DISTRIBUTIONS INVARIANT BY PARTIALLY HYPERBOLIC DIFFEOMORPHISMS AND ANOSOV FLOWS

MARTIN MION-MOUTON

1. For partially hyperbolic diffeomorphisms

Let f be a C^1 diffeomorphism of a smooth closed manifold M, endowed with an auxiliary Riemannian metric (with respect to which all of the above definitions are independent). A splitting $E^1 \oplus E^2$ within two non-zero Df-invariant distributions¹ is said to be a *dominated splitting*, if there exists $\lambda \in]0; 1[$ and C > 0 such that for any $x \in M$, any unit vectors $v_1 \in E_x^1$, $v_2 \in E_x^2$, and any $n \in \mathbb{N}$, we have:

(1.1)
$$\|\mathbf{D}_x f^n(v_1)\| \le C\lambda^n \|\mathbf{D}_x f^n(v_2)\|.$$

If $E^1 \oplus E^2$ is a dominated splitting, then E^1 and E^2 are automatically continuous (see for instance [CP15, Proposition 2.5]). More generally, a D*f*-invariant splitting $\bigoplus_{i=1}^{d} E^i$ is dominated if $E^i \oplus E^{i+1}$ is dominated for any $1 \le i \le d-1$. A non-zero D*f*-invariant distribution *E* of *M* is *uniformly contracted* by D*f* if there exists $\lambda \in [0; 1[$ and C > 0 such that for any $x \in M$, any unit vectors $v \in E_x$ and any $n \in \mathbb{N}$, we have:

(1.2)
$$\|\mathbf{D}_x f^n(v)\| \le C\lambda^n;$$

and E is uniformly expanded if it is uniformly contracted by Df^{-1} . Finally, f is partially hyperbolic, if there exists a Df-invariant splitting $TM = E^s \oplus E^c \oplus E^u$ within three non-zero distributions, respectively called the *stable*, *central* and *unstable* distributions of f, such that:

- (1) E^s is uniformly contracted by Df,
- (2) E^u is uniformly expanded by Df,
- (3) and $E^s \oplus E^c \oplus E^u$ is a dominated splitting.

Note that partially hyperbolic diffeomorphisms are sometime allowed to have zero stable or unstable distributions, while we will assume here each of the three distributions E^s , E^c and E^u to be non-zero (which is sometime called *strong* partial hyperbolicity). Note also that if f is a partially hyperbolic diffeomorphism, then f^{-1} is also partially hyperbolic, and that its stable and unstable distributions are exchanged with the ones of f, while their central distribution is the same. We denote $E^{sc} := E^s \oplus E^c$, $E^{cu} := E^c \oplus E^u$ and $E^{su} = E^s \oplus E^u$. For $P \subset M$ we denote $\omega(P) := \{\lim f^{n_k}(x) \mid x \in P, n_k \to +\infty\}.$

Lemma 1.1. Let f be a diffeomorphism of a manifold M, $E = E^1 \oplus E^2$ be a Df-invariant dominated splitting on a compact f-invariant subset $P \subset M$, and H be a continuous Df-invariant distribution on P contained in E. Then for any $y \in \omega(P)$: $H_y = (H_y \cap E_y^1) \oplus (H_y \cap E_y^2)$.

Proof. Let $y = \lim_{k \to \infty} f^{n_k}(x) \in P$ with $x \in P$ and $\lim_{k \to \infty} n_k = +\infty$, so that $\lim_{k \to \infty} D_x f^{n_k}(H_x) = H_y$ by continuity. With $d = \dim_k H$ and $e = \dim_k H_x \cap E_x^1$, let $u_i \in E_x^1$, $i = 1, \ldots, d$, and $v_i \in E_x^2$, $i = e + 1, \ldots, d$ such that $||v_i|| = 1$, satisfying $H_x = V^1 \oplus V^2$ with $V^1 = \operatorname{Vect} \{u_i \mid i = 1, \ldots, e\} =$ $H_x \cap E_x^1$ and $V^2 = \operatorname{Vect} \{u_i + v_i \mid i = e + 1, \ldots, d\}$. The sequence $V_k^1 \coloneqq D_x f^{n_k}(V^1)$ converges to a subspace V_∞^1 of $H_y \cap E_y^1$ of dimension e, the sequence $V_k^2 \coloneqq D_x f^{n_k}(V^2)$ converges to a subspace V_∞^2 of $H_y \cap (E_y^1 \oplus E_y^2)$ of dimension d - e, and $V_k^1 \oplus V_k^2$ converges to H_y , hence $V_\infty^1 + V_\infty^2 \subset H_y$. By domination, we have

