
Lecture notes for Calculus of Variations

Lukas Koch1

1Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig,Germany
lkoch@mis.mpg.de

August 8, 2023

Abstract

These are informal lecture notes for a 3rd year undergraduate course I taught
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1 Introduction
Calculus of variations studies energy minimisation problems and properties of

the mininisers. Many models of real-world problems, in physics, biology, chemistry,
data science, and many more, can be seen as some system seeking to minimise an
energy. In this course, we will develop a general theory to study such problems. We
will begin by linking energy minimisation to a PDE, the Euler-Lagrange equation.
The classical method of the calculus of variations is concerned with studying the
Euler-Lagrange equations and to link them back to the minimisation problem, de-
veloping for example criteria to ascertain whether solutions of the Euler-Lagrange
equation are a minimiser. We will go on to consider the direct method in the calcu-
lus of variations, which is a powerful tool to obtain existence results for minimisers.
Moreover, we will study the regularity of minimisers in this framework. Finally, we
will encounter Young measures as a useful tool to study the limits of sequences of
integral functionals.

We begin by considering some important examples of the types of energy that
we wish to study.
Example 1.1 (Shortest path). Consider two points x = (x1, x2), y = (y1, y2) ∈ R2.
We ask to find the shortest path connecting them. Of course, it is clear that the
solution is the straight line segment between x and y. However, it is less clear
how to see this as an energy minimisation problem. In fact there are two natural
approaches:
a) (parametric approach) Consider parametrised C1-curves connecting x and y, that
is C1-functions w : [0, 1] → R2 such that w(0) = x and w(1) = y. The length of w
is given by

L(w) =
ˆ 1

0
|w′|dt.

Thus, the minimisation problem we wish to consider is

min
A

L(w) where A = {w ∈ C1([0, 1],R2) : w(0) = x,w(1) = y}.

In this context, we expect that the following ’theorem’ holds: u minimises L (in the
sense that it is a minimum of the problem above) if and only if u is a monotone
parametrisation of the line segment connecting x and y, i.e.

u = (1− τ(t))x+ τ(t)y where τ is a monontone map such that τ(0) = 0, τ(1) = 1.

b) (non-parametric approach) Here we view curves connecting x and y as graphs,
i.e. as the image of a C1-function w : [x1, y1]→ R with w(x1) = x2 and w(y1) = y2.
The length of the curve is then given by

L(w) =
∣∣∣∣∣
ˆ x2

x1

√
1 + (w′)2 dx

∣∣∣∣∣ .
The theorem we now expect to hold is: u minimises L if and only if u is affine.
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Example 1.2 (Planar isoperimetric problem). The planar isoperimetric problem can
be formulated in three ways:

• Fix L ≥ 0. Then the largest area A that it is possible to enclose with a closed
curve of length L is A = 1

4πL
2 with equality if and only if the curve is a circle.

• Fix A ≥ 0. The shortest length of a closed curve needed to enclose an area of
size A is L =

√
4πA with equality if and only if L is a circle.

• If a closed curve of length L encloses an area of size A, then A ≤ 1
4πL

2 with
equality if and only if the curve is a circle.

It is easy to check that all three statements are equivalent. Again, we want to view
this problem as minimising an energy. We will show how to do so in the setting of
the second statement.
a) (parametric approach) Parametrise the curve using w ∈ C1([0, 1],R2). We encode
the fact that w is closed, by demanding that w(0) = w(1). Note that we may then
compute the enclosed area as follows:

ˆ 1

0
w1w

′
2 dt = −

ˆ 1

0
w2w

′
1 = 1

2

ˆ 1

0
w1w

′
2 − w2w

′
1 dt.

The class of admissible functions is thus

A =
{
w ∈ C1([0, 1],R2) :

ˆ 1

0
w1w

′
2 dt = A and w(0) = w(1)

}

and the energy minimisation problem is

min
w∈A

L(w)

where L is the parametric length functional defined in Example 1.1.
b) (non-parametric approach) Note that graphs cannot be closed. Thus, we consider
the following variant: Given A ≥ 0, we consider the class of admissible functions

A = {w ∈ C1([x1, x2],R) : w(x1) = y1, w(x2) = y2

ˆ x2

x1

w dx = A}.

The minimisation problem is then

min
w∈A

L(w),

where L is the non-parametric length functional defined in Example 1.1.

Example 1.3. [Brachistrone problem] The Brachistrone is the shape of the graph with
endpoints (x1, y1) and (x2, y2) such that a mass starting at rest at (x1, y1) sliding
along the graph reaches the point (x2, y2) in the shortest amount of time. Note
that in order to model the situation we may assume that y2 ≤ y1, as otherwise the
particle cannot possibly reach (x2, y2) starting from (x1, y1). Further if x1 = x2, the
solution is clearly described by free-fall and reflecting the x-axis if necessary, we may
assume that x1 < x2. If we describe the position of the mass at time q as (q, w(q)),
its velocity is (q′, w′(q)q′). In particular, it has scalar velocity

√
1 + w′(q)2q′. By

conservation of energy we obtain

1
2(1 + w′(q)2)(q′)2 + gw(q) = const. = gy1. (1.1)
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From a simple geometric/physical consideration, we see that we must have q′ > 0.
Thus q admits an inverse τ with τ ′ > 0. In particular, (1.1) can be re-arranged to
give

τ ′ =

√
1 + (w′)2

2g(y1 − w) .

The time the mass takes to traverse the graph is then

ˆ x2

x1

τ ′ = 1√
2g

ˆ x2

x1

√
1 + (w′)2

y1 − w
.

In light of these examples, we fix the class of problems we will study: Let Ω ⊂ Rn.
Given f : Ω× Rn × RN×n → R seek to minimise

F [w] =
ˆ

Ω
f(x,w(x),Dw(x)) dx (P)

amongst all suitable w : Ω→ RN .

Remark 1.4 (Side conditions). Often the class of admissible functions w is restricted
by imposing further conditions. Common examples are:

• It is common to impose Dirichlet boundary conditions in the form w = φ on
∂Ω for some function φ : Ω→ RN .

• We can impose holonomic/equality constraints, that is for some g : Ω×RN →
R, impose g(x,w(x)) = 0. An example of this is |w(x)| = 1, i.e. w needs to
map into the sphere. Thus an important subclass of this type of constraint is
to constrain w to map into a manifold.

• We can relax to inequality constraints, g(x,w(x)) ≥ 0 for some g : Ω×RN → R.
This type of constraint includes obstacle problems.

• A further common type of constraints are integral constraints taking the form´
Ω g(x,w(x)) dx = 0 for g : Ω×RN → R. An example are Neumann boundary

conditions, which are usually normalised through the constraint
´

Ω w(x) dx =
0.

Perhaps the most important example of an integrand that fits the framework of
(P) is the Dirichlet integral:

F [w] =
ˆ

Ω
|Dw|2 dx (1.2)

For simplicity, we consider this functional in the scalar case N = 1. The key in-
sight into linking energy minimisation problems and PDE’s is then contained in the
following calculation: w is a minimiser of (1.2) if and only if for any ε > 0 and
φ : Ω→ R sufficiently smooth with φ = 0 on ∂Ω,

0 ≥ F [w]−F [w + εφ] =
ˆ

Ω
|Dw|2 − |Dw + εDφ|2 dx

=2ε
ˆ

Ω
Dφ ·Dw − ε2

ˆ
Ω
|Dφ|2 dx.

As this holds for arbitrary ε, this statement is true if and only if for any such φ,
ˆ

Ω
Dw ·Dφ dx ≤ 0.
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Swapping φ→ −φ even gives

0 =
ˆ

Ω
Dw ·Dφdx =

ˆ
Ω
−∆wφdx

As φ was arbitrary, we deduce that −∆w = 0. This argument in fact proves the
following theorem:

Theorem 1.5. Let F [w] =
´

Ω|Dw|
2 dx. For w ∈ C2(Ω),

F [w] ≤ F [v] ∀v ∈ C2(Ω) such that v = w on ∂Ω

if and only if

−∆w = 0.

We close this introduction by listing some more examples of functionals of the
form (P).

Example 1.6. a) We can replace the Euclidean norm in (1.2) by a different quadratic
form:

F [w] =
ˆ

Ω
A(Dw,Dw) dx = 1

2

N∑
l,m=1

n∑
i,j=1

ˆ
Ω
almij ∂iwl∂jwm dx.

If A is symmetric, this is related to the PDE

N∑
l=1

n∑
i,j=1

Almij ∂j∂iul = 0 for m = 1, . . . N.

b) We can include lower-order terms:

f(x, y, z) = 1
2

n∑
i,j=1

aij(x)zizj −
1
2c(x)y2 + g(x)y.

c) We can replace the square in (1.2) with p ≥ 1:

F [w] = 1
p

ˆ
Ω
|Dw|p dx.

This functional is linked to the p-Laplace equation

div (|Du|p−2Du) = 0.

2 Classical methods

In this section, we study (P) through studying the linked PDE, which is known
as the Euler-Lagrange equation. Our first goal is to establish this link for a wide
class of problems, where for simplicity we restrict to the case N = 1. In order to
achieve this, convexity of the integrand f(x, y, z) in the (y, z)-variables will play a
crucial role. Hence, we begin by establishing some basic facts of convex analysis.

5



2.1 Convex analysis
The essential object in convex analysis are convex sets and convex functions:

Definition 2.1. • Ω ⊂ Rn is convex if for all x, y ∈ Ω, λ ∈ [0, 1], λx+ (1−λ)y ∈
Ω.

• If Ω ⊂ Rn is convex and f : Ω → R, then f is convex if for all x, y ∈ Ω,
λ ∈ [0, 1], f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y). We say that f is strictly
convex if the inequality is strict.

A number of useful characterisations of convexity exist, which we collect in the
following theorem:

Theorem 2.2. Let f : Rn → R, f ∈ C1(Rn). Then the following are equivalent:
(i) f is convex,
(ii) for all x, y ∈ Rn, f(x) ≥ f(x) + 〈∇f(y), x− y〉,

(iii) for all x, y ∈ Rn, 〈f(x)− f(y), x− y〉 ≥ 0.
In case of strict convexity, all inequalities are strict. Moreover, if f ∈ C2(Rn), then
f is convex if and only if ∇2f is positive semi-definite (positive definite in the case
of strict convexity).

Proof. Suppose f is convex. Then

〈∇f(x), x− y〉 = lim
λ→0

f(y + λ(x− y))− f(y)
λ

≤ lim
λ→0

λf(x) + (1− λ)f(y)− f(y)
λ

=f(x)− f(y).

Conversely, if (ii) holds, for any x, y ∈ Ω and λ ∈ [0, 1], denoting xλ = λx+ (1−λ)y

f(xλ) ≤ f(y) + 〈∇f(xλ), y − xλ〉
f(xλ) ≤ f(x) + 〈∇f(xλ), x− xλ〉.

Multiplying the first line with (1−λ), the second line with λ and adding shows that
f is convex.

Suppose (ii) holds. Then for all x, y ∈ Ω,

f(x) ≥f(y) + 〈∇f(y), x− y〉
f(y) ≥f(x) + 〈∇f(x), y − x〉.

Adding the two lines gives (iii). Conversely, assume (iii) holds. Then

f(y) =f(x) +
ˆ 1

0
〈∇f(x+ t(y − x)), y − x〉dt

=f(x) + 〈∇f(x), y − x〉+
ˆ 1

0
〈∇f(x+ t(y − x))−∇f(x), y − x〉dt

≥f(x) + 〈∇f(x), y − x〉.

To see the moreover part, assume first that f is convex and C2. Then for any
x, s ∈ Rn and t > 0,

0 ≤ 1
t
〈∇f(x+ ts)−∇f(x), x+ ts− x〉 =〈∇f(x+ ts)−∇f(x), s〉

=1
t

ˆ t

0
〈∇2f(x+ λs)s, s〉.
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Letting t → 0, we obtain 〈∇2f(x)s, s〉 ≥ 0, which gives the desired positive semi-
definiteness of ∇2f . Conversely, if ∇2f is positive semi-definite, we write

f(y) =f(x) + 〈∇f(x), y − x〉+
ˆ 1

0

ˆ t

0
〈∇2f(x+ λ(y − x))(y − x), y − x〉dλ dt

≥f(x) + 〈∇f(x), y − x〉,

which is (ii). Hence f is convex.

Finally we record an important integral inequality connected to convex functions:

Theorem 2.3 (Jensen’s inequality). Let Ω ⊂ Rn be open and bounded, u ∈ L1(Ω)
and f : R→ R be convex. Then

f

( 
Ω
udx

)
≤
 

Ω
f(u) dx.

Proof. We give the proof in the case when f ∈ C1. Note that then by Theorem 2.2
for x 6= y,

f ′(x) ≤ f(y)− f(x)
y − x

≤ f ′(y).

Setting y = u, x =
ffl

Ω u and integrating gives
 

Ω
f(u)− f

( 
Ω
u

)
dx ≥ f ′

( 
Ω
u

) 
Ω

( 
Ω
u− u

)
dx = 0.

Finally, we require the concept of the Fenchel conjugate f∗ of a function f . This
is sometimes also referred to as convex conjugate or Legendre conjugate of f .

Definition 2.4. Let f : Rn → R. Define the Fenchel conjugate f∗ by setting for
ξ ∈ Rn,

f∗(ξ) = sup
x∈Rn
〈x, ξ〉 − f(x).

The bi-dual f∗∗ of f is the Fenchel conjugate of f∗, that is for x ∈ Rn,

f∗∗(x) = sup
ξ∈Rn
〈x, ξ〉 − f∗(ξ).

We summarise the properties of f∗ that will be important to us without giving
a proof.

Theorem 2.5. Let f : Rn → R. Then the following statements hold:
(i) f∗ is convex.
(ii) f∗∗ = f if and only if f is convex.

(iii) For any x, ξ ∈ Rn, the Fenchel-Young inequality holds:

〈x, ξ〉 ≤ f(x) + f∗(ξ).

For f ∈ C1(Rn), equality holds if and only if ξ = f ′(x).
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2.2 The Euler-Lagrange equation
We now turn to establishing the equivalent of Theorem 1.5 in the general setting

of (P). For simplicity, we will work in the case n = 1 and recall the problem we
study:

inf{F (u) : u ∈ X} (P1d)

where

F (u) =
ˆ b

a

f(x, u, u′) dx and X = {u ∈ C1([a, b]) : u(a) = α, u(b) = β}.

The proof will proceed along the lines of that given for Theorem 1.5, the main
difference being that we cannot expand the square. Instead, we will use convexity
to obtain a similar estimate.
Theorem 2.6. Let f ∈ C2([a, b] × R × R), f ≡ f(x, u, ξ) and suppose we have that
m = inf{F [u] : u ∈ X} is finite.

(i) If (P1d) admits a minimiser u ∈ X ∩ C2([a, b]), then for x ∈ (a, b)

d
dxfξ(x, u, u

′) = fu(x, u, u′). (EL)

(ii) Conversely, if u ∈ X solves (EL) and (u, ξ) → f(x, u, ξ) is convex for every
x ∈ [a, b], then u is a minimiser of (P1d).

