
ON SIMULTANEOUS CONJUGACIES OF PAIRS OF TRANSVERSE
FOLIATIONS OF THE TORUS

MARTIN MION-MOUTON

Abstract. We prove in this note that two pairs of transverse minimal topological foliations of
the torus are individually conjugated if, and only if they are simultaneously conjugated.

1. Introduction

It is known since Poincaré [Poi85] that the rotation number (introduced in Proposition-Definition
2.2 below) is the only invariant of minimal, orientation-preserving homeomorphisms of the circle
S1 = R/Z under topological conjugacies. For a one-dimensional oriented topological foliation F
of the torus T2 = R2/Z2, the global conjugacy invariant which naturally replaces the rotation
number is the projective asymptotic cycle due to Schwartzman [Sch57] (see (2.1)). The latter is a
half-line A(F) in the first homology group H1(T2,R) of the torus, which gives a rigorous idea to
the “asymptotic direction of F in homology”, and reflects the dynamics of the foliation in multiple
ways. For instance, the asymptotic cycle of a minimal foliation of T2 is irrational in the sense
that the half-line A(F) does not intersect π1(T2) ≡ Z2 ⊂ R2 ≡ H1(T2,R). Moreover in the same
way than the rotation number for minimal circle homeomorphisms, the projective asymptotic
cycle is known to be a complete conjugacy invariant for minimal foliations. Any minimal oriented
topological foliation of T2 is indeed conjugated to the linear foliation defined by its asymptotic
cycle A(F), by a homeomorphism isotopic to the identity (see Proposition 2.5).

We study in this note the minimal topological bi-foliations of the torus T2 = R2/Z2, defined
as the pairs (Fα, Fβ) of minimal oriented topological foliations of T2 which are transverse (in
a sense made precise in Definition 3.1). Such objects appear naturally in different dynamical
contexts. For instance, any closed surface S which is a transverse section of a three-dimensional
Anosov flow is endowed with a bi-foliation, whose leaves are the intersections of S with the weak
stable and unstable leaves of the Anosov flow. While suspensions are the only three-dimensional
Anosov flows admitting such a transverse section, Birkhoff sections [Bir17] constitute a natural
generalization of them which is an important tool for the classification of Anosov flows, and any
genus one Birkhoff section of a transitive three-dimensional Anosov flow inherits in the same
way a minimal topological bi-foliation. In a recent work of the author [MM24], bi-foliations
of the torus are studied from a geometrical point of view in the setting of singular de-Sitter
Lorentzian metrics. Isotopy classes of singular de-Sitter metrics of T2 are indeed shown to
be equivalent to the simultaneous conjugacy classes of their minimal lightlike bi-foliations (see
[MM24, Theorem A]). Two bi-foliations (F1

α, F1
β) and (F2

α, F2
β) are said to be simultaneously

conjugated by a homeomorphism ϕ of T2, if F2
α = ϕ∗F1

α and F2
β = ϕ∗F1

β .
If two bi-foliations (F1

α, F1
β) and (F2

α, F2
β) of the torus have the same pairs of projective asymp-

totic cycles, then we already know that F1
α and F2

α in the one hand, and that F1
β and F2

β in the
other hand, are individually conjugated. It is then natural to ask if (F1

α, F1
β) and (F2

α, F2
β) are

actually simultaneously conjugated. The main goal of the present note is to answer this question
positively with the following result.

Theorem A. Let (Fα, Fβ) be a minimal topological bi-foliation of the torus and p ∈ T2. Then
(Fα, Fβ) is simultaneously conjugated to the linear bi-foliation (FA(Fα), FA(Fβ)) defined by its
asymptotic cycles, by a homeomorphism isotopic to the identity relatively to p.
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I was informed, after posting this preprint on arXiv, that Theorem A was already proved in
[AGK03].

Theorem A describes thus a “dynamical Teichmüller space”: the space of bi-foliations of the
torus modulo simultaneous conjugacies isotopic to the identity. More precisely, it identifies the
subset of minimal bi-foliations in this Teichmüller space (which are the most dynamically relevant
ones) with the subset {lα ̸= lβ} of (RP1)2, which is particularly useful to study the dynamics of the
mapping class group Mod+(T2) of the torus on its space of bi-foliations. We recall that Mod+(T2)
is the quotient of the group of homeomorphisms of T2 by the subgroup of homeomorphisms
isotopic to the identity, which acts naturally on the space of bi-foliations of T2 modulo isotopies.
Theorem A intertwines thus (in restriction to minimal bi-foliations and irrational lines) the a
priori complicated dynamics of Mod+(T2) on the space of bi-foliations with the explicit diagonal
action of PSL2(Z) on (RP1)2. The latter dynamics being entirely known, one can hope to use
this description to deduce new informations.

