Problem Sheet 3

1. Existence Prove the following existence statement: Suppose $\Omega \subset \mathbb{R}^{n}$ is a Lipschitz domain. Let $f: \Omega \times \mathbb{R}^{m} \times \mathbb{R}^{m \times n}$ be Carathéodory. Assume

$$
\begin{array}{r}
\lambda|z|^{p}+c_{1}|y|^{q}+c_{2} \leq f(x, y, z) \\
\left|\partial_{y} f(x, y, z)\right|+\left|\partial_{z} f(x, y, z)\right| \leq C\left(1+|y|^{p-1}+|z|^{p-1}\right) \tag{1.2}
\end{array}
$$

for some $\lambda, C>0, c_{1}, c_{2} \in \mathbb{R}, p>q \geq 1$ and almost every $x \in \Omega$, all $(y, z) \in \mathbb{R}^{m} \times \mathbb{R}^{n \times m}$. Assume $f(x, y, \cdot)$ is convex for every $(x, y) \in \Omega \times \mathbb{R}^{m}$. Then,

$$
\min _{u \in \mathrm{~W}_{g}^{1, p}\left(\Omega, \mathbb{R}^{m}\right)} \mathscr{F}[u]=\min _{u \in \mathrm{~W}_{g}^{1, p}\left(\Omega, \mathbb{R}^{m}\right)} \int_{\Omega} f(x, u, \mathrm{D} u) \mathrm{d} x
$$

admits at least one solution for $g \in \mathrm{~W}^{1-\frac{1}{p}, p}\left(\partial \Omega, \mathbb{R}^{m}\right)$.
2. Quasi-minimality Suppose $\Omega \subset \mathbb{R}^{n}$ is a Lipschitz domain. Let $A=\left(A_{\alpha}^{i}(x, u, z)\right), B=\left(B_{\alpha}(x, u, z)\right)$ be such that

$$
\begin{gathered}
A_{\alpha}^{i}(x, u, z) z_{i}^{\alpha} \geq|z|^{p}-a_{1}(x) \\
|A(x, u, z)| \leq \Lambda|z|^{p-1}+a_{2}(x) \quad|B(x, u, z)| \leq H|z|^{\tau}+b(x)|u|^{\delta}
\end{gathered}
$$

for some $\Lambda>0, \tau=p-1, \delta=p \frac{p^{*}-1}{p^{*}}$ and with $0 \leq a_{1}, a_{2}^{\frac{p}{p-1}} \in \mathrm{~L}^{1}(\Omega), 0 \leq b^{\frac{p^{*}}{p^{*-1}}} \in L L^{\frac{p^{*}}{p^{*}-p}}(\Omega)$. Suppose $u \in \mathrm{~W}_{\text {tploc }}^{1, p}\left(\Omega, \mathbb{R}^{n}\right)$ is a weak solution of the equation

$$
\frac{\partial}{\partial x_{i}} A_{\alpha}^{i}(x, u, \mathrm{D} u)-B_{\alpha}(x, u, \mathrm{D} u)=0 .
$$

Prove that u is a quasi-minimum of the functional

$$
\mathscr{F}[u, \Omega]=\int_{\Omega}|\mathrm{D} u|^{p}+b^{\frac{p^{*}}{p^{*}-1}}|u|^{p}+\left(a_{1}+a_{2}^{\frac{p}{p-1}}\right) \mathrm{d} x .
$$

3. Caccioppoli inequailty Let $f: \Omega \times \mathbb{R}^{m} \times \mathbb{R}^{m \times n}$, where $\Omega \subset \mathbb{R}^{n}$ is a Lipschitz domain. Assume for some $\lambda, c>0$ and $1<p<n$,

$$
\lambda|z|^{p} \leq F(x, y, z) \quad|F(x, y, z)| \leq c\left(|z|^{p}+\theta(x, u)^{p}\right) .
$$

Here $\theta(x, u)^{p}=b(x)|u|^{\gamma}+a(x)$, with $\gamma<p^{*}=\frac{n p}{n-p}, 0 \leq a \in \mathrm{~L}^{1}(\Omega)$ and $0 \leq b \in \mathrm{~L}^{\frac{p^{*}}{p^{*}-\gamma}}$.
Suppose $u \in \mathrm{~W}^{1, p}\left(\Omega, \mathbb{R}^{m}\right)$ is a quasi-minimiser of $\mathscr{F}[u]=\int_{\Omega} f(x, u, \mathrm{D} u) \mathrm{d} x$. Prove that there exists $R_{0}>0$, depending only on u, such that for $R<R_{0}$ and cubes $Q_{R} \Subset \Omega$,

$$
\int_{Q_{R / 2}}|\mathrm{D} u|^{p}+|u|^{p^{*}} \mathrm{~d} x \leq c\left(\frac{1}{R^{p}} \int_{Q_{R}}\left|u-u_{R}\right|^{p} \mathrm{~d} x+\left|Q_{R}\right|\left(f_{Q_{R}}|u| \mathrm{d} x\right)^{p^{*}}+\int_{Q_{R}} g \mathrm{~d} x\right)
$$

for some $c>0$. Here $g=a+b^{\frac{p^{*}}{p^{*}-\gamma}}, f_{Q_{R}}=\frac{1}{\left|Q_{R}\right|} \int_{Q_{R}}$ and $u_{R}=f_{Q_{R}} u \mathrm{~d} x$.