(iii) If (u, ξ)→ f(x, u, ξ) is strictly convex for every x ∈ [a, b], then the minimiser,
if it exists, is unique.

Remark 2.7. (i) Note that we do not prove existence of a minimiser. This is a
main drawback of the classical method and will motivate us to seek minimisers
in weaker spaces of functions than C2, where proving existence of minimisers
is easier. The direct method in the calculus of variations arises from this
approach.

(ii) In general, minimisers need not be C2, as we will see on the problem sheet.
(iii) Without the convexity assumptions, solutions of (EL) may fail to be minimis-

ers. Instead, they are usually referred to as stationary points or extremals.
(iv) Theorem 2.6 generalises to many more general set-ups, including vectorial

problems where n,N > 1. We will see some examples on the problem sheet.

Proof of Theorem 2.6. Suppose u ∈ X ∩ C2([a, b]) minimises (P1d). Then for all
h ∈ R and v ∈ C1([a, b]) with v(a) = v(b) = 0,

F (u) ≤ F (u+ hv).

Introducing Φ(h) = F (u+ hv) ∈ C1(R), we may rewrite this as Φ(0) ≤ Φ(h) for all
h ∈ R. Consequently

Φ′(0) = d
dhΦ(u+ hv)

∣∣
h=0 = 0.

Calculating Φ′ and integrating by parts, we find

0 =
ˆ b

a

fξ(x, u, u′)v′ + fu(x, u, u′)v dx

=
ˆ b

a

(
− d

dxfξ(x, u, u
′) + fu(x, u, u′)

)
v = 0. (2.1)
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Since v was arbitrary, we deduce (EL) holds. We will formally prove this statement,
which is known as the fundamental lemma in the calculus of variations in Lemma
2.8.

Suppose now u ∈ X solves (EL). Using the joint convexity of f in its second and
third variable, by Theorem 2.2, we have for any u ∈ X,

f(x, u, u′) ≥ f(x, u, u′) + fu(x, u, u′)(u− u) + fξ(x, u, u′)(u′ − u′).

Integrating, after an integration by parts, we deduce

F (u) ≥F (u) +
ˆ b

a

(
fu(x, u, u′)− d

dxfξ(x, u, u
′)
)

(u− u) dx

=F (u).

Thus u solves (P1d).
Finally, suppose for any x ∈ [a, b], (u, ξ)→ f(x, u, ξ) is strictly convex. Assume

u, v ∈ X solve (P1d). Set w = u+v
2 . Note w ∈ X and by strict convexity, for any

x ∈ [a, b],

f(x, u, u′) + f(x, v, v′)
2 ≥ f(x,w,w′),

with equality if and only if u(x) = v(x). In particular,

m = F (u) + F (v)
2 ≥ F (w) ≥ m.

In other words,
ˆ b

a

f(x, u, u′)− f(x, v, v′)
2 − f(x,w,w′) dx = 0.

Thus u = v.

It remains to fully justify that (2.1) implies that (EL) holds for every x ∈ [a, b].
This will follow from the following theorem.

Theorem 2.8 (Fundamental lemma of the calculus of variations). Let Ω ⊂ Rn be
open and u ∈ L1

loc(Ω) such that
ˆ

Ω
u(x)φ(x) dx = 0 ∀φ ∈ C∞0 (Ω).

Then u = 0 almost everywhere in Ω.

Proof. We give the proof in the case u ∈ L2(Ω). The general case can be done using
a technical approximation argument. Let ε > 0. There exists ψ ∈ C∞0 (Ω) such that

‖u− ψ‖L2(Ω) ≤ ε.

In particular,

‖u‖2L2(Ω) =
ˆ

Ω
u2 dx =

ˆ
Ω
u(u− ψ) dx ≤ ‖u‖L2(Ω)‖u− ψ‖L2(Ω).

We deduce ‖u‖L2(Ω) ≤ ε. As ε was arbitrary, ‖u‖L2(Ω) = 0 and hence u = 0 almost
everywhere.
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2.3 A 2nd form of the Euler-Lagrange equation
Occasionally, a slightly different form of the Euler-Lagrange equation is useful.

Theorem 2.9. Let f ∈ C2([a, b]× R× R), f ≡ f(x, u, ξ) and

inf
u∈X

{
F (u) =

ˆ b

a

f(x, u, u′) dx
}

= m (P)

be finite, where X = {u ∈ C1([a, b]) : u(a) = α, u(b) = β}. Let u ∈ X ∩C2([a, b]) be
a minimiser of (P), then for every x ∈ [a, b] it holds that

d
dx
(
f(x, u, u′)− u′fξ(x, u, u′)

)
= fx(x, u, u′).

Proof. Using Theorem 2.6 the proof is easy. In fact, for any u ∈ C2([a, b]),

d
dx
(
f(x, u, u′)− u′fξ(x, u, u′)

)
= fx(u, u, u′) + u′

(
fu(x, u, u′)− d

dxfξ(x, u, u
′)
)
.

If u ∈ X ∩C2([a, b]) is a minimiser of (P), by Theorem 2.6, the term in parentheses
on the right-hand side vanishes, giving the claimed result.

There is a second proof of Theorem 2.9, that is of interest due to the technique
of its proof, which turns out to be useful in a number of circumstances. While in
the proof of Theorem 2.6, we used variations of the form u + εφ, that is we used
variations of the dependent variables, we will prove Theorem 2.9 using variations
of the independent variables. This approach is also known under the name inner
variations. Thus, given ε ∈ R, φ ∈ C∞0 (a, b) and λ = (2‖φ′‖L∞)−1, we set

ξ(x, ε) = x+ ελφ(x) = y. (2.2)

For ε ≤ 1, ξ(·, ε) : [a, b]→ [a, b] is a diffeomorphism with ξ(a, ε) = a, ξ(b, ε) = b and
ξx(x, ε) > 0. We may introduce its inverse η(·, ε) : [a, b]→ [a, b] by demanding

ξ(η(y, ε), ε) = y. (2.3)

We want to study the competitor given by

uε(x) = u(ξ(x, ε)).

In order to carry out the argument, we will see that we require estimates on ηy(y, ε)
and ηε(y, ε). However due to (2.3),

ξx(η(y, ε), ε)ηy(y, ε) = 1
ξx(η(y, ε), ε)ηε(y, ε) + ξε(η(y, ε), ε) = 0. (2.4)

Next consider (2.2) and use a Taylor-expansion to deduce,

ηy(y, ε) = 1− ελφ′(y) +O(ε2)
ηε(y, ε) = −λφ(y) +O(ε). (2.5)

Using the change of variables y = ξ(x, ε) and the first line of (2.4), we thus calculate

F (uε) =
ˆ b

a

f(x, u(ξ(x, ε)), u′(ξ(x, ε))ξx(x, ε)) dx
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=
ˆ b

a

f(η(y, ε), u(y), u′(y)/ηy(y, ε))ηy(y, ε) dy

:=
ˆ b

a

g(ε) dy.

Since u is a minimiser of (P) and uε ∈ X, F (uε) ≥ F (u) and hence

0 = d
dεF (uε)

∣∣
ε=0 =

ˆ b

a

g′(0) dx.

Using (2.5) we find

g′(0) = λ
(
−fxφ+ (u′fξ − f)φ′

)
,

from which we deduce after an integration by parts,

0 = λ

ˆ b

a

(
−fx(x, u, u′) + d

dx
(
−u′fξ(x, u, u′) + f(x, u, u′)

))
φ(x) dx.

Appealing to Theorem 2.8, this gives the desired identity.

2.4 The Hamilton-Jacobi equation
Solutions of the Euler-Lagrange equation can be linked to solutions of a first order

PDE which is known as Hamilton-Jacobi equation. This connection is especially
useful for some energies arising in classical mechanics. We begin by studying a
different energy functional, involving the Hamiltonian H of the energy f . The
Hamiltonian is nothing but the convex conjugate of f with respect to the ξ-variable,
i.e.

H(x, u, v) = sup
ξ∈R
〈v, ξ〉 − f(x, u, ξ).

Consider the energy functional

J(u, v) =
ˆ b

a

u′(x)v(x)−H(x, u(x), v(x)) dx.

Note that formally the Euler-Lagrange equation for J is the system{
u′ = Hv(x, u, v)
v′ = −Hu(x, u, v).

(H)

We want to link solutions of (H) to solutions of (EL). We begin our analysis by
studying the regularity of H and finding convenient expressions for Hv and Hu.

Lemma 2.10. Let f ∈ C2([a, b]×R×R), f ≡ f(x, u, ξ) such that fξξ(x, u, ξ) > 0 for
every (x, u, ξ) ∈ [a, b]×R×R and lim|ξ|→∞ f(x,u,ξ)

|ξ| = +∞ for every (x, u) ∈ [a, b]×R.
Then H ∈ C2([a, b]× R× R) and

Hx(x, u, v) = −fx(x, u,Hv(x, u, v))
Hu(x, u, v) = −fu(x, u,Hv(x, u, v))

H(x, u, v) = vHv(x, u, v)− f(x, u,Hv(x, u, v))
v = fξ(x, u, ξ)⇔ ξ = Hv(x, u, v).
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Proof. Step 1: H is a maximum Fix (x, u) ∈ [a, b] × R. Due to the super-linear
growth of f(x, u, ·) at infinity and the definition of H, we find ξ = ξ(x, u, v) such
that {

H(x, u, v) = 〈v, ξ〉 − f(x, u, ξ)
v = fξ(x, u, ξ).

(2.6)

Step 2: H is continuous Let (x, u, v), (x′, u′, v′) ∈ [a, b] × R × R. Then for some
ξ = ξ(u, v) using the definition of H,

H(x, u, v) = 〈v, ξ〉 − f(x, u, ξ)
H(x′, u′, v′) ≥ 〈v′, ξ〉 − f(x′, u′, ξ〉,

so that subtracting the two lines, we find

H(x, u, v)−H(x′, u′, v′) ≤ 〈v − v′, ξ〉+ f(x′, u′, ξ)− f(x, u, ξ).

Reversing the roles of primed and unprimed variables, we can prove

H(x, u, v)−H(x′, u′, v′) ≥ 〈v − v′, ξ〉+ f(x′, u′, ξ)− f(x, u, ξ).

In particular

|H(x, u, v)−H(x′, u′, v′)| ≤ |v − v′||ξ|+ |f(x′, u′, ξ)− f(x, u, ξ)|.

In particular, since f is continuous in the (x, u)-variables, we deduce that H is
continuous.
Step 3: ξ is C1 Considering the second line of (2.6) and noting that f ∈ C2

with fξξ(x, u, ξ) > 0, we may apply the inverse function theorem to deduce that
ξ ∈ C1([a, b]× R× R).
Step 4: conclusion From our work so far, we conclude that the functions

(x, u, v)→ ξ(x, u, v), fx(x, u, ξ(x, u, v)), fu(x, u, ξ(x, u, v))

are C1. Combining this with (2.6), the first three claimed identities follow immedi-
ately. Indeed

Hx = vξx − fx − fξξx = (v − fξ)ξx − fx = −fx
Hu = vξu − fu − fξξu = (v − fξ)ξu − fu = −fu
Hv = ξ + vξv − fξξv = (v − fξ)ξv + ξ = ξ.

The last claim of the Lemma follows from Theorem 2.5.

Using Lemma 2.10, we can relate solutions of (H) and (EL).
Theorem 2.11. Let f and H be as in Lemma 2.10. Let (u, v) ∈ C2([a, b])×C2([a, b])
satisfy for every x ∈ [a, b], {

u′ = Hv(x, u, v)
v′ = −Hu(x, u, v).

(H)

Then u satisfies the Euler-Lagrange equation
∂

∂x
fξ(x, u, u′) = fu(x, u, u′) (EL)

for all x ∈ [a, b]. Conversely, if u ∈ C2([a, b]) satisfies (EL) for all x ∈ [a, b], then
with

v = fξ(x, u, u′),

the couple (u, v) satisfies (H) for every x ∈ [a, b].
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Proof. Suppose (u, v) satisfy (EL). Using Lemma 2.10, we find

u′ = Hv(x, u, v) ⇔ v = fξ(x, u, u′)
v′ = −Hu(x, u, v) = fu(x, u, u′).

In particular,

d
dxfξ(x, u, u

′) = v′ = fu(x, u, u′),

that is (EL) holds. Conversely, if u satisfies (EL) and we set v = fξ(x, u, u′), by
Lemma 2.10, we have

v = fξ(u, u, u′) ⇔ u′ = Hv(x, u, v),

which is the first equation in (H). Moreover, we calculate, since u satisfies (EL),

v′ = d
dxfξ(x, u, u

′) = fu(x, u, u′).

Thus (u, v) solves (H).

We consider two examples inspired by classical mechanics that make the relation
to the Hamiltonian as used in physics clearer.
Example 2.12. We consider an example inspired by a particle in free fall. Let m > 0,
g ∈ C1([a, b]) and f(x, u, ξ) = m

2 ξ
2−g(x)u. The Euler-Lagrange equation associated

to the integral
ˆ b

a

f(x, u, u′) dx

is

mu′′ = −g

for x ∈ (a, b). Moreover, by direct calculation,

H(x, u, v) = v2

2m + g(x)u.

Note that in this example, along trajectories, that is when v = fξ(x, u, u′) = u′, the
Hamiltonian corresponds to the total energy of the system as the sum of kinetic and
potential energy. Indeed, the Hamiltonian formulation is given by{

u′ = v
m

v′ = −g,

so that

H(x, u, v) = m

2 (u′)2 + g(x)u.

Example 2.13. We consider a system with N particles of masses mi > 0 and whose
positions at time t are described by ui(t) = (xi(t), yi(t), zi(t)). The kinetic energy of
the system is then given by

Ekin(u′) = 1
2

N∑
i=1

mi|u′i|2.
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Suppose U = U(t, u) is the potential energy of the system. Consider the energy
(=Lagrangian)

L(t, u, u′) = T (u′)− U(t, u).

A similar calculation to that of Example 2.12 shows

H(x, u, v) = 1
2

N∑
i=1

1
mi
|vi|2 + U(t, u).

In particular, the Euler-Lagrange equation for the system is

N∑
i=1

mi∂iu
′
i = Uu(t, u),

while the Hamilton-Jacobi system is given by{
u′i = 1

mi
vi

v′i = −Uui(t, u).

for i = 1, . . . N . Note that we are using here an extension of the arguments of this
section to vector-valued functions. This is however not difficult to achieve. Along
trajectories, where v = Lξ(t, u, u′), we thus find

H(x, u, v) = 1
2

N∑
i=1

mi|ui|2 + U(t, u).

As in the first example, we recognize this expression as the total energy of the system.