This idea applies for instance to the geometrical Teichmüller space Defθ(T2, 0) of singular de-
Sitter metrics of T2 studied in [MM24]. It allows to reformulate its main result to identify a
part of Defθ(T2, 0) with the subset {lα ̸= lβ irrational} of (RP1)2, which intertwines (on relevant
subsets) the action of Mod+(T2) on Defθ(T2, 0) with the diagonal action of PSL2(Z) on (RP1)2.
In a joint work in progress, Florestan Martin-Baillon and the author use this description to study
the dynamics of Mod+(T2) on relative character varieties of the one-holed torus with values in
PSL2(R).

As a direct consequence of Theorem A, we obtain the following result by applying an argument
due to Ghys-Sergiescu [GS80].

Corollary B. Let f be a homeomorphism of T2 which is isotopic to the identity relatively to a
point, and preserves a minimal topological bi-foliation. Then f is the identity.

Corollary B strengtens the main result of [MM24], by showing that any topological conjugacy
between the minimal lightlike bi-foliations of two singular de-Sitter metrics (having a unique
singularity of the same angle) is actually an isometry. This implies in particular a geometric
rigidity result for this class of dynamical systems: any topological conjugacy between such minimal
lightlike bi-foliations is actually piecewise smooth.

2. Preliminaries

2.1. Foliations of the torus and suspensions. We recall the basic definitions of foliations,
refering to [CLN85, Chapter II] and [HH86, Chapter I] for more details.

Definition 2.1. Let S be a topological surface. A foliated (topological) atlas of S is a continuous
atlas A of S satisfying the following conditions.

(1) For any chart (U, φ) ∈ A, φ(U) = I × J ⊂ R2 with I and J open intervals in R.
(2) For any (Ui, φi), (Uj , φj) ∈ A such that Ui ∩ Uj ̸= ∅, the transition map φi,j := φi ◦

φ−1
j : φj(Ui ∩ Uj) → φi(Ui ∩ Uj) is of the form

φi,j(x, y) = (αi,j(x, y), γi,j(y)).
A (topological) foliation F of S is a maximal foliated topological atlas of S, the charts of which
are called the foliation charts of F . In a domain U of foliated chart of F and for any p =
φ−1(x, y) ∈ U , P U

F (p) = φ−1(I × {y}) is called the plaque of x for F . The set of all plaques is
a basis of a topology on S whose connected components are called the leaves of F , and the leaf
containing x is denoted by F(x). F is said oriented by the choice of a sub-atlas of A such that
αi,j(·, y) is an orientation-preserving map for any (i, j) and y. In this case, each leaf of F inherits
the orientation given in any foliated chart by the identification of the plaque φ−1(I × {y}) with
I ⊂ R. Henceforth, all the foliations will implicitly be topological and oriented.

A topological conjugacy between two topological foliations (S1, F1) and (S2, F2) is a homeo-
morphism ϕ : S1 → S2 such that F2 = ϕ∗F1, namely ϕ(F1(x)) = F2(x) for any x ∈ S1.

Let F be a foliation of T2 which admits a closed section, i.e. a simple closed curve γ ⊂ T2

transverse to F (in the sense of Definition 3.1 below) and intersecting all of its leaves. Then the
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first-return map
P γ

F : γ → γ

of F on γ is well-defined, P γ
F (x) being the first intersection point of the oriented leaf F(x) with

γ after x. We can now describe F in terms of P γ
F in the following way. Given an orientation-

preserving homeomorphism T of the circle, the suspension FT of T is the oriented foliation of the
topological torus

MT := [0 ; 1] × S1/{(1, x) ∼ (0, T (x))}
defined by the projection of the horizontals [0 ; 1] × {x}. Then (S, F) is clearly topologically
conjugated to the suspension of the first-return map P γ

F , and the dynamical properties of these
two dynamical systems are the same. For instance F is minimal (namely has all of its leaves
dense) if and only if P γ

F is minimal (namely has all of its orbits dense). Moreover if two foliations
F1 and F2 on S are conjugated by a homeomorphism isotopic to the identity, then they admit
freely homotopic sections on which their first-return maps will be topologically conjugated. We
recall that two circle homeomorphisms f and g are topologically conjugated if there exists a
homeomorphism φ of S1 such that g = φ ◦ f ◦ φ−1.