$$\frac{\|\mathbf{D}_x f^{n_k}(u_i)\|}{\|\mathbf{D}_x f^{n_k}(v_i)\|} \le C(\max_{1\le i\le d} \|u_i\|)\lambda^{n_k} \xrightarrow{k\infty} 0$$

Date: March 19, 2024.

¹We call distribution a field of subspaces of the tangent spaces of M of a given constant dimension.

for any $i = e + 1, \ldots, d$, hence with $u_i^k = \frac{D_x f^{n_k}(u_i)}{\|D_x f^{n_k}(v_i)\|}$ and $v_i^k = \frac{D_{x_k} f^{n_k}(v_i)}{\|D_{x_k} f^{n_k}(v_i)\|}$, $\|u_i^k\| \to 0$ and the limit V_{∞}^2 of $V_k^2 = \operatorname{Vect}(\{u_i^k + v_i^k \mid e + 1 \leq i \leq d\}) \subset D_x f^{n_k}(H_x)$ equals thus the one of $\operatorname{Vect}(\{v_k^i \mid e + 1 \leq i \leq d\}) \subset E_{f^{n_k}(x)}^2$, which is contained in E_y^2 by continuity of E^2 . In the end $V_{\infty}^2 \subset E_y^2$ and the sum $V_{\infty}^1 \oplus V_{\infty}^2 \subset H_y$ is direct, implying that $H_y = V_{\infty}^1 \oplus V_{\infty}^2$ by equality of dimensions, therefore $H_y \subset (H_y \cap E_y^1) \oplus (H_y \cap E_y^2)$ which concludes the proof. \Box

Corollary 1.2. Let f be a topologically transitive diffeomorphism of a closed manifold M, and $E = E^1 \oplus E^2 \oplus E^3$ a Df-invariant dominated splitting on M. Then for any ordering (i, j, k) of $(1, 2, 3), E^i \oplus E^j$ is the only continuous Df-invariant distribution H on M contained in E and such that: dim $H = \dim E - \dim E^k$ and $E^k \cap H = \{0\}$.

Proof. Let H be such a distribution, and let us denote $H^{lm} := H \cap (E^l \oplus E^m)$. Since every point of M is a ω -limit point of f and $H \cap E^k = \{0\}$, Lemma 1.1 shows that $H^{ik} = H^{ik} \cap E^i$ $(= H \cap E^i), H^{jk} = H^{jk} \cap E^j (= H \cap E^j)$. A computation of dimensions shows then that $\dim(H \cap E^i) + \dim(H \cap E^j) = \dim(E^i \oplus E^j)$, and thus that $H = E^i \oplus E^j$. \Box

Corollary 1.3. Let f be a topologically transitive partially hyperbolic diffeomorphism of a threedimensional closed manifold M, of invariant distributions E^s , E^c , E^u . Then the only continuous Df-invariant plane fields of M are E^{sc} , E^{cu} and E^{su} .

Proof. Let H be a continuous Df-invariant plane field, and assume by contradiction that it is none of these three ones. Let us first assume that E^c is not included in H by contradiction. By continuity of H, there exists thus a non-empty open set U such that for any $x \in U$, $H_x \cap E_x^c = \{0\}$. If H was by contradiction equal to E^{su} on U, then by topological transitivity, a dense orbit of fwould meet U and H would thus be equal to E^{su} on M, contradicting our hypothesis. Possibly restricting U, we can thus assume that for any $x \in U$, we have furthermore $H_x \neq E_x^{su}$. Hence H_x cannot contain both E_x^s and E_x^u , and thus, possibly restricting U again and replacing f by f^{-1} , it holds now that for any $x \in U$, the line $D_x := H_x \cap E_x^{sc}$ is distinct from E_x^s and from E_x^c . Now fbeing transitive, the set of recurrent points of f is dense in M, and there exists thus a recurrent point $x \in U$. But Lemma 1.1 implies then $D_x = \{0\}$, which is a contradiction.