We next want to relate solutions of (H) to solutions of the Hamilton-Jacobi
equation, which is a first order PDE. Our main result in this direction will be
Theorem 2.14. Let H ∈ C1([a, b] × R × R), H ≡ H(x, u, v). Assume there exists a
solution S ∈ C2([a, b]× R), S ≡ S(x, u) of the Hamilton-Jacobi equation

Sx +H(x, u, Su) = 0 (2.7)

for all (x, u) ∈ [a, b]×R. Assume in addition that there is u ∈ C1([a, b]) which solves

u′(x) = Hv(x, u, Su(x, u)) (2.8)

for all x ∈ (a, b). Set v = Su(x, u). Then (u, v) ∈ C1([a, b])×C1([a, b]) is a solution
of {

u′ = Hv(x, u, v)
v′ = −Hu(x, u, v).

Moreover, if there is a one-parameter family of solutions

S ≡ S(x, u, α) ∈ C2([a, b]× R× R)

solving (2.7) for every (x, u, α) ∈ [a, b]× R× R, then any solution of (2.8) satisfies

d
dxSα(x, u, α) = 0

for all (x, α) ∈ [a, b] ∈ R.
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Remark 2.15. In general, it is very difficult to solve (2.7) and the Hamilton-Jacobi
equation has been the subject of intense study.

In the case where H is independent of x, every solution S∗(u, α) of

H(u, S∗u) = α

for every (u, α) ∈ R× R gives a solution of (2.7) by defining

S(x, u, α) = S∗(u, α)− αx.

Before proceeding with the proof, we consider a simple example.

Example 2.16. Let g ∈ C1(R) with g(u) ≥ g0 > 0. Consider the energy functional

f(u, ξ) = 1
2ξ

2 + g(u),

with the corresponding Hamiltonian

H(u, v) = 1
2v

2 − g(u).

The Hamilton-Jacobi equation is then given by

Sx + 1
2S

2
u − g(u) = 0.

Considering Remark 2.15, it suffices to consider

1
2(S∗u)2 = g(u).

In particular, a solution of the Hamilton-Jacobi equation is given by

S = S(u) =
ˆ u

0

√
2g(s) ds.

We further need to solve (2.8), which now reads

u′ = Hv(u, Su(u)) = Su(u) =
√

2g(u).

A solution of this equation is implicitly given by

x =
ˆ u(x)

u(0)

ds√
2g(s)

.

Thus, setting v = Su(u), we have found a solution of the Hamiltonian system

u′ = Hv(u, v) = v

v′ = −Hu(u, v) = g′(u).

Note in particular, that

u′′ = v′ = g′(u),

which is the Euler-Lagrange equation associated to the integrand f .
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Proof of Theorem 2.14. Differentiating the definition of v, we see that for all x ∈
[a, b],

v′ = Sxu(x, u) + Suu(x, u)u′.

Differentiating the Hamilton-Jacobi equation with respect to u, it holds that for
every (x, u) ∈ [a, b]× R,

Sxu +Hu(x, u, Su(x, u)) +Hv(x, u, Su(x, u))Suu(x, u) = 0.

In particular, we deduce, using also (2.8),

v′ =−Hu(x, u, Su(x, u))−Hv(x, u, Su(x, u))Suu(x, u) + Suu(x, u)u′

=−Hu(x, u, Su(x, u)) = −Hu(x, u, v).

Thus the couple (u, v) does indeed solve the Hamiltonian system.
Concerning the moreover part, we note

0 = d
dα
(
Sx(x, u, α) +H(x, u, Su(x, u, α))

)
=Sxα(x, u, α) +Hv(x, u, Su(x, u, α))Suα(x, u, α) = 0.

In particular, if u solves (2.8),

0 = Sxα(x, u, α) + u′Suα(x, u, α) = d
dxSα(x, u, α)).

This was exactly our claim.

In fact Theorem 2.14 admits a converse, which we prove to close this section.

Theorem 2.17. Let H ∈ C1([a, b]× R× R), S ∈ C2([a, b]× R× R), S ≡ S(x, u, α).
Suppose S solves (2.7) for every (x, u, α) ∈ [a, b]× R× R with

Suα(x, u, α) 6= 0

for all (x, u, α) ∈ [a, b]× R× R. If u satisfies for every (x, α) ∈ [a, b]× R,

d
dxSα(x, u, α) = 0,

then for all (x, α) ∈ [a, b]× R,

u′ = Hv(x, u, Su(x, u, α)).

In particular, if v = Su(x, u, α), then (u, v) ∈ C1([a, b])× C1([a, b]) is a solution of
the Hamiltonian system (H).

Proof. We explicitly calculate

0 = d
dxSα(x, u, α) = Sxα(x, u, α) + Suα(x, u, α)u′.

Using the Hamilton-Jacobi equation (2.7),

0 = d
dα
(
Sx(x, u, α) +H(x, u, Su(x, u, α))

)
=Sxα(x, u, α) +Hv(x, u, Su(x, u, α))Suα(x, u, α).
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Since Suα(x, u, α) 6= 0, we deduce

u′ = Hv(x, u, Su(x, u, α))

for all (x, α) ∈ [a, b]×R. It remains to prove v′ = −Hu. Differentiating the definition
of v,

v′ =Sxu(x, u, α) + Suu(x, u, α)u′

=Sxu(x, u, α) + Suu(x, u, α)Hv(x, u, Su(x, u, α)).

Differentiating the Hamilton-Jacobi equation with respect to u, we find

0 = d
du
(
Sx(x, u, α) +H(x, u, Su(x, u, α))

)
=Sxu(x, u, α) +Hu(x, u, Su(x, u, α)) +Hv(x, u, Su(x, u, α))Suu(x, u, α).

In particular, we infer

v′ = −Hu(x, u, Su(x, u, α)) = −Hu(x, u, v).

3 Noether’s theorem
Many physical systems have symmetry properties. For example, in classical

mechanics we expect our systems to be invariant under translations and rotations of
the coordinate system. Moreover, we generally expect each symmetry of a system
to give rise to a conserved quantity. This raises the question of whether there is a
systematic way of exploiting this relationship. In other words, given an energy with
a symmetry property, can we derive a conservation law that the minimiser satisfies?
Noether’s theorem gives a way of ensuring this.
Example 3.1 (Symmetries of the Dirichlet energy). Let Ω ⊂ Rn. Consider the
minimisation problem

min
u∈W 1,2(Ω)

1
2

ˆ
Ω
|Du|2 dx

Suppose u ∈ W1,2(Ω) ∩W2,2
loc(Ω) is a minimiser. Note that the Dirichlet energy is

invariant under translations: If τ ∈ R and k ∈ {1, . . . , n} set

xτ = x+ τek, uτ (x) = u(x+ τek),

where ek is the k-th unit vector. If D ⊂ Ω is such that Dτ = D + τek ⊂ Ω for all τ
sufficiently small, then for such τ ,

1
2

ˆ
D

|Du|2 dx = 1
2

ˆ
Dτ

|Duτ |2 dxτ .

A further symmetry is expressed by setting for λ ≥ 0,

xλ = λx, uλ = λ
n−2

2 u(λx), Dλ = λD.

Then if D ⊂ Ω such that Dλ ⊂ Ω for all λ sufficiently small, then for such λ,

1
2

ˆ
D

|Du|2 dx = 1
2

ˆ
Dλ

|Duλ|2 dxλ

Note that, if we prefer this symmetry to be parametrised by τ ∈ R, we can set λ = eτ .
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The general set-up we consider in this section is the following: Consider the
energy

F [u] =
ˆ

Ω
f(x, u,Du) dx, (3.1)

where f ≡ f(x, y, z) : Ω× Rn × Rm×n → R, with f(x, ·, ·) being twice continuously
differentiably for every x ∈ Ω. Assume moreover that

|∂yF (x, y, z)|+ |∂zF (x, y, z)| ≤ C(1 + |y|2 + |z|2) (3.2)

for some C > 0 and all (x, y, z) ∈ Ω× Rn × Rm×n.
We first note, that for minimisers u ∈ W1,2(Ω) ∩W2,2

loc(Ω) the Euler-Lagrange
equation holds pointwise almost-everywhere:

Proposition 3.2. If u ∈ W1,2(Ω) ∩W2,2
loc(Ω) minimises (3.1), then for almost every

x ∈ Ω,

−div ∂zf(x, u,Du) + ∂yf(x, u,Du) = 0.

Proof. Fix a domain ω b Ω. Let φ ∈ C∞(Ω) with φ = 0 in Ω \ ω and ε > 0. Then
since u minimizes (3.1),

0 ≥ lim
ε→0

ε−1 (F [u]−F [u+ εφ]
)

= lim
ε→0

ˆ
ω

f(x, u,Du)− f(x, u+ εφ,Du+ εDφ) dx.

Due to (3.2) and the mean-value theorem, the dominated convergence theorem ap-
plies and we deduce using the divergence theorem,

0 ≥
ˆ
ω

〈∂zf(x, u,Du),Dφ〉+ ∂yf(x, u,Du)φ dx

=
ˆ
ω

(
−div ∂zf(x, u,Du) + ∂yf(x, u,Du)

)
φdx.

Applying Lemma 2.8 and since ω b Ω was arbitrary, we conclude the proof.

We next need to generalise what we mean by the energy having a symmetry. For
this purpose, let g : Rn × R→ Rn, H : Rn × R→ Rn with

g(x, 0) = x, H(x, 0) = u(x).

Suppose g(x, ·), H(x, ·) are continuously differentiable for almost every x ∈ Ω. We
write for any domain D ⊂ Ω,

xτ = g(x, τ), uτ (x) = H(x, τ), Dτ = g(D, τ)

One should think of (g,H) as a sort of homotopy.

Definition 3.3. We say F is invariant under (g,H) if
ˆ
D

f(x, uτ ,Duτ ) dx =
ˆ
Dτ

f(x′, u(x′),Du(x′)) dx′ (3.3)

for any Lipschitz domains (that is Ω ⊂ Rn open, bounded, connected such that ∂Ω
is the union of a finite number of Lipschitz curves) D b Ω with Dτ b Ω.
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Theorem 3.4 (Noether’s theorem). Let f : Ω × Rn × Rm×n → R. Suppose f(x, ·, ·)
is C2 for almost every x ∈ Ω and there exists C > 0 such that

|∂yf(x, y, z)|+ |∂zf(x, y, z)| ≤ C(1 + |y|2 + |z|2)

for all (x, y, z) ∈ Ω × Rn × Rm×n. Assume F is invariant under (g,H) and that
there is h ∈ L2(Ω) such that for almost every x ∈ Ω and every τ ∈ R,

|∂tH(x, τ)|+ |∂τg(x, τ)| ≤ h(x).

Then for any minimiser or critial point u ∈W1,2(Ω)∩W2,2
loc(Ω) the conservation law

divµT∂zf(x, u,Du)− νf(x, u,Du) = 0

holds for almost every x ∈ Ω. Here µ(x) = ∂τH(x, 0) and ν(x) = ∂τg(x, 0) are the
Noether multipliers.

Proof. Fix a Lipschitz domain D b Ω such that for sufficiently small τ , Dτ b Ω.
Differentiate (3.3) with respect to τ , noting that integration and differentiation may
be interchanged due to our growth assumptions. This gives
ˆ
D

∂yf(x, uτ ,Duτ )∂τuτ + ∂zf(x, uτ ,Duτ )D∂τuτ dx = d
dτ

ˆ
Dτ

f(x′, u,Du) dx′.

Due to Reynold’s transport theorem, or alternatively by checking the following iden-
tity using a change of coordinates,

d
dτ

ˆ
Dτ

f(x′, u,Du) dx′ = −
ˆ
∂Dτ

f(x′, u,Du)∂τg(x, τ) · n dH n−1.

Using this identity, evaluated at τ = 0 and the divergence theorem, we obtain
ˆ
D

(−div ∂zf(x, u,Du) + ∂yf(x, u,Du))µdx

=
ˆ
∂D

(µT∂zf(x, u,Du)− νf(x, u,Du)) · n dH n−1

=−
ˆ
D

div (µT∂zf(x, u,Du)− νf(x, u,Du)) dx.

Due to Proposition 3.2, the left-hand side vanishes and we deduce that almost
everywhere in D,

div (µT∂zf(x, u,Du)− νf(x, u,Du) = 0.

As D was arbitrary, this concludes the proof.

Noting that if f does not explicitly depend on x, any minimiser is invariant under
translations, we obtain the following corollary:

Corollary 3.5. Under the assumptions of Theorem 3.4, if f ≡ f(y, z) : R×Rn → R,
then any minimiser or critical point u ∈ W1,2(Ω) ∩W2,2

loc(Ω) satisfies for almost
every x ∈ Ω,

d∑
i=1

∂i
(
∂ku) · ∂zkf(u,Du)− δikf(u,Du)

)
= 0,

for k = 1, . . . , n.
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Proof. Apply Theorem 3.4 with the choice

g(x, τ) = x+ τek, H(x, τ) = u(xτ ).

Note in particular, that

µ = ∂τ
∣∣
τ=0u = Du(x) · ek

and

ν = ∂τ
∣∣
τ=0xτ = ek.

Example 3.6 (conserved quantities related to Dirichlet energy). Note first, that in
the case of the Dirichlet energy, Corollary 3.5 only gives a trivial conserved quantity.
Applying Noether’s theorem with respect to the scaling symmetry

g(x, τ) = eτx, H(x, τ) = eτ
d−2

2 u(eτx),

gives non-trivial information. In particular, we find

µ = (n− 2)(u(x) + x ·Du(x)), ν(x) = x

and hence that

div
(

(2Du · x+ (n− 2)u)Du− |Du|2x
)

= 0

Noting that due to Proposition 3.2, div Du = 0 almost every, we find using the
Divergence theorem in combination with the conservation law,

(n− 2)
ˆ
B(x0,r)

|Du|2 dx =
ˆ
B(x0,r)

div
(
|Du|2x− 2Du · xDu0

)
dx

=
ˆ
∂B(x0,r)

|Du|2x · x
|x|
− 2Du · xDu · x

|x|
dH n−1

=r
ˆ
∂B(x0,r)

|Du|2 −
(

Du · x
|x|

)2
dH n−1

In particular, using Reynold’s transport theorem, we can calculate,

d
dr

1
rn−2

ˆ
B(x0,r)

|Du|2 dx =− n− 2
rn−1

ˆ
B(x0,r)

|Du|2 + 1
rn−2

ˆ
∂B(x0,r)

|Du|2 dH n−1

= 2
rn−2

ˆ
∂B(x0,r)

(
Du · x

|x|

)2
dH n−1 ≥ 0.

Thus, the quantity 1
rd−2

´
B(x0,r)|Du|

2 dx is increasing in r. For n > 2, this is a
nontrivial information about u.

Example 3.7 (Brachistrone). Recall that in Example 1.3 we studied the minimisation
problem

F [u] =
ˆ 1

0

√
1 + (y′)2

−y
dx
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amongst graphs y : [0, 1] → R with y(0) = 0 and y(1) = y < 0. Corollary 3.5 now
tells us that with f(y, y′) =

√
1+(y′)2

−y ,

y′ · ∂zf(y, y′)− f(y, y′) = const. = − 1√
2r
,

for some r > 0. We take the constant to be negative here, as the following calculation
will show that for a positive constant, the obtained y is not admissible. By elementary
calculations, the above identity is equivalent to

(y′)2 = −2r
y
− 1.

