Y ) = −θ([X, Y ]) for
any C1 sections X, Y of H, showing that [X, Y ] has values in Es ⊕ Eu for any such pair (and
thus that this distribution is integrable) if, and only if dθ|Es⊕Eu= 0, if, and only if dθ = 0 since
dθ(X, ·) ≡ 0.
2.a). Plante proves in [Pla72, Proposition 2.3 and Corollary 2.11] that if a Ck flow (φt) of a
compact C∞ manifold M preserves a Ck codimension-one foliation transverse to (φt), then (φt)
admits a global C∞ transverse section S, and is thus Ck-orbitally equivalent to the suspension of
the first return map R of (φt) on S, which is an Anosov diffeomorphism if (φt) is Anosov.
2.b). If (φt) is codimension-one, then so is the (Anosov) first-return map R, which is thus C0-
conjugated to a hyperbolic toral automorphism according to Franks-Newhouse theorem [Fra70,
New70]. In particular, (φt) is topologically transitive, hence H = Es ⊕ Eu according to 1. In
this case, the suspension manifold M of R satisfies dim H1(M,R) = 1, which implies that the
integral leaves of Es ⊕ Eu = H are compact according to [Pla72, Corollary 2.5]. Consequently,
(φt) is in fact conjugated to the first return map on these leaves (the time of the first return on
a given leave being this time constant since it is part of an invariant foliation), showing that (φt)
is C0-conjugated to the suspension of a hyperbolic toral automorphism. □

The following consequence of Livšic results is proved in [HK90, Theorem 2.3] (see also related
results [Pla72, Ghy87]).



4 MARTIN MION-MOUTON

Corollary 2.3. Let (φt) be a C2 Anosov flow of a closed manifold of dimension 2n + 1, and H
be a φt-invariant C1 codimension-one distribution transverse to (φt). Then with θ the canonical
one-form of H, we have the following dichotomy:

(1) either θ ∧ (dθ)n = 0;
(2) or θ is a contact form, i.e. θ ∧ (dθ)n = 0 does not vanish.

If moreover dim M = 3, then the following holds.
(1) In both cases of the above dichotomy: H = Es ⊕ Eu, and (φt) is topologically transitive.
(2) In the first case, H = Es ⊕ Eu is integrable and (φt) is C0-conjugated to the suspension

of an hyperbolic automorphism of the torus.
(3) If moreover dim M = 3 and (φt) is C∞, then H = Es ⊕ Eu is also C∞.

Proof. The dichotomy is simply a reformulation of Lemma 2.1 for the 2n + 1-form θ ∧ (dθ)n. We
now assume that dim M = 3. If θ ∧ dθ does not vanish, then (φt) is volume-preserving and thus
topologically transitive, implying that H = Es ⊕ Eu according to the first claim of Theorem 2.2.
If θ ∧ dθ ≡ 0, the second claim is just a reformulation of the last one of Theorem 2.2, and in
particular: (φt) is topologically transitive and H = Es ⊕ Eu. For the last claim, see [HK90,
Theorem 2.3]. □
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