In conclusion, any topological conjugacy invariant of circle homeomorphisms will yield an
isotopy invariant for foliations. We now define the only such invariant.

2.2. Circle homeomorphisms and rotation numbers. We denote by x ∈ R 7→ [x] ∈ S1 =
R/Z the canonical projection onto the circle, and by Rθ : x ∈ S1 7→ x + θ ∈ S1 the rotation by
θ ∈ S1. We refer for instance to [dFG22, §1.1 & 2.1] and [dMvS93, I.1] for a proof of the following
classical results due to Henri Poincaré [Poi85].

Proposition-Definition 2.2 (Poincaré). Let f ∈ Homeo+(S1) be an orientation-preserving
homeomorphism of the circle.

(1) For any lift F of f , the limit τ(F ) := lim
n→±∞

F n(x)−x
n exists for any x ∈ R and is independent

of x. If G = F + d is another lift of f (d ∈ Z), then τ(G) = τ(F ) + d, and
ρ(f) := [τ(F )] ∈ S1

is thus a well-defined point called the rotation number of f .
(2) ρ(f) is invariant under topological conjugacies. The rotation number of any orientation-

preserving homeomorphism g of an oriented topological circle is thus well-defined by the
relation ρ(g) := ρ(g0) ∈ S1, with g0 ∈ Homeo+(S1) conjugated to g by an orientation-
preserving map.

(3) If f ∈ Homeo+(S1) is minimal, then it is topologically conjugated to the rotation Rρ(f).

Recall that any half-line l ∈ P+(R2) induces an oriented linear foliation Fl on T2 defined by
Fl[x] = [x + l] for any [x] ∈ T2 (with x ∈ R2 7→ [x] ∈ T2 = R2/Z2 the canonical projection).
According to Proposition 2.2.(3), if a foliation F of T2 admits a section γ on which the first
return map has rotation number [θ] ∈ S1, then F is topologically conjugated to the linear foliation
FR(1,θ). However the description of F up to isotopy demands more than the rotation number of
its first-return maps.

Let indeed γ′ be a simple closed curve freely homotopic to γ and disjoint from it, and D be
a positive Dehn twist around γ′ whose support is disjoint from γ. Then the first-return map
of D∗F on γ is equal to the one of F , although D∗F is not isotopic to F . This motivates the
introduction of a finer invariant, a “global version of the rotation number” which will detect the
action of the mapping class group of T2.

2.3. Asymptotic cycles. Originally introduced by Schwartzman in [Sch57] for topological flows
of closed manifolds M , the notion of asymptotic cycle fulfills this role. It associates to any suitable
orbit O of the flow the “best approximation of O by a closed loop in homology”. This notion
has a natural projective counterpart for an oriented topological foliation F of T2 that we now
quickly describe, referring to [Sch57, Yan85] for more details. We consider an auxiliary smooth
Riemannian metric g on T2 and its induced distance dF on the leaves of F . For x ∈ T2 and T ∈ R
we denote by γT,x the closed curve of T2 obtained by first following F(x) from x to the unique
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point y ∈ F(x) such that dF (x, y) = T , and then closing the curve by following the minimal
geodesic of g from y to x. Following [Sch57, Yan85], the projective asymptotic cycle of F at x is
then defined as the half-line

(2.1) AF (x) := R+
(

lim
T →+∞

1
T

[γT,p]
)

∈ P+(H1(T2,R))

in the first homology group of T2, if this limit exists and does not vanish. This cycle is by definition
constant on leaves, does not depend on the auxiliary Riemannian metric, and is moreover natural
with respect to any homeomorphism f :

Af∗F (f(x)) = f∗(AF (x)).

