Problem Sheet 6

1. Asymptotic fraction of values Let $\nu \in Y^{p}\left(\Omega, \mathbb{R}^{n}\right)$ be a Young measure with generating sequence $\left(V_{j}\right) \subset \mathrm{L}^{p}\left(\Omega, \mathbb{R}^{n}\right)$. Show that for every closed set $E \subset \mathbb{R}^{n}$ it holds that

$$
\nu_{x}(E)=\lim _{r \rightarrow 0} \lim _{j \rightarrow \infty} \frac{\left|\left\{x \in B_{r}(x): V_{j}(x) \in E\right\}\right|}{\left|B_{1}(0)\right| r^{d}}
$$

Also show that this formula fails in general when E is not closed.
2. An existence result Let $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ be Borel-measureable and strongly quasiconvex, i.e. there exists $\lambda>0$ such that $z \rightarrow f(z)-\gamma|z|^{2}$ is quasiconvex. Assume further that for some $\Lambda>0$ and all $z \in \mathbb{R}^{m \times n},|f(z)| \leq \Lambda\left(1+|z|^{2}\right)$. Show that the functional

$$
\mathscr{F}[u]=\int_{\Omega} f(\mathrm{D} u) \mathrm{d} x
$$

attains its minimum on $\mathrm{W}_{F x}^{1,2}\left(\Omega, \mathbb{R}^{m}\right)$ for any $F \in \mathbb{R}^{m \times n}$.
3. Swlsc Show that for $\Omega=(-1,2)^{2} \subset \mathbb{R}^{2}$ the functional

$$
\mathscr{F}[u]=\int_{\Omega} \operatorname{det}\left(\mathrm{D} u_{j}\right) \mathrm{d} x
$$

is not weakly lower semi-continuous on $\mathrm{W}^{1,2}\left(\Omega, \mathbb{R}^{2}\right)$ by considering the sequence

$$
u_{j}(x, y)=\frac{\left(1-\left|x_{2}\right|\right)^{j}}{\sqrt{j}}(\sin (j x), \cos (j x)) .
$$

4. Quadratic forms Prove using Plancherel's identity that every quadratic form $q: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ (i.e. $q(z)=b(z, z)$ for a bilinear $\left.b: \mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n} \rightarrow \mathbb{R}\right)$ is quasiconvex if and only if it is rank-one convex.
5. Browder's fixed point theorem Let $B=\overline{B_{1}(0)}$.
(i) Let $w: B \rightarrow \partial B$ be smooth. Use $|w(x)|^{2}=1$ for every $x \in B$ to show that $\operatorname{det}(\mathrm{D} w)=0$ in B.
(ii) Argue by contradiction and using that the determinant is a null-Lagrangian that there exists at least one $x \in \partial \Omega$ with $w(x) \neq x$.
(iii) Prove the following smooth version of Browder's fixed point theorem: Let $u: B \rightarrow B$ be smooth. Then u has a fixed point $x \in \partial B$. (Hint: argue by contradiction and consider rays starting at $u(x)$ and passing through x to reduce to (ii)).
(iv) Extend the proof to apply for continuous u.