Hence $E^c \subset H$. Since H is distinct from both E^{sc} and E^{cu} , and arguing as before, there exists by continuity of H a non-empty open set U such that for every $x \in U$, the line $D_x = H_x \cap E_x^{su}$ is neither E_x^s nor E_x^u . Then as before, U contains a recurrent point x of f and Lemma 1.1 implies $D_x = \{0\}$. This last contradiction concludes the proof.

2. For Anosov flows

A non-singular flow (φ^t) of a smooth closed manifold M whose derivative vector field X is of class \mathcal{C}^1 will be called *Anosov* if there exists a $D\varphi^t$ -invariant splitting $TM = E^s \oplus \mathbb{R}X \oplus E^u$, where and E^s and E^u are two non-zero distributions for which there exists $\lambda \in]0; 1[$ and C > 0 such that for any $x \in M$ and $t \in \mathbb{R}^+$:

(2.1)
$$\left\| \mathbf{D}_{x} \varphi^{t} |_{E_{x}^{s}} \right\| \leq C \lambda^{t}, \left\| \mathbf{D}_{x} \varphi^{-t} |_{E_{x}^{u}} \right\| \leq C \lambda^{t}.$$

Note that any non-zero time of an Anosov flow is a partially hyperbolic diffeomorphism, with the same stable and unstable distributions than φ^t , and the central distribution being equal to $\mathbb{R}X$. The stable and unstable distributions E^s and E^u of an Anosov flow are automatically continuous. Moreover if dim $E^s = 1$ then: $E^{cu} := E^c \oplus E^u$ is \mathcal{C}^1 , and if (φ^t) moreover preserves a continuous volume form then both E^{uc} and $E^{sc} := E^s \oplus E^c$ are \mathcal{C}^1 with Hölder derivatives (see [Has94, Corollary 1.8 and 1.9]). In particular if dim M = 3, then E^{sc} and E^{uc} are always \mathcal{C}^1 .

The following consequence of Livšic results in [LS72, Liv74] (see also [LMM86]) on the cohomological equation for Anosov flows is well known (see for instance [HK90, Theorem 2.3]), but we explain it again here for sake of completeness.

Lemma 2.1. Let ω be a continuous field of densities on M and $\mu(U) = \int_U \omega$ its associated Borel measure. If μ is preserved by a C^2 Anosov flow (φ^t), then either $\omega = 0$, or:

- ω does not vanish, is (φ^t) -invariant, and is of class \mathcal{C}^1 (and even \mathcal{C}^{∞} if (φ^t) is \mathcal{C}^{∞});

- and moreover (φ^t) is topologically transitive.

Proof. If ω non-zero, then $|\omega|$ defines a (φ^t) -invariant finite non-zero Borel measure μ , having a continuous density with respect to the measure m defined by a Riemannian metric on M. According to Poincaré recurrence Theorem, the set of recurrent points of (φ^t) contains the support of μ , which has non-empty interior since μ has a continuous density. But an Anosov flow whose non-wandering set has non-empty interior is topologically transitive, as shown in Pla72, Lemma 4.2]. Now according to Livšic and de la Llave-Marco-Moriyon results, a \mathcal{C}^2 topologically transitive Anosov flow has at most one invariant Borel probability measure which is absolutely continuous with respect to the Riemannian volume m. And moreover if such a measure exists, then it actually has a non-vanishing density with respect to m, which is \mathcal{C}^1 and even \mathcal{C}^∞ if (φ^t) is \mathcal{C}^∞ (see for instance [LMM86, Corollary 2.1], and also [Bow08, Corollary 4.13 and Theorem 4.14] for the case of Anosov diffeomorphisms). There exists thus on $M \neq C^1$ field d of densities (which is \mathcal{C}^{∞} if (φ^t) is), whose integration on any open set equals the one of $|\omega|$. With $f \geq 0$ the continuous function such that $|\omega| = fd$, if we had $f(x) \neq 1$ at some point by contradiction, say for instance f(x) > 1, then f > 1 on a non-empty open set U (by continuity) which would contradict $\int_U fd = \int_U |\omega| = \int_U d$. Hence $\omega = d$ does not vanish, and has the regularity properties stated above.