It is now straightforward to check that this equation has a unique solution given by{
x(t) = r(t− sin(t))
y(t) = −r(1− cos(t))

Note however that due to technical issues (e.g. growth conditions) we have not rig-
orously shown this to be the unique solution. These issues can however be remedied.

4 Existence theory using the direct method
We now turn our attention towards direct methods. The philosophy behind this

approach is to consider the minimisation problem in sufficiently weak spaces that
existence can be proven relatively easily. Having obtained existence, the idea is to
then prove a priori estimates that show that such weak solutions of our problem
actually are classical solutions and thus the results of the classical methods we have
seen so far apply. We will begin by studying in some detail the question of existence
of minimsiers in this framework.

Throughout this section we will fix, unless otherwise specified, a Lipschitz domain
Ω. The general setting we wish to study is the following:

min
u∈X

F [u] = min
u∈X

ˆ
Ω
f(x, u,Du) dx, where X = {u ∈W1,p(Ω,Rm) : u

∣∣
∂Ω = g}

(4.1)

where p ∈ (1,∞) and g ∈ W1− 1
p ,p(∂Ω,Rm). The continuity assumptions on f are

summarised in saying that f is a Carathéodory integrand:
Definition 4.1. f : Ω× Rn × Rm×n → R is a Carathéodory integrand if

• f(,̇y, z) is measurable for all (y, z) ∈ Rn × Rm×n

• f(x, ·, ·) is continuous for almost every x ∈ Ω.

4.1 Existence for the Dirichlet energy
We begin our study by considering the model case of the Dirichlet energy. We

consider the problem

min
u∈X

ˆ
Ω
|Du|2 dx, where X = {u ∈W1,2(Ω): u ∈W1,2

u0
(Ω)}

where u0 ∈ W 1
2 ,2(∂Ω). Note that, since Ω is Lipschitz, u0 can be extended to

u0 ∈W1,2(Ω). Conversely, if u0 ∈W1,2(Ω), u0 admits a trace on ∂Ω in W 1
2 ,2(∂Ω).
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In particular, a common, essentially equivalent formulation of the problem, is given
by

min
u∈X

ˆ
Ω
|Du|2 dx, where X = {u ∈W1,2(Ω): u ∈ u0 + W1,2

0 (Ω)}

where u0 ∈W1,2(Ω).
Set F [u] =

´
Ω|Du|

2 dx. Note that 0 ≤ F [u] for any u ∈ X and F [u0] <∞. In
particular,

0 ≤ inf
u∈X

F [u] = m <∞.

Thus, we may find a sequence (uj) ⊂ X with F [uj ] → m as j → ∞. Due to
Poincaré’s inequality, we find

‖uj‖W1,2(Ω) . F [uj ] ≤ sup
j

F [uj ] <∞.

Thus (uj) is a bounded sequence in W1,2(Ω). Note further that X is an affine, closed
subspace of W1,2(Ω), which is reflexive and separable. Hence, by Banach-Alaoglu
theorem, (uj) admists a (non-relabeled) subsequence such that uj → u for some
u ∈ X. Now, by Fatou’s lemma,

m = lim inf
j→∞

ˆ
Ω
|Duj |2 dx ≥

ˆ
Ω
|Du|2 dx.

Thus u is a minimiser of our problem.
There is an obvious trade-off in this strategy for proving existence. On the

one hand, we need to establish the convergence of an appropriate subsequence of
(uj) with respect to some topology. On the other hand, the energy needs to be
sequentially lower semi-continuous with respect to this topology (expressed in the
above by Fatou’s lemma). In general, establishing convergence is easier in weaker
topologies, but establishing continuity properties is easier in stronger topologies. It
is remarkable that for many energies the topology that enables carrying out the
scheme of the direct method to prove existence agrees with the topology of the
physically relevant spaces of solutions.

4.2 An abstract existence result
We now extract the essence of our existence proof with regards to the Dirichlet

energy and establish an abstract existence result.
Let X be a complete metric space. Consider F : X → R ∪ {+∞} satisfying the

following properties
(H1) F is coercive: For all Λ ∈ R, {u ∈ X : F [u] ≤ Λ} is sequentially pre-compact.

That is whenever (uj) ⊂ X is such that F [uj ] ≤ λ for all j, then (uj) has a
convergent subsequence.

(H2) F is sequentially lower semi-continuous (slsc): Whenever (uj) ⊂ X with uj →
u, then F [u] ≤ lim infj→∞F [uj ].

We focus on the sequential definitions of (H1) and (H2) rather than their topological
versions, since these are more convenient to us.
Theorem 4.2. Let X be a complete metric space. Assume F : X → R ∪ {+∞} is
coercive and sequentially lower semi-continuous. Then

min
u∈X

F [u]

admits at least one solution.
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Proof. Assume there exists u0 ∈ X with F [u0] < ∞. Otherwise, any u ∈ X is a
solution. Then there exists (uj) ⊂ X such that F [uj ]→ infu∈X F [u] = m <∞. In
particular, there is Λ > 0 such that F [uj ] ≤ Λ for all j and thus due to (H1), (uj)
has a (non-relabeled) convergent subsequence such that uj → u. Due to (H2),

F [u] ≤ lim inf
j→∞

F [uj ] = m.

Thus u is a minimiser.

As mentioned in the discussion of the previous section, we can usually not work
with the strong topology and hence will often use a version of Theorem 4.2 phrased
with respect to weak convergence.
Theorem 4.3. Let X be a reflexive Banach space or a closed affine subset of a
reflexive Banach space. Let F : X → R ∪ {+∞}. Assume

(wH1) F is weakly coercive: For any Λ > 0, {u ∈ X : F [u] ≤ Λ} is sequentially
weakly pre-compact.

(wH2) F is sequentially weakly lower semi-continuous: For all (uj) ⊂ X such that
uj ⇀ u ∈ X,

F [u] ≤ lim inf
j→∞

F [uj ].

Then

min
u∈X

F [u]

admits at least one solution.

Proof. The proof is exactly as in Theorem 4.2 using that any strongly closed affine
subset of a Banach space is also weakly closed.

4.3 Existence for integrands f(x, z)
We now wish to apply Theorem 4.3 to our problem (4.1). We first consider

integrands f ≡ f(x, z). In light of Theorem 4.3, we need to establish weak coercivity
and sequential weak lower semicontinuity of F . Before doing so, we are required
to address a technical issue: we need to check that Carathéodory integrands are
Lebesgue-measurable and hence that F is well-defined.
Lemma 4.4. Let f : Ω×Rm×n → R be Carathéodory. Then for any Borel-measurable
V : Ω→ Rm×n, x→ f(x, V (x)) is Lebesgue-measurable.

Proof. Suppose first that V is a simple function, that is V =
∑m
k=1 vk1Ek where

Ek ⊂ Ω are pairwise-disjoint Borel measurable sets such that Ω = ∪mk=1Ek and
vk ∈ Rm×n. Then

{x ∈ Ω: f(x, V (x)) > t} = ∪mk=1{x ∈ Ek : f(x, vk) > t}.

The right-hand side is a union of sets that are Lebesgue-measurable since f(·, vk) is
Lebesgue-measurable.

For a general V , approximate V by simple functions Vk so that

f(x, Vk(x))→ f(x, V (x))

pointwise in Ω. Thus f(x, V ) is the pointwise limit of Lebesgue-measurable functions
and hence Lebesgue-measurable.
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In general, it is possible that x → f(x, u,Du) is measurable, but F [u] is not
well-defined. This can be avoided, if e.g. f ≥ 0 or

f(x, y, z) . (1 + |y|p + |z|p).

This growth assumption will however play no role in this chapter, except to exclude
such pathological cases.

The most commonly used coercivity assumption and the only one we will consider
is the existence of λ > 0 such that

λ|z|p ≤ f(x, z) ∀(x, z) ∈ Ω× Rm×n. (4.2)

Often, this condition is stated as

λ|z|p − c ≤ f(x, z)

for some c > 0. However, by setting f̃(x, z) = f(x, z)+c, this recovers (4.2) without
changing the minimisers. Further, (4.2) specifies the space W1,p(Ω) in which we
look for solutions.

Proposition 4.5. If f : Ω × Rm×n → [0,∞) is Carathéodory and satisfies (4.2) for
some λ > 0 and p ∈ (1,∞), then F is weakly coercive on

W1,p
g (Ω,Rm) = {u ∈W1,p(Ω,Rm) : u

∣∣
∂Ω = g},

where g ∈W1− 1
p ,p(∂Ω).

Proof. Let (uj) ⊂W1,p
g (Ω) with supj F [uj ] <∞. Due to (4.2),

µ sup
j

ˆ
Ω
|Duj |p dx ≤ sup

j
F [uj ] <∞.

Fix u0 ∈W1,p
g (Ω,Rm). Then by Poincaré’s inequality,

‖uj‖W1,p(Ω) ≤‖uj − u0‖W1,p(Ω) + ‖u0‖W1,p(Ω)

.‖Duj −Du0‖Lp(Ω) + ‖u0‖W1,p(Ω)

≤2‖u0‖W1,p(Ω) + sup
j
‖Duj‖L1,p(Ω) <∞.

As p > 1, this means (uj) is a bounded sequence in a closed affine subspace of
W1,p(Ω). As W1,p(Ω) is reflexive and separable, by Banach-Alaoglu theorem, (uj)
has a weakly convergent subsequence. Thus F is weakly coercive.

We next turn towards establishing sequential lower semi-continuity. A first result
in this direction is due to Tonelli (for n = 1) and Serrin (n > 1). It shows that
convexity implies sequential lower semi-continuity. For n = 1 (the one-dimensional
case) or m = 1 (the scalar case), this is sharp. For n > 1, the sharp notion of
convexity needed in order to imply sequential lower semi-continuity is called quasi-
convexity. Quasi-convexity is still studied and far from being well-understood. We
will return to study quasi-convexity in Chapter 6

Theorem 4.6. Let f : Ω × Rm×n → [0,∞) be Carathéodory and such that f(x, ·) is
convex for almost every x ∈ Ω. Then F is weakly sequentially lower semi-continuous
on W1,p(Ω,Rm) for any p ∈ (1,∞).
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Proof. Step 1. We first prove that F is strongly sequentially lower semi-continuous.
Suppose uj → u in W1,p(Ω,Rm). After passing to a subsequence, we may assume
that Duj → Du almost everywhere. Note f(x,Duj) ≥ 0, so that by Fatou’s theorem

F [u] =
ˆ

Ω
f(x,Du) dx ≤ lim inf

j→∞

ˆ
f(x,Duj) = lim inf

j→∞
F [uj ].

As this holds for all subsequences, we deduce that F [u] ≤ lim infj→∞F [uj ] (see
Discussion Sheet 2 for more details on this).
Step 2. Suppose (uj) ⊂W1,p(Ω,Rm) and u ∈W1,p(Ω,Rm) are such that uj ⇀ u in
W1,p(Ω). Then there exists a subsequence, such that F [uj ]→ lim infj→∞F [uj ] =
m. By Mazur’s lemma, there exist

vj =
N(j)∑
n=j

θjnun, θjn ∈ [0, 1],
N(j)∑
n=j

θjn = 1

such that vj → u in W1,p(Ω). On the one hand, as f(x, ·) is convex for almost every
x ∈ Ω,

F [vj ] =
ˆ

Ω
f

x,N(j)∑
n=j

θjnDun

 dx

≤
N(j)∑
n=j

θjn

ˆ
Ω
f(x,Dun) dx =

N(j)∑
n=j

θjnF [un]→ m

On the other hand, by Step 1,

F [u] ≤ lim inf
j→∞

F [vj ].

This concludes the proof.

Combining Proposition 4.5 and Theorem 4.6 with Theorem 4.3 we obtain the
following existence result:

Theorem 4.7. Let p ∈ (1,∞). Let f : Ω×Rm×n → [0,∞) be Carathéodory such that
• f is p-coercive: f(x, z) ≥ λ|z|p for almost every x ∈ Ω and every z ∈ Rm×n.
• f(x, ·) is convex for almost every x ∈ Ω.

Then F has a minimiser over W1,p
g (Ω,Rm) where g ∈W1− 1

p ,p(∂Ω,Rm).

We now establish that convexity is the sharp assumption to obtain weak sequen-
tial lower semi-continuity in the scalar or one-dimensional case when f is indepen-
dent of x.

Proposition 4.8. Let F : W1,p(Ω,Rm) → R be such that f ≡ f(z) : Rm×n → R is
continuous. If F is sequentially weakly lower semi-continuous on W1,p(Ω,Rm) and
m = 1 or n = 1, then f is convex.

Proof. We focus on the case m = 1, n ≥ 1. The case n = 1 can be dealt with
similarly. Fix a, b ∈ Rn, a 6= b and θ ∈ (0, 1). Write v = θa+ (1− θ)b. Introduce

uj(x) = v · x+ 1
j
φ0(jx · n− bjx · nc)
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where

φ0(x) =
{
−j(1− θ)t if t ∈ (0, θ)
θt− θ if t ∈ [θ, 1).

Note that

Duj =
{
a if jx · n− bjx · nc ∈ (0, θ),
b if jx · n− bjx · nc ∈ [θ, 1).

Further as φ0 is bounded, 1
jφ0(jx ·n−bjx ·nc)→ 0 uniformly in [0, 1]. In particular,

we deduce that uj ⇀ v in W1,p(Ω,Rm). By weak sequential lower semi-continuity,

|Ω|f(v) = F [x · v] ≤ lim inf
j→∞

F [uj ] = |Ω|
(
θf(a) + (1− θ)f(b)

)
.

Thus f is convex.

Finally, to close this section, we remark that the uniqueness part of Theorem 2.6
has a corresponding statement in this setting:

Proposition 4.9. Let p ∈ [1,∞). Consider F : W1,p(Ω,Rm) → R with f : Ω ×
Rm×n → Ω Carathéodory. If f(x, ·) is strictly convex for almost every x ∈ Ω, then
a minimiser u ∈ W1,p

g (Ω,Rm) of F , where g ∈ W1− 1
p ,p(∂Ω,Rm), is unique if it

exists.

Proof. Assume u 6= v are minimisers of F in W1,p
g (Ω). Setting w = u+v

2 , we find

F [w] < 1
2F [u] + 1

2F [v] = min
u∈W1,p

g (Ω,Rm)
F [u].

Thus u = v.

4.4 Existence for integrands with u-dependence
We now wish to study functionals of the form

F [u] =
ˆ

Ω
f(x, u,Du) dx.

We will make the coercivity assumption

λ|z|p + c1|y|q + c2 ≤ f(x, y, z) (4.3)

for some λ > 0, c1, c2 ∈ R, p > q ≥ 1 and almost every x ∈ Ω, all (y, z) ∈ Rm×Rn×m.
Thus F is weakly coercive using (the proof of) Proposition 4.5. If we try to prove
sequential weak lower semi-continuity of F using the proof of Theorem 4.6, we
encounter the expression

ˆ
Ω
f

x,N(j)∑
n=j

θjnun,

N(j)∑
n=j

θjnDun

 dx.