In particular, any homeomorphism isotopic to the identity acts trivially on projective asymptotic
cycles (see [Sch57, Theorem p.275]). While the asymptotic cycles have a priori no reason to exist
at any point, they are easily described for foliations of the torus by the following result which is a
reformulation of [Yan85, Theorem 6.1 and Theorem 6.2]. We identify henceforth H1(T2,R) with
R2 through the isomorphism induced by the canonical projection R2 → T2.

Proposition 2.3 ([Yan85]). Let F be an oriented topological foliation of T2 which is the suspen-
sion of a circle homeomorphism.

(1) AF (x) exists at any x ∈ T2. It is moreover constant on T2 and will be denoted by A(F).
(2) For any l ∈ P+(R2), A(Fl) = l.

Asymptotic cycles play their expected role of “global version of the rotation number”, precisely
formulated by the following result which is folklore in the literature.

Lemma 2.4. Let F1 and F2 be two oriented topological foliations of T2. Then A(F1) = A(F2)
if, and only if for any respective sections γ1 and γ2 of F1 and F2 which are freely homotopic, we
have ρ(P γ1

F1
) = ρ(P γ2

F2
).

Using the previous Lemma, one easily obtains the following classification result usually attrib-
uted to Poincaré.

Proposition 2.5. Let F be a minimal oriented topological foliation of T2. Then F is conjugated
to the linear foliation defined by its asymptotic cycle A(F) ∈ P+(R2), by a homeomorphism
isotopic to the identity.

3. Proof of Theorem A

Definition 3.1. A pair (Fα, Fβ) of topological foliations of T2 is said transverse if for any p ∈ T2

there exists a connected open neighborhood U of p, two open intervals I, J ⊂ R containing 0 and
a homeomorphism φ : U → I × J , which sends every plaque of Fα (respectively Fβ) in U to a
horizontal interval I ×{y} (resp. vertical interval {x}×J). Such a homeomorphism will be called
a simultaneous foliated chart of (Fα, Fβ).

We now prove Theorem A. According to Proposition 2.5, we can assume without lost of gen-
erality that Fβ is a linear foliation. We denote by F0

α the linear foliation defined by A(Fα) ∈
P+(H1(T2,R)), fix p ∈ T2 and denote Fα := Fα(p) and F 0

α := F0
α(p).

(a) Flowing along Fβ on Fα(p). Let U be the domain of a simultaneous foliated chart of
(Fα, Fβ) around p. Then for any point x in the plaque P U

Fα
(p) of p, there exists a unique point

ϕ(x) := P U
F0

α
(p) ∩ P U

Fβ
(x) belonging both to the plaque of p for F0

α (defined as the connected
component of F0

α(p) ∩ U containing p) and to the plaque of x for Fβ in U . Let us now assume
ϕ to be defined on an interval I = [a ; b] of Fα with values in F 0

α. Let γ : [0 ; 1] → Fβ(b) denote
a continuous parametrization of the (unique) interval of Fβ(b) \ {b, ϕ(b)} whose closure contains
both b = γ(0) and ϕ(b) = γ(1). Then with U and V the domains of respective foliated charts of
Fα at b and of F0

α at ϕ(b), we extend ϕ on P U
Fα

(b) to be equal to the holonomy map of Fβ along
γ from P U

Fα
(b) to P V

F0
α
(ϕ(b)) (which is well-defined, possibly diminishing U). The subset of Fα on

which ϕ is uniquely defined in this way is thus non-empty, open and closed, hence equal to Fα.
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(b) Extending ϕ to T2. The only possible candidate for a continuous extension (denoted in
the same way) of ϕ is of course

(3.1) ϕ(lim xn) := lim ϕ(xn)

for any converging sequence xn ∈ Fα. Our main task is thus to show first that for any converging
sequence xn ∈ Fα, the sequence ϕ(xn) converges, and to show moreover that for two converging
sequences x1

n and x2
n in Fα having the same limit x, we have lim ϕ(x1

n) = lim ϕ(x2
n). Let yi

n (i = 1
or 2) denote the first intersection point of Fα(xi

n) with Fβ(x), and let us temporarily admit that
ϕ(y1/2

n ) are convergent and have the same limit. For any large enough n, let J i
+,n denote the