For H a codimension-one distribution of M invariant by the Anosov flow (φ^t) and transverse to it, we define the *canonical one-form* θ of H by $\theta(X) \equiv 1$ and $\theta|_H \equiv 0$ (and the *canonical one-form* of (φ^t) as the canonical one-form of $E^{su} = E^s \oplus E^u$). Note that the canonical one-form of a (φ^t) -invariant distribution is by construction itself (φ^t) -invariant, and that $d\theta(X, \cdot) \equiv 0$ thanks to Cartan's formula (since X preserves H). The following is due to Plante in [Pla72, Theorem 3.1], and to Franks-Newhouse in [Fra70, New70].

Theorem 2.2. Let $k \in \mathbb{N}^* \cup \{\infty\}$, (φ^t) be a \mathcal{C}^k Anosov flow of a closed manifold M, and H be a φ^t -invariant codimension-one continuous distribution on M transverse to (φ^t) .

- (1) If (φ^t) is topologically transitive, then $H = E^s \oplus E^u$.
- (2) Let assume that H is C^k . Then with θ the canonical form of H: H is integrable if, and only if $d\theta|_H \equiv 0$ if, and only if $d\theta \equiv 0$ if, and only if $\theta \wedge d\theta \equiv 0$. Moreover if H is integrable, then:
 - (a) (φ^t) is \mathcal{C}^k -orbit equivalent to the suspension of an Anosov diffeomorphism.
 - (b) If (φ^t) is codimension-one (for instance if dim M = 3), then $H = E^s \oplus E^u$ and (φ^t) is \mathcal{C}^0 -conjugated to the suspension of a hyperbolic toral automorphism, hence is topologically transitive.

Proof. 1. This a consequence of Corollary 1.2.

2. This is a direct consequence of Cartan's formula, which yields $d\theta(X,Y) = -\theta([X,Y])$ for any \mathcal{C}^1 sections X, Y of H, showing that [X, Y] has values in $E^s \oplus E^u$ for any such pair (and thus that this distribution is integrable) if, and only if $d\theta|_{E^s \oplus E^u} = 0$, if, and only if $d\theta = 0$ since $d\theta(X, \cdot) \equiv 0$.

2.a). Plante proves in [Pla72, Proposition 2.3 and Corollary 2.11] that if a \mathcal{C}^k flow (φ^t) of a compact \mathcal{C}^{∞} manifold M preserves a \mathcal{C}^k codimension-one foliation transverse to (φ^t) , then (φ^t) admits a global \mathcal{C}^{∞} transverse section S, and is thus \mathcal{C}^k -orbitally equivalent to the suspension of the first return map R of (φ^t) on S, which is an Anosov diffeomorphism if (φ^t) is Anosov.

2.b). If (φ^t) is codimension-one, then so is the (Anosov) first-return map R, which is thus \mathcal{C}^0 conjugated to a hyperbolic toral automorphism according to Franks-Newhouse theorem [Fra70, New70]. In particular, (φ^t) is topologically transitive, hence $H = E^s \oplus E^u$ according to 1. In this case, the suspension manifold M of R satisfies dim $H_1(M, \mathbb{R}) = 1$, which implies that the integral leaves of $E^s \oplus E^u = H$ are compact according to [Pla72, Corollary 2.5]. Consequently, (φ^t) is in fact conjugated to the first return map on these leaves (the time of the first return on a given leave being this time constant since it is part of an invariant foliation), showing that (φ^t) is \mathcal{C}^0 -conjugated to the suspension of a hyperbolic toral automorphism.