Whereas before, we were able to pull the sums outside of f using convexity, without
assuming convexity of f(x, ·, ·), we cannot do so anymore. Nevertheless, sequential
weak lower semi-continuity does hold.
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Theorem 4.10. Suppose f : Ω × Rm × Rn×m → [0,∞) is Carathéodory. Assume
f(x, y, ·) is convex for every (x, y) ∈ Ω × Rm. Then for every p ∈ (,∞), F is
sequentially weakly lower semi-continuous over W1,p(Ω,Rm).

Before completing the proof of Theorem 4.10, we note that as a consequence of
it and of the coercivity of F , we obtain an existence theorem.

Theorem 4.11. Suppose the assumptions of the previous theorem hold. Assume in
addition that (4.3) holds for some λ > 0 and p ∈ (1,∞). Then there exists at
least one minimiser of the problem minu∈X F [u] with X = W1,p

g (Ω,Rm), where
g ∈W1− 1

p ,p(∂Ω,Rm).

Proof of Theorem 4.10. We will prove the theorem under the additional assumption
that f ∈ C1 and that there exists C ≥ 0 such that for all (x, y, z) ∈ Ω×Rm×Rm×n
it holds

λ|z|p ≤ f(x, y, z) (4.4)

|∂yf(x, y, z)|+ |∂zf(x, y, z)| ≤ C
(

1 + |y|p−1 + |z|p−1
)

(4.5)

The proof without this assumption is considerably more technical, we will go some
way towards proving the full theorem in the problem class.

Let (ui) ⊂ W1,p
g (Ω,Rm) and u ∈ W1,p

g (Ω,Rm) be such that ui ⇀ u weakly in
W1,p(Ω,Rm). Using the convexity of f(x, y, ·) and the C1-regularity of f , we find

f(x, ui,Dui) ≥ f(x, u,Du) + ∂yf(x, u,Du)(ui − u) + 〈∂zf(x, u,Du),Dui −Du〉.
(4.6)

We now want to integrate this expression. In order to do this, we need to check that

∂yf(x, u,Du)(ui − u) + 〈∂zf(x, u,Du),Dui −Du〉 ∈ L1(Ω).

Indeed, using (4.4) and Hölder’s inequality,
ˆ

Ω
|∂yf(x, u,Du)||ui − u|dx ≤

ˆ (
1 + |u|p−1 + |Du|p−1)

p
p−1 dx

) p−1
p ‖ui − u‖Lp(Ω)

≤c
(

1 + ‖u‖pLp(Ω) + ‖ui‖pLp(Ω)

)
<∞.

The other term is estimated similarly. In particular, integrating (4.6) over Ω,

F [ui] ≥ F [u] +
ˆ

Ω
∂yf(x, u,Du)(ui − u) dx+

ˆ
Ω
〈∂zf(x, u,Du),Dui −Du〉dx.

However as ui ⇀ u in W1,p(Ω),

lim
i→∞

ˆ
Ω
∂yf(x, u,Du)(ui − u) dx = lim

i→∞

ˆ
Ω
〈∂zf(x, u,Du),Dui −Du〉dx = 0.

We deduce

lim inf
i→∞

F [ui] ≥ F [u]

as desired.

Example 4.12 (Linearised elasticity). With Theorem 4.10 we can handle a large class
of problems. In particular, it is a useful tool to establish an existence theory also for
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problems that are coercive in the sense of (4.3), but not of the form F (x, u,Du).
Such examples arise in linear elasticity theory.

Suppose we are given a body in a reference configuration Ω. We now deform
Ω using an elastic deformation y : Ω → y(Ω). Since we are thinking of elastic
deformations, y should be a differentiable bijection that is orientation preserving,
i.e. det Dy(x) > 0 for x ∈ Ω. It is natural to describe the energy in terms of the
deformation u(x) = y(x) − x. We expect the energy associated to the configuration
y(Ω) to be preserved under rigid body motions of Ω. A commonly used energy with
this property is the Green-St. Venant stress tensor

G(u) = 1
2

(
Du+ (Du)T + (Du)TDu

)
.

Note that E (u) = Du + (Du)T is the symmetric part of the gradient. If we assume
Du is small, then

G(u) ∼ 1
2E (u).

Thus, in linearised elasticity a good basic model is given by looking for minimisers
of the problem

1
2

ˆ
〈E (u), C(x)E (u)〉dx.

Here C(x) is a symmetric positive-definite fourth order tensor, known as the elastic-
ity tensor. If the medium is homogeneous and isotropic, C(x) ≡ C, and it is possible
to show that the energy above reduces to minimising

ˆ
Ω
µ|E (u)|2 + 1

2

(
κ− 2

3µ
)
|tr E (u)|2 dx.

Here κ is the bulk constant, while µ is called shear constant. Both are material
constants describing properties of the medium.

Consider hence the minimisation problem

min
u∈X

F [u] = min
u∈X

1
2

ˆ
Ω

2µ|E (u)|2 +
(
κ− 2

3µ
)
|tr E (u)|2 − b · udx

X = {u ∈W1,2(Ω,R2) : u
∣∣
∂Ω = g, g ∈W 1

2 ,2(∂Ω,Rm)}.

Here b ∈ L2(Ω) describes an external force we apply to the body. Note that F
has quadratic growth and is convex in E (u). Thus, in order to obtain existence of
minimisers, using Theorem 4.10 it suffices to show F is coercive.

We will establish coercivity under the assumption g = 0 and κ − 2
3µ ≥ 0 for

simplicity. Note that by a direct, pointwise calculation for any φ,

2〈E (φ) : E (φ)〉 − 〈Dφ,Dφ〉 = div
(
Dφφ− div (φ)φ

)
+ (divφ)2.

Integrating this identity over Ω and applying the divergence theorem, we find

2‖E (φ)‖2L2(Ω) − 2‖Dφ‖2L2(Ω) =
ˆ

Ω
div

(
Dφφ− div (φ)φ

)
+ (divφ)2 dx

≥
ˆ

Ω
(divφ)2 dx = 0

This inequality is known as Korn’s inequality. Thus, using Hölder’s inequality, we
deduce

F [u] ≥µ‖E (u)‖2L2(Ω) − ‖b‖L2(Ω)‖u‖L2(Ω)
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≥µ‖Du‖2L2(Ω) − C(δ)‖b‖2L2(Ω) − δ‖u‖
2
L2(Ω)

≥µ2 ‖Du‖L2(Ω) − C‖b‖L2(Ω).

To obtain the last line, we chose δ sufficiently small. In particular, arguing as for
Proposition 4.5, we see that F is coercive and hence existence of minimisers follows.

Theorem 4.10 is essentially sharp if m = 1 or n = 1. If m > 1 or n < 1,
the convexity assumption can be weakened as we already discussed in relation to
Tonelli’s lower semi-continuity theorem and will discuss in more detail in the future.
We collect below a number of examples that show that the assumption p ∈ (1,∞),
as well as the assumptions λ > 0 and p < q in (4.3) cannot be relaxed in general.

Example 4.13 (p = 1). Let n = 1, f(x, y, z) =
√
y2 + z2. Consider

inf
u∈X

ˆ 1

0
f(x, u, u′) dx where X = {u ∈W1,1((0, 1)) : u(0) = 0, u(1) = 1}.

Note

F [u] ≥
ˆ 1

0
u′ dx = 1.

Consider

ui =
{

0 if x ∈ [0, 1− 1/i]
1 + i(x− 1) if x ∈ [1− 1/i, 1].

Note that then

F [ui] =
ˆ 1

1−1/i

√
(1 + i(x− 1))2 + i2 dx ≤ 1

i

√
1 + i2 → 1.

Hence, if the problem admits a minimiser u, it must satisfy

1 = F [u] =
ˆ 1

0

√
u2 + (u′)2 dx ≥

ˆ
u′ dx = 1.

In particular, u′ = 1 almost everywhere in (0, 1) and u = 0 almost everywhere in
(0, 1), which is a contradiction.

Example 4.14 (Weierstrass example, λ > 0). Let n = 1 and consider f(x, y, z) =
xz2. We study

inf
u∈X

ˆ 1

0
f(x, u, u′) dx where X = {u ∈W1,1((0, 1)) : u(0) = 0, u(1) = 1}.

We saw on a problem sheet that this problem does not have a solution in the space
Y = X ∩ C1([0, 1]) and that the infimum over this space is 0. Clearly

0 ≤ inf
u∈X

ˆ 1

0
f(x, u, u′) dx ≤ inf

u∈X∩C1([0,1])

ˆ 1

0
f(x, u, u′) dx = 0.

In particular, any possible minimiser must satisfy u′ = 0 almost everywhere in (0, 1),
which gives a contradiction.
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Example 4.15 (p = q). We have already seen in a problem class that if n = 1 and
λ > π with f(x, y, z) = 1

2 (z2 − λ2y2),

inf
u∈W1,2

0 (Ω)

ˆ 1

0
f(x, u, u′) dx = −∞.

Thus this problem admits no solution.

Example 4.16 (convexity if n = 1). Consider with n = 1, f(y, z) = (z2 − 1)2 + y4

and the problem

inf
u∈W1,4

0 ((0,1))

ˆ 1

0
f(u, u′) dx = m

Assume that we have shown that m = 0. Then if u is a minimiser, u = 0 al-
most everywhere in (0, 1) and |u′| = 1 almost everywhere in (0, 1). But by Sobolev
embededing, functions in W1,4((0, 1)) are continuous, so that this provides a contra-
diction.

This also suggests how to build competitors (ui) with lim
´ 1

0 f(ui, u′i) dx = 0.
By direct calculation the family (ui) defined on each interval [k/i, (k + 1)/i] for
0 ≤ k ≤ i− 1 via

ui(x) =

x−
k
i if x ∈

[
2k
2i ,

2k+1
2i

]
−x+ k+1

i if x ∈
(

2k+1
2i , 2(k+1)

2i

]
has the desired property.

4.5 Integral side constraints
In this section, we have so far only considered Dirichlet boundary conditions.

However in Section 1, we introduced a number of other side conditions. The most
important of these was an integral side condition of the form

´
h(x, u) dx = 0 for

some function h. We now adapt the direct method to this setting, beginning with
an abstract existence theorem in the framework of weak convergence.

Theorem 4.17. Let X be a Banach space or a closed affine subset of a Banach space.
Suppose F ,H : X → R ∪ {+∞}. Assume

(wH1) F is weakly coercive: For any Λ > 0, {u ∈ X : F [u] ≤ Λ} is sequentially
weakly pre-compact.

(wH2) F is sequentially weakly lower semi-continuous.
(wH3) H is weakly continuous: Whenever (uj) ⊂ X with uj ⇀ u in X, then

H [uj ]→H [u].
Assume there is u0 ∈ X with H [u0] = 0. Then the problem

min
{u∈X : H [u]=0}

F [u]

admits at least one solution.

Proof. The proof is exactly as the proof of Theorem 4.3, except that we need to
take the subsequence (uj) to additionally satisfy H [uj ] = 0. In particular, this will
imply, with uj ⇀ u weakly in X, H [u] = 0.
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The following lemma gives the required weak continuity for an integral side
constraint under reasonable assumptions on h.

Lemma 4.18. Let h : Ω × Rm → R be Carathéodory. Suppose for some p ∈ [1,∞)
and C > 0,

|h(x, y)| ≤ C(1 + |y|q) (4.7)

for almost every x ∈ Ω and every y ∈ Rm, where q ∈
[
1, np

n−p

)
if p < n and q <∞

if p ≥ n. Then H [u] =
´

Ω h(x, u) dx is weakly continuous.

Proof. We deal with the case p < n. The argument in case p ≥ n is similar, but
easier. Suppose uj ⇀ u in W1,p(Ω). Up to passing to a non-relabeled subsequence,
we may assume uj → u in Lq(Ω) and almost everywhere in Ω. By (4.7), we find for
almost every x ∈ Ω,

h(x, y) + C(1 + |y|q) ≥ 0,

so that by Fatou’s lemma,

lim inf
j→∞

H [uj ] +
ˆ

Ω
C(1 + |uj |q) dx ≥H [u] +

ˆ
Ω
C(1 + |u|q) dx

Noting that we may replace h→ −h in the argument above, combined with the fact
that uj → u in Lq(Ω), we deduce

lim inf
j→∞

H [uj ] ≥H [u], lim inf
j→∞

−H [uj ] ≥ −H [u].

However, note that this implies limj→∞H [uj ] = H [u]. As this holds for a subse-
quence of any subsequence of (uj), the lemma is proven.

Remark 4.19. Note that the previous lemma captures in particular the side con-
straint

´
Ω u = 0, which is commonly imposed when considering Neumann boundary

conditions.

Combining Theorem 4.17 with Proposition 4.5, Theorem 4.6 and Lemma 4.18,
we obtain an existence result.

Theorem 4.20. Let f : Ω → Rm×n → [0,∞) and h : Ω × Rm → R be Carathéodory
and such that

• There is λ > 0 such that for almost every x ∈ Ω and every z ∈ Rm×n,
f(x, z) ≥ λ|z|p.

• For almost every x ∈ Ω, f(x, ·) is convex.
• For almost every x ∈ Ω, z ∈ Rm×n, |h(x, y)| ≤ C(1 + |y|q) for some C > 0

and q ∈
[
1, np

n−p

)
if p < n, any q <∞ if p ≥ n.

Let g ∈W1− 1
p ,p(∂Ω,Rm). Assume there exists u0 ∈W1,p

g (Ω,Rm) with

H [u0] =
ˆ

Ω
h(x, u0) dx = 0.

Then there exists at least one solution to the problem

min
{u∈W1,p

g (Ω,Rm) : H [u]=0}

ˆ
Ω
f(x,Du) dx.
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5 Regularity
Our existence results in the previous section raise the question of whether it

is possible to return from the regime of minimisation in W1,p(Ω) to the regime of
classical solutions of the Euler-Lagrange equation which we studied in Section 2. In
other words, we are asking whether a priori regularity estimates for minimisers in
Sobolev spaces are available. In general, there are two natural directions of regularity
questions: concerning regularity of u and concerning regularity of derivatives of u,
i.e. of Du. Studying properties of Du requires use of the Euler-Lagrange equation
(in its weak form) and thus falls into the regime of techniques applicable to elliptic
PDEs. This setting will be covered in other courses. While in certain situations, it
is still the case that properties of the Euler-Lagrange equation need to be combined
with minimality, we focus here on aiming for C0,α-regularity of u for some α > 0 in
the scalar case m = 1, which can be obtained using minimality only.

Throughout this section Ω will always be a Lipschitz domain.

5.1 Lavrentiev phenomenon
Before proving Hölder-regularity of minimisers, we study the question of whether

at least the minimal value of energies agrees in Sobolev spaces and smooth spaces.
In other words, does it hold that

inf
u∈W1,p(Ω)

F [u] = inf
u∈C∞(Ω)

F [u].