segment of leave of Fβ(x) from yi
n to ϕ(yi

n), Ii
−,n denote the segment of leave of Fα(xi

n) from
xi

n to yi
n, and Ii

+,n denote the segment of leave of Fα(ϕ(xi
n)) from ϕ(xi

n) to ϕ(yi
n). Then by

definition of ϕ, there exists a unique segment J i
−,n of Fβ(xi

n) such that there exists an embedded
rectangle R of boundary Ii

−,n ∪ J i
+,n ∪ Ii

+,n ∪ J i
−,n, and foliated by segments of Fα and Fβ. This

shows that ϕ(xi
n) = J i

−,n ∩ Ii
+,n is entirely described by xi

n and ϕ(yi
n), that the convergence of

x
1/2
n and ϕ(y1/2

n ) together imply the one of ϕ(x1/2
n ), and that the equalities lim x1

n = lim x2
n and

lim ϕ(y1
n) = lim ϕ(y2

n) imply lim ϕ(x1
n) = lim ϕ(x2

n).
To prove that lim ϕ(y1

n) and lim ϕ(y2
n) exist and are equal, we can assume without lost of gener-

ality that y
1/2
n converges to x from above on Fβ(x), and that the sequence y

1/2
n is also increasing

on the oriented topological line Fα(p). Let a denote a (long) segment of Fβ(x) containing x,
y1

n, y2
n, ϕ(y1

n) and ϕ(y2
n) for any large enough n. We can then close a with a (short) path b to

obtain a simple closed curve γ = a · b transverse to Fα. Furthermore since Fα and F0
α are isotopic

and both transverse to Fβ, there exists a (short) path b0 and a segment a0 of Fβ(x) with a ∩ a0

connected and containing x, y1
n, y2

n, ϕ(y1
n) and ϕ(y2

n) for any large enough n, such that γ0 = a0 ·b0

is a simple closed curve transverse to F0
α and homotopic to γ. Then with P and P0 the respective

first-return maps of Fα and F0
α on γ and γ0, we have

(3.2) [θ] := ρ(P ) = ρ(P0) ∈ S1 = R/Z,

since A(Fα) = A(F0
α) and γ is homotopic to γ0. Let y be the first intersection point of the

oriented leaf Fα(p) with γ. Since y
1/2
n is increasing on Fα(p), there exists two increasing sequences

k1
n, k2

n ∈ N such that y
1/2
n = P k

1/2
n (y). With y0 the first intersection point of F0

α(p) with γ, we
have then ϕ(y1/2

n ) = P k
1/2
n

0 (y0) by the very definition of ϕ.
We now make a naive but useful general remark. Let f be a minimal orientation-preserving

circle homeomorphism of rotation number [θ] ∈ S1. Then since f is topologically conjugated to
the rotation Rθ, for any x ∈ S1 and kn ∈ N, the sequence (fkn(x)) is converging if, and only if [knθ]
is converging in S1. Moreover for k1

n, k2
n ∈ N such that (fk1

n(x))n and (fk2
n(x))n are converging,

lim fk1
n(x) = lim fk2

n(x) if, and only if lim[(k1
n − k2

n)θ] = [0] ∈ S1. Since P and P 0 have the
same rotation numbers according to (3.2), the convergence of y1

n = P k1
n(y) and y2

n = lim P k2
n(y)

and the equality of their limits is thus equivalent to the convergence of ϕ(y1
n) = P k1

n(y) and
ϕ(y2

n) = P k2
n(y) and to the equality of their limits. Therefore lim ϕ(y1

n) = lim ϕ(y2
n), and we can

thus extend ϕ as desired, to an application well-defined on T2 by the relation (3.1).
Note that we incidentally proved that ϕ is “continuous along Fα”, in the sense that the equality

(3.1) holds for any sequence xn ∈ Fα converging to a point of Fα. Moreover, we also proved that
lim ϕ(x1

n) = lim ϕ(x2
n) implies that x1 = x2 for any two sequences x1

n and x2
n in Fα respectively

converging to x1 and x2, hence that ϕ is injective by our definition of ϕ.
(c) ϕ is a homeomorphism. Let us first show that ϕ is continuous. For any sequence

xn ∈ T2 converging to x, let xk
n ∈ Fα denote for any n a sequence converging to xn = lim

k→+∞
xk

n.