The following consequence of Livšic results is proved in [HK90, Theorem 2.3] (see also related results [Pla72, Ghy87]).

Corollary 2.3. Let (φ^t) be a C^2 Anosov flow of a closed manifold of dimension 2n + 1, and H be a φ^t -invariant C^1 codimension-one distribution transverse to (φ^t) . Then with θ the canonical one-form of H, we have the following dichotomy:

- (1) either $\theta \wedge (d\theta)^n = 0$;
- (2) or θ is a contact form, i.e. $\theta \wedge (d\theta)^n = 0$ does not vanish.

If moreover dim M = 3, then the following holds.

- (1) In both cases of the above dichotomy: $H = E^s \oplus E^u$, and (φ^t) is topologically transitive.
- (2) In the first case, $H = E^s \oplus E^u$ is integrable and (φ^t) is \mathcal{C}^0 -conjugated to the suspension of an hyperbolic automorphism of the torus.
- (3) If moreover dim M = 3 and (φ^t) is \mathcal{C}^{∞} , then $H = E^s \oplus E^u$ is also \mathcal{C}^{∞} .

Proof. The dichotomy is simply a reformulation of Lemma 2.1 for the 2n + 1-form $\theta \wedge (d\theta)^n$. We now assume that dim M = 3. If $\theta \wedge d\theta$ does not vanish, then (φ^t) is volume-preserving and thus topologically transitive, implying that $H = E^s \oplus E^u$ according to the first claim of Theorem 2.2. If $\theta \wedge d\theta \equiv 0$, the second claim is just a reformulation of the last one of Theorem 2.2, and in particular: (φ^t) is topologically transitive and $H = E^s \oplus E^u$. For the last claim, see [HK90, Theorem 2.3].

BIBLIOGRAPHY

- [Bow08] Rufus Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms, volume 470 of Lect. Notes Math. Springer, Berlin, 2nd revised ed. edition, 2008. ISSN: 0075-8434.
- [CP15] Sylvain Crovisier and Rafael Potrie. Introduction to partially hyperbolic dynamics, July 2015. Available on the web-pages of the authors.
- [Fra70] John Franks. Anosov diffeomorphisms. In Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), pages 61–93. Amer. Math. Soc., Providence, R.I., 1970.
- [Ghy87] Étienne Ghys. Flots d'Anosov dont les feuilletages stables sont différentiables. Annales scientifiques de l'École normale supérieure, 20(2):251–270, 1987.
- [Has94] Boris Hasselblatt. Regularity of the Anosov splitting and of horospheric foliations. *Ergodic Theory and Dynamical Systems*, 14(4):645–666, 1994.
- [HK90] S. Hurder and Anatoly Katok. Differentiability, rigidity and Godbillon-Vey classes for Anosov flows. Publications Mathématiques de l'IHÉS, 72:5–61, 1990.
- [Liv74] A. N. Livshits. Cohomology of dynamical systems. Mathematics of the USSR. Izvestiya, 6:1278–1301, 1974.
- [LMM86] R. De la Llave, J. M. Marco, and R. Moriyon. Canonical perturbation theory of Anosov systems and regularity results for the Livsic cohomology equation. Annals of Mathematics. Second Series, 123:537– 611, 1986.
- [LS72] A. N. Livshits and Ya. G. Sinai. On invariant measures compatible with the smooth structure for transitive U-systems. Soviet Mathematics. Doklady, 13:1656–1659, 1972.
- [New70] S. E. Newhouse. On Codimension One Anosov Diffeomorphisms. *American Journal of Mathematics*, 92(3):761–770, 1970.
- [Pla72] Joseph F. Plante. Anosov flows. American Journal of Mathematics, 94:729–754, 1972.

MARTIN MION-MOUTON, MAX PLANCK INSTITUTE FOR MATHEMATICS IN THE SCIENCES IN LEIPZIG *Email address*: martin.mion@mis.mpg.de *URL*: https://orcid.org/0000-0002-8814-0918