Note that even if the answer to this question is positive, we should in general not
expect both infima to be attained- there are counterexamples that show that min-
imisers may fail to be smooth! This question is not just a mathematical question,
but has direct implications for numerical methods. A standard approach to solving
energy minimisation problems numerically is to apply a finite element approach to
the Euler-Lagrange equation. Thus, we hope to approximate our solution by solu-
tions that live in smooth (usually at least piecewise affine) function spaces. If the
minimal value over Sobolev functions and over the approximation spaces do not
agree, then this approach cannot be used. In this case, more advanced and difficult
methods, such as using non-conformal methods need to be applied.

Rephrasing the question in a slightly more abstract framework, we consider X ⊂
Y , where X is a dense subspace of a Banach space Y . Given F : Y → R ∪ {+∞},
we ask whether it is true that

inf
u∈X

F [u] = inf
u∈Y

F [u]. (5.1)

Note that if F is strongly continuous in Y , then the above identity does indeed
hold. This observation is at the heart of the following result:
Theorem 5.1. Suppose f : Ω × Rm × Rm×n → R is Carathéodory and satisfies for
almost every x ∈ Ω and (y, z) ∈ Rm × Rm×n,

|f(x, y, z)| ≤ C(1 + |y|p + |z|p)

for some C > 0 and p ∈ [1,∞). Then F [u] =
´

Ω f(x, u,Du) dx is strongly continu-
ous in W1,p(Ω). Consequently,

inf
u∈W1,p(Ω,Rm)

F [u] = inf
u∈C∞(Ω,Rm)

F [u].

Remark 5.2. Theorem 5.1 can be adapted to include problems with boundary condi-
tions.
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Proof of Theorem 5.1. Suppose uj → u in W1,p(Ω,Rm). Up to passing to a sub-
sequence, we may assume that uj → u and Duj → Du almost everywhere in Ω.
Further

F [u] ≤
ˆ

Ω
C(1 + |uj |p + |Duj |p) dx ≤ C|Ω|+ C sup

j
‖uj‖pW1,p(Ω) <∞.

Thus, by a version of the dominated convergence theorem,

lim
j→∞

F [uj ] = F [u].

By the usual subsequence of subsequences argument, we conclude the proof.

In light of Theorem 5.1 and Theorem 4.11, if f(x, y, z) satisfies p-growth and
a p-coercivity condition, we obtain existence of minimisers and (5.1) holds with
Y = W1,p(Ω), X = C∞(Ω). The following example shows that in general, (5.1)
need not hold.
Example 5.3 (Mania’s example (1934)). Consider the minimisation problem

min
u(0)=0,u(1)=1

F [u] = min
u(0)=0,u(1)=1

ˆ 1

0
(u3 − t)2(u′)6 dt.

Note that in W1,1((0, 1)), u(t) = t
1
3 is clearly a solution and

inf
{u∈W1,1((0,1)) : u(0)=0,u(1)=1}

F [u] = 0.

We will show that

inf
{u∈W1,∞((0,1)) : u(0)=0,u(1)=1}

F [u] > 0.

Note that if u ∈W1,∞((0, 1)), then u is Lipschitz. In particular, there is τ ∈ (0, 1)
such that for t ∈ [0, τ ]

u(t) ≤ h(t) = t
1
3

2 , u(τ) = h(τ).

In particular, we can estimate

F [u] ≥
ˆ τ

0
(u3 − t)2(u′)6 dt ≥ 72

82

ˆ τ

0
t2(u′)6 dt.

Using Hölder’s inequality, we further find,

τ
1
3

2 =
ˆ τ

0
u′ dt =

ˆ τ

0
t−

1
3 t

1
3u′ dt ≤ 5 5

6

3 5
6
τ

1
2

(ˆ
t2(u′)6 dt

) 1
6

.

Combining estimates, we deduce

F [u] ≥ 7235

825226τ
≥ 7235

825226 > 0.

Note that F is not coercive and one may wonder whether this causes the energies
to not match. However Ball and Mizel showed in 1985 that one can adapt the above
construction and obtain a coercive integrand. To be precise they showed that if

F [u] =
ˆ 1

−1
(t4 − u6)2|u′|26 + ε|u′|2 dt

for ε sufficiently small, then this integrand is coercive and nevertheless,

inf
{u∈W1,1((−1,1)) : u(−1)=−1,u(1)=1}

F [u] < inf
{u∈W1,∞((−1,1)) : u(−1)=−1,u(1)=1}

F [u]
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Example 5.3 shows that as soon as the space Y in which we have coercivity does
not match the space in which we have strong continuity of our integrand X, we
should expect that

inf
Y

F [u] < inf
X

F [u]

can occur. This phenomenon is known as Lavrentiev’s phenomenon. One way of
correcting this problem is to relax our notion of what we mean with F [u]. We
illustrate this example thinking of an integrand f(x, z) : Ω × Rm×n → R satisfying
p-coercivity and q-growth with 1 < p ≤ q <∞: For some µ,C > 0,

f(x, z) ≥ µ|z|p |f(x, z)| ≤ 1 + |z|q (5.2)

for almost every x ∈ Ω and every z ∈ Rm×n. We denote X = W1,q(Ω) ∩W1,p
0 (Ω),

Y = W1,p
0 (Ω). Note that X ⊂ Y is dense. Following the framework of Buttazzo and

Mizel, introduce the relaxed functional

FX(u) = inf{lim inf
j→∞

F [uj ] : (uj) ⊂ X,uj ⇀ u weakly in Y }.

Note that if x ∈ X, FX [u] = F [u], by strong continuity of F on X (e.g. Theorem
5.1). Further if G is sequentially weakly lower semi-continuous (swlsc) on Y , then
whenever (uj ⊂ X), uj ⇀ u weakly in Y , it holds that G [u] ≤ lim infj→∞ G [uj ]. In
particular, we see that FX is the sequential weakly lower semi-continuous envelope
of F ,

FX = sup{G : X → R : G is swlsc on Y,G ≤ F on X}.

The relaxed functional is convex if F is.
Lemma 5.4. If F : Y → R is (strictly) convex, then so is FX : Y → R.

Proof. Let u, v ∈ Y and λ ∈ [0, 1]. Then

FX(λu+ (1− λ)v)
≤ inf{lim inf

j→∞
F [λuj + (1− λ)vj ] : (uj), (vj) ⊂ X,uj ⇀ u, vj ⇀ v weakly in Y }

≤ inf{λ lim inf
j→∞

F [uj + (1− λ) lim inf
j→∞

F [vj ] : (uj), (vj) ⊂ X,uj ⇀ u, vj ⇀ v weakly in Y }

=λFX [u] + (1− λ)FX [v].

Using this fact in combination with Theorem 4.3, we see that FX has at least one
minimiser and if FX is strictly convex, this minimiser is unique. For the following,
we restrict to the case p ≥ 2 and additionally impose that f is strongly p-convex, in
the sense that for almost every x ∈ Ω and z1, z2 ∈ Rm×n, λ ∈ [0, 1],

f(λz1 + (1− λ)z2) ≤ λf(z1) + (1− λ)f(z2)− λ(1− λ)C|z1 − z2|p (5.3)

for some C > 0. Our restriction is caused due to the fact that if p ≤ 2, only affine
functions satisfy the above inequality and hence a technical adaption is required.

A second natural approach to correct the problem of Lavrentiev’s phenomenon
in this set-up would be to perturb the energy in such a way as to naturally enforce
minimisers to lie in X. This is usually achieved by introducing

Fε[u] =
ˆ

Ω
f(x,Du) dx+ ε

ˆ
Ω
|Duε|q dx.
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Note that from Theorem 4.11, we obtain existence of a minimiser uε ∈ W1,q(Ω) of
the problem

min
u∈X

Fε[u].

We might hope that as ε→ 0, Fε[uε]→ infu∈Y F [u] and even uε → u in Y , where
u is a minimiser of minu∈Y F [u]. This is not quite true and in fact, convergence to
the relaxed functional and its minimiser holds.

Theorem 5.5. Suppose p ≥ 2. Assume f : Ω × Rm×n satisfies (5.2) and f(x, ·) is
strictly convex for almost every x ∈ Ω. Then

Fε[uε]→ FX [u]

where uε solves minu∈X Fε[u] and u is the unique minimiser of FX over Y . More-
over if, in addition f satisfies (5.3), uε → u in Y .

Proof. Note that (uε) is bounded in W1,p
0 (Ω,Rm) due to (5.2). In particular any

subsequence of (uε) admits a weakly converging subsequence in W1,p
0 (Ω,Rm). Thus,

we deduce,

FX [u] ≤ lim inf
ε→0

F [uε] ≤ lim inf
ε→0

Fε[uε].

On the other hand, for any v ∈ X,

lim sup
ε→0

Fε(uε) ≤ lim sup
ε→0

Fε(v) = F (v) = FX(v)

By definition of FX , this inequality extends to v ∈ Y . In particular,

lim sup Fε[uε] ≤ FX [u].

In particular, if uε ⇀ v weakly in W1,p(Ω) as p→∞, then v is a minimiser of FX .
Due to strict convexity of FX , v = u.

Arguing as for Lemma 5.4 and using (5.3), we deduce

FX

[
u+ uε

2

]
+ C

4 ‖Duε −Du‖pLp(Ω) ≤
1
2FX [u] + 1

2FX [uε]→ FX [u].

By minimality of u, we deduce Duε → Du in Lp(Ω). Using Poincarés inequality, we
conclude the proof.

5.2 Quasiminimality
We now introduce the set-up in which we will prove C0,α-regularity results.

Since our approach will be local in nature, it is convenient to work with a notion of
minimisers that is adapted to this:

Definition 5.6. Let f : Ω × Rm × Rm×n → R be Carathéodory. u ∈ W1,p
loc(Ω,Rm)

is a local minimum of F [u] =
´

Ω f(x, u,Du) dx if for any φ ∈ W1,p(Ω,Rm) with
K = suppφ b Ω,

F [u,K] =
ˆ
K

f(x, u,Du) dx ≤ F [u+ φ,K].

Remark 5.7. Under suitable growth conditions local minimisers are local weak solu-
tions of the Euler-Lagrange equation.

35



In fact, we can consider a slightly more general set-up of quasi-minimisers.

Definition 5.8. Let f : Ω×Rm×Rm×n → R be Carathéodory and Q ≥ 1. A function
u ∈W1,p

loc(Ω,Rm) is a local Q-quasiminimiser of F [u] =
´

Ω f(x, u,Du) dx if for any
φ ∈W1,p(Ω,Rm) with K = suppφ b Ω,

F [u,K] =
ˆ
K

f(x, u,Du) dx ≤ QF [u+ φ,K].

Note that local minimisers are precisely local 1-quasiminimisers.

Example 5.9. Consider f : Rm×n → R Carathéodory with Λ−1|z|p ≤ f(z) ≤ Λ|z|p
for some p ∈ [1,∞) and Λ > 0. Then minimisers u ∈W1,p(Ω,Rm) of

´
Ω F (Du) dx

are quasi-minimisers of
´

Ω|Dv|
p dx. Indeed, for any v ∈W1,p(Ω,Rm),

ˆ
Ω
|Du|p dx ≤ Λ

ˆ
Ω
f(Du) dx ≤ Λ

ˆ
Ω
f(Dv) dx ≤ Λ2

ˆ
Ω
|Dv|p dx.

Another reason for introducing quasi-minimisers is that solutions of the Euler-
Lagrange equation turn out, under certain assumptions to be quasi-minimisers. We
provide an example of this.

Definition 5.10. If for all φ ∈W1,p
0 (Ω,R),

ˆ
Ai(x, u,Du)Diφ−B(x, u,Du)φ dx = 0,

then u is a weak solution of

divA(x, u,Du)−B(x, u,Du) = 0. (5.4)

We impose the following ellipticity and growth conditions on A,

Ai(x, y, z)zi ≥ |z|p − a1(x), |A(x, y, z)| ≤ Λ|z|p−1 + a2(x) (5.5)

for almost every x ∈ Ω and every (y, z) ∈ R× Rn and some Λ > 0, 0 ≤ a1 ∈ L1(Ω)
and 0 ≤ a2 ∈ Lp′(Ω).

Theorem 5.11. Let u be a bounded weak solution of (5.4) where B satisfies the growth
assumption

|B(x, y, z)| ≤ Λ|z|p + a3

for almost every x ∈ Ω, (y, z) ∈ R× Rn, some Λ > 0 and 0 ≤ a3 ∈ L1(Ω). Then u
is a quasi-minimiser of

H [u] =
ˆ

Ω
|Du|p + a(x) dx,

where a = a1 + ap
′

2 + a3.

Proof. Set M = ‖u‖L∞(Ω). Let v ∈ W1,p(Ω) with K = supp u − v b Ω and
|v| ≤ M . Set φ = (u − v)+eλ(u−v) where λ > 0 will be determined at a later stage
and u+ = min(0, u). Write S = supp φ. Note that on S, (u− v)+ = (u− v). Then
testing (5.4) with φ we find

ˆ
S

AiDiu[1 + λ(u− v)]eλ(u−v) dx =
ˆ
S

AiDiv[1 + λ(u− v)]eλ(u−v) dx
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+
ˆ
S

B(u− v)eλ(u−v) dx.

Using our coercivity and growth assumptions on A and B, we deduce, noting u−v ≥
0 on S,

ˆ
S

|Du|p[1 + λ(u− v)]eλ(u−v) dx

≤
ˆ
S

a1[1 + λ(u− v)]eλ(u−v) dx+
ˆ
S

(Λ|Du|p−1 + a2)[1 + λ(u− v)]eλ(u−v)|Dv|dx

+
ˆ
S

Λ(|Du|p + a3)(u− v)eλ(u−v) dx

≤
ˆ
S

c(M,λ)a1 + c(M,λ)(Λ|Du|p−1 + a2)|Dv|+ a3c(M,Λ)

+ Λ|Du|p(u− v)eλ(u−v) dx.

To obtain the last line, we used that |u|, |v| ≤M . Choosing λ = 2Λ, we may absorb
the last term on the left-hand side. Applying Young’s inequality with ε to the second
term on the right-hand side, we deduce after adding a to both sides,

ˆ
S

|Du|p + a dx ≤ c(M,Λ)
ˆ
S

|Dv|p + adx (5.6)

Repeating the same argument with φ̃ = (v − u)+eλ(v−u), we deduce
ˆ

supp φ̃

|Du|p + adx ≤ c(M,Λ)
ˆ

supp φ̃

|Dv|p + adx. (5.7)

Adding (5.6) and (5.7) gives the desired estimate
ˆ

Ω
|Du|p + adx ≤ c(M,Λ)

ˆ
Ω
|Dv|p + adx.

for any v ∈ W1,p(Ω) for which |v| ≤ M . If this does not hold, we consider
ṽ = min(M,max(v,−M)). Note that |Dṽ| ≤ |Dv| and |ṽ| ≤M . Thus

H [u] ≤ c(m,Λ)H [ṽ] ≤ c(m,Λ)H [v],

which is exactly the desired quasi-minimality of u.

