Problem Sheet 4

1. Caccioppoli inequality Assume $u \in \mathrm{~W}^{1, p}(\Omega)$ is a Q-quasi-minimiser for the functional $\mathscr{F}[u, \Omega]=$ $\int_{\Omega} f(x, u, \mathrm{D} u)$, where we assume that

$$
\begin{gathered}
f(x, y, z) \geq|z|^{p}-\theta(x, u)^{p} \\
|f(x, y, z)| \leq \Lambda\left(|z|^{p}+\theta(x, u)^{p}\right) .
\end{gathered}
$$

Here $\theta(x, u)^{p}=b(x)|u|^{\gamma}+a(x)$ with $1 \leq \gamma<p^{*}$ and $0 \leq b \in \mathrm{~L}^{\sigma}(\Omega), 0 \leq a \in \mathrm{~L}^{s}(\Omega)$ and for some $\varepsilon>0, \frac{1}{s}=\frac{p}{n}-\varepsilon, \frac{1}{\sigma}=1-\frac{\gamma}{p^{*}}-\varepsilon$. Prove that there exists $R_{0}=R_{0}\left(|u|_{L^{p^{*}}(\Omega)},|b|_{L^{\sigma}(\Omega)}\right)$ such that for all $x_{0} \in \Omega, 0<\rho<R<\min \left(R_{0}, d\left(x_{0}, \partial \Omega\right)\right.$ and $k \geq 0$,

$$
\int_{A(k, \rho)}|\mathrm{D} u|^{p} \mathrm{~d} x \leq \frac{C}{(R-\rho)^{p}} \int_{A(k, R)}(u-k)^{p} \mathrm{~d} x+c\left(|a|_{\mathrm{L}^{s}(\Omega)}+k^{p} R^{-n \varepsilon}\right)|A(k, R)|^{1-\frac{p}{n}+\varepsilon} .
$$

2. Iteration lemmas

(i) Let $\alpha>0$ and let $\left\{x_{i}\right\}$ be a sequence of real positive numbers such that

$$
x_{i+1} \leq C B^{i} x_{i}^{1+\alpha}
$$

with $C>0$ and $B>1$. Show that if $x_{0} \leq C^{-\frac{1}{\alpha}} B^{-\frac{1}{\alpha^{2}}}$, we have

$$
x_{i} \leq B^{-\frac{i}{\alpha}} x_{0} .
$$

In particular, $x_{i} \rightarrow 0$ as $i \rightarrow \infty$.
(ii) Let $\phi(t)$ be a positive function and assume there exists $q, 0<\beta<\delta$ and $0<\tau<1$ such that for every $R<R_{0}$,

$$
\phi(\tau R) \leq \tau^{\delta} \phi(R)+B R^{\beta} \quad \phi(t) \leq q \phi\left(\tau^{k} R\right) .
$$

Prove that for every $\rho<R \leq R_{0}$,

$$
] \phi(\rho) \leq C\left(\left(\frac{\rho}{R}\right)^{\beta} \phi(R)+B \rho^{\beta}\right)
$$

where C depends only on q, τ, δ and β.
3. General example Let $B_{1} \subset \mathbb{R}^{3}$ and $g \in C^{\infty}\left(\mathbb{R}^{3}\right)$. What can you say about the problem

$$
\min _{u \in \mathrm{~W}_{g}^{1, p}\left(B_{1}\right)} \int_{B_{1}}|\mathrm{D} u|^{4}+|u|^{3} \mathrm{~d} x ?
$$