Then by the definition (3.1) of ϕ, we have ϕ(xn) = lim
k

ϕ(xk
n). Possibly extracting a subsequence

of (xk
n)k, we can furthermore assume that

(3.3) d(ϕ(xk
n), ϕ(xn)) ≤ 1

k + 1
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for any n and k, with d a distance defining the topology of T2. There exists now an increasing
sequence kn ∈ N such that xkn

n ∈ Fα converges to x, and we have thus ϕ(x) = lim ϕ(xkn
n )

by the definition (3.1) of ϕ. But since d(ϕ(xkn
n ), ϕ(xn)) ≤ 1

kn+1 according to (3.3), we obtain
ϕ(x) = lim ϕ(xkn

n ) = lim ϕ(xn) which proves the continuity of ϕ.
Since ϕ is an injective and continuous map defined from the topological surface T2 to itself, the

Invariance of domain theorem of Brouwer shows that ϕ(T2) is an open (and non-empy) subset of
T2. Since it is also closed by compactness of T2, we eventually have ϕ(T2) = T2 by connectedness
of T2, hence ϕ is a homeomorphism of T2 as desired.

(d) ϕ preserves Fβ. By construction, the restriction of ϕ to Fα consists by flowing along
leaves of Fβ. We have therefore ϕ(y) ∈ Fβ(ϕ(x)) for any x ∈ Fα and y ∈ Fα ∩ Fβ(x). By
continuity of the foliations and of ϕ, this relation extends to T2, hence ϕ preserves Fβ.

(e) ϕ is isotopic to id rel p. Moreover ϕ fixes p by construction, and acts trivially on π1(T2, p).
Indeed, let (a, b) be a pair of simple closed curves based at p which are the concatenations a = aαaβ

and b = bαbβ of segments aα/β (respectively bα/β) of leaves of Fα/β, and whose homotopy classes
define a basis ([a], [b]) of π1(T2, p). Since ϕ is defined on Fα(p) by flowing along leaves of Fβ, the
paths aα (respectively bα) are isotopic to ϕ ◦ aα (resp. ϕ ◦ bα), their arrival point flowing along
Fβ(p). But the paths aβ (resp. bβ) are for the same reason isotopic to ϕ ◦ aβ (resp. ϕ ◦ bβ), their
departure point flowing along Fβ(p), and therefore a (resp. b) is isotopic to ϕ ◦ a (resp. ϕ ◦ b).
Since ϕ acts trivially on π1(T2, p), it is isotopic to the identity by a classical result of Epstein in
[Eps66] (see also [BCLR20, Proposition 1.6 and Theorem 2]).

In conclusion, ϕ is a homeomorphism isotopic to id relatively to p, preserving Fβ and re-
dressing Fα on F0

α, i.e. is a conjugation of (Fα, Fβ) with (F0
α, Fβ). This concludes the proof of

Theorem A.

4. Proof of Corollary B

We conclude this note with a proof of Corollary B. According to Theorem A, the minimal
bi-foliation preserved by f is conjugated to a linear bi-foliation by a homeomorphism isotopic
to the identity. We can thus assume without lost of generality that f preserves the bi-foliation
defined by two transverse irrational lines l and l′ of the plane, and is isotopic to the identity
relatively to [0] ∈ T2. Let

F (x, y) = (F1(x, y), F2(x, y))
denote the lift of f to R2 which fixes the origin. According to [GS80, Lemme 4], we have then{

F2(x, y) = δF1(x, y) + a(y − δx) + b

F2(x, y) = δ′F1(x, y) + a′(y − δ′x) + b′

with δ and δ′ the respective slopes of l and l′. A direct computation yields then{
F1(x, y) = 1

δ−δ′ ((aδ − a′δ′)x + (a′ − a)y + (b′ − b))
F2(x, y) = 1

δ−δ′ (δδ′(a − a′)x + (δa′ − δ′a)y + (δb′ − δ′b)) .

In other words: F (x, y) = M(x, y) + 1
δ−δ′ (b′ − b, δb′ − δ′b) with

M = 1
δ − δ′

(
aδ − a′δ′ a′ − a

δδ′(a − a′) δa′ − δ′a

)
.

Since F (0, 0) = (0, 0) and δ ̸= δ′, we have b = b′ = 0. Moreover M ∈ GL2(Z) since F induces the
map f on T2, and the action of f on π1(Z2) is thus given by the matrix M . Since f is isotopic
to the identity, this implies M = id and therefore F = id, which shows our claim and concludes
the proof of Corollary B.
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