Remark 5.12. The boundedness assumption in Theorem 5.11 is necessary. We will
show later that in the scalar case m = 1, quasi-minimisers are C0,α and in particular
bounded. However, solutions to the Euler-Lagrange equation need not be bounded as
the following example due to Frehse shows: It can be checked that the function u =
12 log log|x|−1 is a weak solution to the Euler-Lagrange equation for the functional

F [u] =
ˆ
D

1 + 1
1 + eu log(|x|)−12 |Du|

2 dx,

where D ⊂ R2 is the disc of radius e−1, but u is evidently not bounded.

We close this section by mentioning two further examples where quasi-minimality
naturally arises.

Example 5.13 (Quasi-regular maps). In complex analysis, a central role is played
by quasi-conformal maps, that is maps which map circles into ellipses with bounded
eccentricity. An important generalisation are so-called quasi-regular maps.
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Definition 5.14. u : Ω ⊂ Rn → Rn is quasi-regular if there exists A > 0 such that

|Du|n ≤ A det(Du).

Quasi-regular maps naturally fall into our framework of quasi-minimality.

Theorem 5.15. A quasi-regular map u ∈ W1,n(Ω,Rn) is a quasi-minimiser of the
functional u→

´
Ω|Du|

n dx.

Proof. Suppose u is quasi-regular and let φ ∈W1,n(Ω,Rn) with K = supp φ b Ω.
Then using the divergence theorem,

ˆ
K

det(Du) dx =
ˆ
K

det(Du+ Dφ) dx ≤ C
ˆ
K

|D(u+ φ)|n dx.

To obtain the last inequality, note that the determinant is a sum of products of n
components of the partial derivative of u. The result now follows directly from the
definition of quasi-regularity.

Example 5.16 (Obstacle problems). Let f : Ω×Rm×n with |z|p ≤ f(x, z) ≤ Λ(1+|z|p)
for almost every x ∈ Ω, all z ∈ Rm×n and some Λ > 0. Let ψ ∈ W1,p

loc(Ω,Rm).
Suppose u ∈W1,p

loc(Ω,Rm) is such that u ≥ ψ almost everywhere in Ω and whenever
for some w ∈W1,p

loc(Ω), K = supp (u−w) b Ω and w ≥ ψ almost everywhere in Ω,
we have

F [u,K] =
ˆ

Ω
f(x,Du) dx ≤ F [w,K].

In other words, u is a local minimiser of the problem minu∈W1,p(Ω,Rm)
´
f(x,Du) dx

under the additional obstacle constraint u ≥ ψ.
Let v ∈ W1,p

loc(Ω,Rm) with K = supp (u − v) b Ω. Then, denote Σ = {x ∈
Ω: v ≥ ψ} and set w = max(v, ψ) ∈ W1,p(Ω). Noting w ≥ ψ almost everywhere in
Ω, we find

F [u,K] ≤ F [w,K] = F [w,K ∩ Σ] + F [ψ,K \ Σ] ≤ F [w,K] + F [ψ,K].

In particular, with γ = f(x,Dψ),
ˆ
K

f(x,Du) + γ(x) dx ≤ 2
ˆ
f(x,Dv) + γ(x) dx.

Thus u is a 2-quasi-minimiser of the functional u→
´

Ω f(x,Du) + γ(x) dx. Note in
particular, that this is a functional satisfying the growth conditions

|z|p ≤ f(x, z) + γ(x) ≤ Λ(1 + |z|p) + Λ(1 + |Dψ|p)

and Λ(1 + |Dψ|p) ∈ L1
loc(Ω), so that this modified energy essentially remains in the

same class of energies.

5.3 Caccioppoli’s inequality
The aim of this section is to prove a version of Cacciopolli’s inequality. This is

the basic inequality we have available for elliptic problems and in the case of systems,
it is one of very few tools that exist. In combination with Sobolev embedding, it
allows to control the gradient in Lp by the gradient on a bigger ball in Lq where
q < p. Hence, this type of inequality is also known as reverse Hölder inequality.
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Theorem 5.17. Assume u ∈W1,p(Ω,Rm) is a Q-quasi-minimiser for the functional
F [u,Ω] =

´
Ω f(x, u,Du) dx, where we assume that

f(x, y, z) ≥ |z|p − θ(x, u)p,
|f(x, y, z)| ≤ Λ(|z|p + θ(x, u)p),

where θ(x, u)p = b(x)|u|γ + a(x) with 1 ≤ γ < p∗ and 0 ≤ b ∈ L
p∗

p∗−γ (Ω), 0 ≤ a ∈
L1(Ω). Then there exists R0 depending only on u such that for R < R0 and QR b Ω,

ˆ
QR/2

(|Du|p + |u|p
∗
) dx ≤ c

 1
Rp

ˆ
QR

|u− uR|p dx+ |QR|
( 

QR

|u|dx
)p∗

+
ˆ
QR

g dx

 .

Here us =
ffl
Qs
ud x and g = a+ b

p∗
p∗−γ . Moreover, with m = p

p+n < 1,

 
QR/2

(|Du|p + |u|p
∗
) dx ≤ c

( 
QR

(|Du|p + |u|p
∗
)m dx

) 1
m

+
 
QR

g dx

 .

Proof. The moreover part is a direct consequence of employing Poincarés inequality
and Hölder’s inequality to the first inequality. Thus, we focus on the first inequality.
For simplicity, we only describe the case a = b = 0, leaving the general case for the
exercise class.

Let QR b Ω, R/2 < t < s ≤ R and take η to be a cut-off such that η = 1 in Qt,
0 ≤ η ≤ 1, supp η ⊂ Qs and |Dη| ≤ 2

s−t . Set φ = η(u− us). Then,
ˆ
QR

|Dφ|p dx ≤
ˆ
QR

f(x, u,Dφ)− f(x, u,Du) dx+
ˆ
QR

f(x, u,Du) dx.

Setting v = u− φ = us + (1− η)(u− us), we use quasi-minimality to deduce
ˆ
QR

f(x, u,Du) dx ≤Q
ˆ
QR

f(x, v,Dv) dx .
ˆ
QR

|Dv|p dx

.
ˆ
QR

(1− η)p|Du|p + |u− us|p
1

(s− t)p dx.

Recalling that η = 1 in Qt, we have
ˆ
QR

f(x, u,Du) dx ≤ c
(ˆ

Qs\Qt
|Du|p dx+ 1

(s− t)p
ˆ
Qs

|u− us|p dx
)
.

Further, note that Dφ = Du in Qs \Qt, so that
ˆ
Qs

f(x, u,Dφ)− f(x, u,Du) dx .
ˆ
Qs\Qt

|Dφ|p + |Du|p dx

.
ˆ
Qs\Qt

|Dv|p + |Du|p dx.

Estimating the Dv term as in our estimate for
´
QR

f(x, u,Du), we have shown
ˆ
Qt

|Du|p dx ≤ c
ˆ
Qs\Qt

|Du|p dx+ c

(s− t)p
ˆ
Qs

|u− us|p dx.
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Adding the term c
´
Qt
|Du|p dx to both sides and re-arranging, we obtain

ˆ
Qt

|Du|p dx ≤ c

1 + c

ˆ
Qs

|Du|p dx+ c

(c+ 1)(s− t)p
ˆ
Qs

|u− us|p dx.

Using an iteration argument (which we consider in Lemma 5.18, right after this
proof) we conclude

ˆ
QR/2

|Du|p dx .
1
Rp

ˆ
QR

|u− us|p dx.

We now turn to proving the iteration inequality, we employed in the proof of
Theorem 5.17.

Lemma 5.18. Let Z(t) be a bounded non-negative function in [ρ,R]. Assume for any
ρ ≤ t < s ≤ R,

Z(t) ≤ θZ(s) +A(s− t)−α +B(s− t)−β + C

for some θ ∈ [0, 1), A,B,C ≥ 0 and α > β > 0. Then

Z(ρ) ≤ c(α, θ)
(
A(R− ρ)−α +B(R− ρ)−β + C

)
.

Proof. Set t0 = ρ and define {ti} by requiring

ti+1 − ti = (1− λ)λi(R− ρ)

for some 0 < λ < 1. Note ti → R as i→∞. By induction, we find

Z(ρ) ≤ θkZ(tk) +
(

A

(1− λ)α(R− ρ)α + B

(1− λ)β(R− ρ)β + C

) k−1∑
i=0

θiλ−iα.

Choosing λ sufficiently small that θλ−α < 1, we may let k → ∞ to prove the
lemma.

5.4 Gehring’s inequality

Setting f = |Du|+ |u|p∗ , we may rewrite the outcome of Theorem 5.17 as

 
QR

f dx .

( 
Q2R

fm dx
) 1
m

+
 
Q2R

g dx.

It is an observation due to Gehring, that such reverse Hölder-type inequalities are
not sharp in the exponents. Instead, they self-improve, that is, the L1-norm of f
on the left-hand side may be replaced by L1+δ for some δ > 0. Returning to the
setting of Theorem 5.17, this tells us that quasi-minimisers are W1,p+δ-regular for
some δ > 0.

Before proceeding with the proof of this, we require a central result in Calderon-
Zygmund theory. Given a function f , it allows to decompose a domain into cubes
in such a way that on each cube the average of f is controlled, while outside of the
cubes f is bounded.
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Theorem 5.19. Let Q0 be a cube in Rn and 0 ≤ g ∈ L1(Q0). Let L be such that
 
Q0

g dx ≤ L.

Then there exists a countable family of cubes {Qi} of pairwise disjoint cubes Qi ⊂ Q0
with faces parallel to Q0 such that

L ≤
 
Qi

g dx ≤ 2nL,

g ≤ L almost everywhere in Q \ ∪Qi.

Proof. We call a cube Q ⊂ Q0 final if
ffl
Q
g dx > L. Divide Q0 into 2n equal

subcubes, each with side length one half of that of Q0. If any of these cubes are not
final, subdivide them again. Continuing in this way, by Zorn’s lemma, we obtain a
countable family {Qi} of final cubes. Note that obviously

ffl
Qi
g dx ≥ L. However,

each Qi is contained in some Q of twice the side-length, where Q is not final. Thus
 
Qi

g dx ≤ 2n
 
Q

g dx ≤ 2nL.

If x ∈ Q \ ∪Qi, then there exists a decreasing family of cubes Q̃i, none of which is
final, such that x ∈ ∩Q̃i. Then

 
Q̃i

g dx ≤ L.

Since almost every x ∈ Ω is a Lebesgue-point, we may pass to the limit for almost
every x and conclude g(x) ≤ L.

Having Theorem 5.19 at hand, we can proceed to prove Gehring’s estimate. By
a re-scaling, it suffices to consider Q = Q1(x0). Set d(x) = d(x, ∂Q) and define the
concentric shells

Ck =
{
x ∈ Q : 3

42−k−1 ≤ d(x) ≤ 3
42−k

}
Each shell Ck can be divided into a finite family Gk of equal cubes of side δk =
3
42−k−1. Note that Q = ∪G∈GkG ∪Q1/4. If P is a cube, we denote by P̃ , the cube
concentric to P , but with twice the side length. Then our main assumption is

 
P

f dx ≤ c

( 
P̃

fm
) 1
m

+
 
P̃

g

 (5.8)

Setting F = d(x)nf and G = d(x)ng and noting that if P ⊂ Ck, P̃ b Q, we find for
such P ,

 
P

F dx ≤ c

( 
P̃

Fm dx
) 1
m

+
 
P̃

Gdx

 . (5.9)

The key observation is contained in the next lemma, where we estimate the contri-
bution to

ffl
Q
F from the level sets where F is large.

41



Lemma 5.20. For every t > t0 =
ffl
Q
f dx, setting

Φt = {x ∈ Q : F (x) > t}, Γt = {x ∈ Q : G(x) > t},

it holds that
ˆ

Φt
F dx ≤ c

(
t1−m

ˆ
Φt
Fm dx+

ˆ
Γt
Gdx

)
.

Proof. Let s = λt for some λ > 0 to be determined. For P ∈ Gk, we find

s > λ

 
Q

f dx ≥ λ |P |
|Q|

 
P

f dx ≥ λ4−n
 
P

F dx ≥
 
P

F dx,

if we ensure λ ≥ 4n. The same inequality evidently also holds for P = Q1/4.
Applying Theorem 5.19 to each such cube P we obtain a countable family {Qi}

of disjoint subcubes of Q such that

s <

 
Qj

F dx ≤ 2ns,

F (x) ≤ s in Q \ ∪Qi.

From (5.9) we learn that either

 
Qi

F dx ≤ 2c
( 

Q̃i

Fm dx
) 1
m

or  
Qi

F dx ≤ 2c
 
Q̃i

Gdx.

In the first case,

s ≤ 2c
( 

Q̃i

Fm dx
) 1
m

.

Moreover,
ˆ
Q̃i

Fm dx ≤
ˆ
Q̃i∩Φt

Fm dx+ tm|Q̃i|.

Thus, we deduce, combining estimates,

|Q̃i| ≤ 2(2c)ms−m
ˆ
Q̃i∩Φt

Fm dx.

A similar argument in the second case, allows us to deduce, that in any case,

|Q̃i| ≤
c

s

(
t1−m

ˆ
Q̃j∩Φt

Fm dx+
ˆ
Q̃j∩Γt

Gdx
)
.

We now consider
´

Φs F dx,
ˆ

Φs
F dx ≤

∞∑
j=1

ˆ
Qj

F dx ≤ 2ns
∞∑
j=1
|Qj | ≤ 2ns|∪∞j=1Q̃j |.
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Note, that if we naively estimate the size of ∪Q̃j , this is not summable. Thus, we
need to choose a good covering of Q̃j . By means of Vitali covering lemma, we obtain
a countable subfamily {Πi} ⊂ {Qi} such that

∪Q̃i ⊂ ∪Π̂i.

where Π̂i denotes the cube concentric with Πi but with quintuple side length. Now

|∪Q̃i| ≤ 5n
∞∑
i=1
|Πi|.

Inserting this into our estimate we have obtained
ˆ

Φs
F dx ≤ c

(
t1−m

ˆ
Φt
Fm dx+

ˆ
Γt
Gdx

)
.

As also,
ˆ

Φt\Φs
F dx ≤ s1−n

ˆ
Φt
Fm dx ≤ ct1−m

ˆ
Φt
Fm dx,

this concludes the proof.

We record without proof an elementary lemma, which follows from a layer-cake
type argument:

Lemma 5.21. Let h ≥ m ≥ 0 and F ∈ Lh(Q). Set φ(t) =
´

Φt F
m dx. Then

ˆ
Φτ
Fh dx = −

ˆ ∞
τ

th−m dφ(t).

