Problem Sheet 1

1. Euler-Lagrange equation Let $\Omega \subset \mathbb{R}^{n}$ and $k \geq 1$. Suppose $f: \Omega \times \mathbb{R}^{N} \times \otimes^{k}\left(\mathbb{R}^{n}, \mathbb{R}^{N}\right)$ is given by

$$
f(x, y, z)=|z|^{2}-\frac{1}{2} c(x) y^{2}+g(x) y
$$

for some smooth functions c and g. Derive the Euler-Lagrange equation for the functional.

$$
\int_{\Omega} f\left(x, u, \mathrm{D}^{k} u\right) \mathrm{d} x
$$

2. minimizers may not be $\boldsymbol{C}^{\mathbf{1}}$-regular Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(u, \xi)=u^{2}(1-\xi)^{2}$. Consider the problem

$$
\inf _{u \in X}\left\{\mathscr{F}(u)=\int_{-1}^{1} f\left(u, u^{\prime}\right) \mathrm{d} x\right\} \quad \text { where } X=\left\{u \in C^{1}([-1,1]): u(-1)=0, u(1)=1\right\} .
$$

Show that this problem has no solution in X. Moreover, find a solution to the problem amongst piecewise C^{1}-functions.
3. infinitely many solutions Show that the problem

$$
\inf _{u \in X}\left\{\mathscr{F}(u)=\int_{-1}^{1}\left|u^{\prime}\right| \mathrm{d} x \text { where } X=\left\{u \in C^{1}([-1,1]): u(-1)=0, u(1)=1\right\}\right.
$$

has infinitely many solutions. Consider also the problem

$$
\inf _{u \in X}\left\{\mathscr{F}(u)=\int_{0}^{1}\left(\left(u^{\prime}\right)^{2}-1\right)^{2} \mathrm{~d} x \text { where } X=\left\{u \in C^{1}([0,1]: u(0)=u(1)=0\} .\right.\right.
$$

Prove or disprove that there are infinitely many solutions. What about if

$$
X=\left\{u \text { piecewise } C^{1}([0,1]): u(0)=u(1)=0\right\} ?
$$