In light of Lemma 5.21, the outcome of Lemma 5.20 may be written as

−
ˆ ∞
t

τ1−m dφ(τ) ≤ A(t1−mφ(t) + ω(t)), (5.10)

where ω(t) =
´

Γt Gdx. Gehring’s famous result applies in this setting:

Theorem 5.22 (Gehring’s lemma). Assume φ(t) is a decreasing function in [a,+∞),
infinitessimal for t → ∞ and satisfying (5.10) with m < 1 for every t ≥ a. Then
there is r > 1 such that

−
ˆ ∞
a

ur−m dφ(u) ≤ −2ar−1
ˆ ∞
a

u1−m dφ(u)− 2A
ˆ ∞
a

ur−1 dω(u).

Proof. We first assume that φ(s) = 0 and ω(s) = 0 for s ≥ k − 1. For q > 0, set
Iq(s) = −

´ k
s
uq dφ(u), Iq = Iq(a) and Ωq = −

´ k
a
uq dω(u).

Using an integration by parts, we have

Ir−m = −
ˆ k

a

ur−1u1−m dφ(u) = ar−1I1−m + (r − 1)
ˆ k

a

ur−2I1−m(u) du.

The last integral can be estimated using (5.10) and an integration by parts, giving

Ir−m ≤ar−1I1−m +A(r − 1)
(ˆ k

a

ur−m−1φ(u) du+
ˆ k

a

ur−2ω(u) du
)
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=ar−1I1−m +A(r − 1)
(
Ir−m
r −m

− ar−m

r −m
φ(a) +

ˆ k

a

ur−2ω(u) du
)

≤ar−1I1−m + A(r − 1)Ir−m
r −m

+AΩr−1.

To obtain the last line, we estimated the ω-term using the same integration by parts
argument we employed to estimate the ur−m−1-term. If we take r sufficiently close
to 1 that A(r − 1) ≤ r−m

2 , this concludes the proof.
We now turn to the general case. Note that

−
ˆ T

k

s1−m dφ9s) ≥ −k1−m
ˆ T

k

dφ(s) = −k1−m (φ(k)− φ(T )
)
.

Letting T →∞, we deduce

−
ˆ ∞
k

s1−m dφ(s) ≥ −k1−mφ(k).

Set φk(t) = 1t≤kφ(t) (and the same for ωk(t)). Then for t ≤ k,

−
ˆ ∞
t

s1−m dφk(s) =−
ˆ k

t

s1−m dφ(s) + k1−mφ(k)

≤−
ˆ ∞
t

s1−m dφ(s) ≤ A(t1−mφk(t) + ωk(t)).

Note this inequality obviously still holds if t > k. Thus, we may estimate

−
ˆ ∞
a

sr−m dφk(s) ≤− 2ar−1 −
ˆ ∞
a

s1−m dφk(s)− 2A
ˆ ∞
a

sr−1 dωk(s)

≤− 2ar−1 −
ˆ ∞
a

s1−m dφ(s)− 2A
ˆ ∞
a

sr−1 dω(s).

Letting k →∞, the result follows.

Returning to f and g, Theorem 5.22 translates to the following statement:
Theorem 5.23. Let f ∈ L1(QR) and assume that for every cube Q ⊂ Q̃ b QR, we
have

 
Q

f dx ≤ c

( 
Q̃

fm dx
) 1
m

+
 
Q̃

g dx


for some 0 < m < 1. Assume g ∈ Ls(QR) for some s > 1. Then there is r > 1 such
that f ∈ Lr(QR/2) and

 
QR/2

fr dx ≤ c

( 
QR

f dx
)r

+
 
QR

gr dx

 .

Combining Theorem 5.17 and Theorem 5.23, we obtain the following regularity
statement.
Theorem 5.24. Let u : Ω→ Rm be a quasi-minimiser for the functional

F [u,Ω] =
ˆ

Ω
F (x, u,Du) dx
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and assume that the hypothesis of Theorem 5.17 are satisfied, in particular

|z|p − θ(x, u)p ≤ F (x, y, z) ≤ c(|z|p + θ(x, u)p)

where θ(x, u)p = a(x)+ |u|γb, 1 ≤ γ ≤ p∗, 0 ≤ a ∈ Ls for some s > 1 and 0 ≤ b ∈ Lσ
for some σ > p∗

p∗−γ .
Then there is r > 1 such that for every Qr ⊂ Q2R b Ω,

 
QR

(|Du|p + |u|p
∗
)r dx ≤ c

( 
Q2R

|Du|p + |u|p
∗

dx
)r

+
 
Q2R

gr dx

 .

where g = a+ b
p∗

p∗−γ .

5.5 Hölder regularity
Our next goal is to show Hölder regularity of quasi-minimisers in the scalar

setting m = 1. The key tool will once again be a Caccioppoli inequality. The main
difference is that we want to incorporate information about the level sets of u. It
will be useful to denote

A(k,R) = {x ∈ QR : u > k}, B(k,R) = {x ∈ QR : u ≤ k}.

Note that for almost every R, |QR| = |A(k,R)| + |B(k,R)|. We will always choose
R such that this equality holds.

Theorem 5.25. Assume u ∈W1,p(Ω,Rm) is a Q-quasi-minimiser for the functional
F [u,Ω] =

´
Ω f(x, u,Du), where we assume that

f(x, y, z) ≥ |z|p − θ(x, u)p,
|f(x, y, z)| ≤ Λ(|z|p + θ(x, u)p).

Here θ(x, u)p = b(x)|u|γ + a(x) with 1 ≤ γ < p∗ and 0 ≤ b ∈ Lσ(Ω), 0 ≤ a ∈ Ls(Ω)
and for some ε > 0, 1

s = p
n − ε, 1

σ = 1 − γ
p∗ − ε. Then there exists a radius

R0 = R0(|u|Lp∗ (Ω), |b|Lσ(Ω)) such that for all x0 ∈ Ω, 0 < ρ < R < min(R0, d(x0, ∂Ω)
and k ≥ 0,
ˆ
A(k,ρ)

|Du|p dx ≤ C

(R− ρ)p
ˆ
A(k,R)

(u− k)p dx+ c(|a|Ls(Ω) + kpR−nε)|A(k,R)|1−
p
n+ε.

Proof. We consider only the case a = b = 0. The full argument is an exercise
on Sheet 4. Let η ∈ C∞0 (QR) such that η = 1 on Qρ and |Dη| ≤ 2

R−ρ . Set
v = u − η(u − k)+. Note that v = u on QR \ A(k,R) and v = u on ∂Ω. Using
quasi-minimality, we obtain

F [u,A(k,R)] ≤ QF [v,A(k,R)].

Using our growth conditions and noting that on A(k,R)

|Dv| ≤ (1− η)|Du|+ |Dη|(u− k),

we get
ˆ
A(k,R)

|Du|p dx .
ˆ
A(k,R)

(1− η)p|Du|p dx+ 1
(R− ρ)p

ˆ
A(k,R)

(u− k)p dx
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≤
ˆ
A(k,R)\A(k,ρ)

|Du|p dx+ 1
(R− ρ)p

ˆ
A(k,R)

(u− k)p dx.

Re-arranging and using the hole-filling trick, we already employed in the proof of
Theorem 5.17, we deduce for some θ < 1,

ˆ
A(k,ρ)

|Du|p dx ≤ θ
ˆ
A(k,R)

|Du|p dx+ C(θ)
(R− ρ)p

ˆ
A(k,R)

(u− k)p dx.

Applying Lemma 5.18, we deduce the desired inequality.

It is a remarkable observation due to de Giorgi, that the inequality in Theorem
5.25 contains essentially all the information about u. This inspires the introduction
of the so-called De-Giorgi classes, functions satisfying precisely this estimate.
Definition 5.26. Let u ∈ W1,p

loc(Ω). We say u ∈ DG+
p = DG+

p (Ω, H, ξ, ε, R0, k0) if
for all concentric cubes Qρ ⊂ QR b Ω, R < R0 and k ≥ k0 ≥ 0, we have
ˆ
A(k,ρ)

|Du|p dx ≤ H

(R− ρ)p
ˆ
A(k,R)

(u− k)p dx+H(ξp + kpR−nε)|A(k,R)|1−
p
n+ε.

We say u ∈ DG−p if −u ∈ DG+
p and u ∈ DGp if u ∈ DG+

p ∩DG−p .
Remark 5.27. Given u ∈ DG+

p , for our proofs it will be convenient to simplify the
defining inequality by introducing variants of u. Setting v = u+ ξRβ where β = nε

p

and h = k + ξRβ, we see thatˆ
A(h,ρ)

|Dv|p dx ≤ H

(R− ρ)p
ˆ
A(h,R)

(v − h)p dx+HhpR−nε|A(h,R)|1−
p
n+ε.

Moreover, we can normalise to the situation where R = 1 by setting for s < r <
R, y = Rx, s = σR, t = τR. With w(x) = v(y), it holds thatˆ

A(h,σ)
|Dw|p dx ≤ H

(τ − σ)p
ˆ
A(h,τ)

(w − h)p dx+Hhpτ−nε|A(h, τ)|1−
p
n+ε.

If τ ≥ 1
2 , we deduce for some H1 > 0,
ˆ
A(h,σ)

|Dw|p dx ≤ H1

(τ − σ)p
ˆ
A(h,τ)

(w − h)p dx+H1h
p|A(h, τ)|1−

p
n+ε.

Our first result is to show that if u ∈ DG+
p , then u is bounded above.

Theorem 5.28. Let u ∈ DG+
p . Then u is locally bounded above in Ω. For x0 ∈ Ω,

R ≤ min(R0, d(x0, ∂Ω)), it holds that

sup
QR/2

u .

( 
QR

up+

) 1
p

+ k0 + ξRβ .

Proof. In light of Remark 5.27, it suffices to prove the theorem for R = 1 assuming
that for h ≥ h0,ˆ

A(h,σ)
|Du|p dx ≤ H

(τ − σ)p
ˆ
A(h,τ)

(u− h)p dx+Hhp|A(h, τ)|1−
p
n+ε. (5.11)

For 1
2 ≤ σ < τ ≤ 1, let η ∈ C∞0 (Qσ+τ

2
) with η = 1 on Qσ and |Dη| ≤ 4

τ−σ . Setting
ξ = η(w− k)+, k ≥ h0, we obtain using Hölder’s inequality and Sobolev embeddingˆ

A(k,σ)
(u− k)p dx
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≤

(ˆ
A(k,σ)

ξp
∗

dx
) p
p∗

|A(k, τ)|1−
p
p∗

.
ˆ
|Dξ|p dx|A(k, τ)|

p
n

.

(ˆ
A(k,σ+τ

2 )
|Du|p dx+ 1

(τ − σ)p
ˆ
A(k,σ+τ

2 )
(u− k)p dx

)
|A(k, τ)|

p
n .

Employing (5.11), we deduce
ˆ
A(k,σ)

(u− k)p dx .
|A(k, τ)| pn
(τ − σ)p

ˆ
A(k,σ+τ

2 )
(u− k)p dx+ kp|A(k, τ)|1+ε. (5.12)

Now note that if h < k, ˆ
A(h,τ)

(u− h)p ≥ (k − h)p|A(k, τ)|

and ˆ
A(k,τ)

(u− k)p dx ≤
ˆ
A(k,τ)

(u− h)p dx ≤
ˆ
A(h,τ)

(u− h)p dx.

Inserting these two inequalities in (5.11), noting ε ≤ p
n and |A(k, τ)| ≤ |Q1|, we

obtain
ˆ
A(k,σ)

(u− k)p dx .

(ˆ
A(h,τ)

(u− h)p dx
)1+ε

1
(k − h)pε

(
1

(τ − σ)p + kp

(k − h)p

)
.

Let d ≥ h0 be a constant to be determined. Setting Φi = d−p
´
A(ki,σi)(u − ki)

p dx
with ki = 2d(1− 2−i−1) and σi = 1

2 (1 + 2−i), we have shown

Φi+1 . 2ip(1+ε)Φ1+ε
i .

Applying Lemma 5.29 (which we prove directly after this proof) with d = h0 +

c
(´

Q1
up+ dx

) 1
p , we deduce

ˆ
A(ki,σ)

(u− ki)p dx→ 0

as ki → 2d. In particular, this shows
∣∣∣A (2d, 1

2
)∣∣∣ = 0, in other words

sup
Q1/2

u ≤ 2d.

Recalling the definition of d this concludes the proof.

It remains to prove the iteration argument needed in the proof above.
Lemma 5.29. Let α > 0 and let {xi} be a sequence of real positive numbers such that

xi+1 ≤ CBix1+α
i

for some C > 0 and B > 1. If x0 ≤ C−
1
αB−

1
α2 , we have

xi ≤ B−
1
αx0.

In particular, xi → 0 as i→∞.
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Proof. see Exercise sheet 4.

If u ∈ DGp, we can apply Theorem 5.28 to u and −u and cover Σ b Ω with a
finite number of cubes to obtain the following L∞-bound:
Theorem 5.30. If u ∈ DGp, Σ b Ω, then

sup
Σ
|u| .

(ˆ
Ω
|u|p dx

) 1
p

+ k0 + ξ.

Combining Theorem 5.30 with Theorem 5.25, we obtain a L∞-bound for quasi-
minimisers.
Theorem 5.31. Let u ∈ W1,p(Ω) be a quasi-minimiser of F , where F satisfies the
assumptions of Theorem 5.25. Then u is locally bounded in Ω. Moreover there exists
c = c(‖u‖W1,p(Ω), ‖b‖Lσ(Ω)) such that for every ρ < R < min(R0, d(x0, ∂Ω)),

sup
Qρ

|u| ≤

(
1

(R− ρ)n
ˆ
QR

|u|p dx
) 1
p

+ ‖a‖
1
p

Ls(Ω)R
β .

Remark 5.32. In Theorem 5.31, the Lp-norm can be replaced by a Lq-norm for any
q > 1. If p < q, this is a direct consequence of Hölder’s inequality. If q < p, set for
ρ ≤ σ < τ ≤ R, Uτ = supQτ |u|. Further set ξ = ‖a‖Ls(Ω). Then,

Uσ .

(
1

(τ − σ)n
ˆ
Qτ

|u|p dx
) 1
p

+ ξRβ

≤ 1
(τ − σ)n

(ˆ
Qτ

|u|q dx
) 1
p

U
1− qp
τ + ξRβ

Applying Hölder’s inequality, we obtain

Uσ ≤
1
2Uτ +

(
c

(τ − σ)n
ˆ
QR

|u|q dx
) 1
q

+ cξRβ .

Applying Lemma 5.18, we deduce the desired inequality:

sup
Qρ

|u| .

(
1

(R− ρ)n
ˆ
QR

|u|q dx
) 1
q

+ c‖a‖
1
p

Ls(Ω)R
β .

We can now use the boundedness information we have obtained on quasi-min-
imisers to improve on the previous arguments. In particular, we may replace the
growth conditions with

|z|p − α(x,M) ≤ F (x, y, z) ≤ Λ(M)|z|p + α(x,M),

for some function α and M ≥ sup|u|. Using this growth condition in the proof of
Theorem 5.25, we see that a quasiminimiser u of the energy functional corresponding
to such a F satisfies the following inequality:ˆ

A(k,ρ)
|Du|p dx ≤ H

(R− ρ)p
ˆ
A(k,R)

(u− k)p dx+Hξp|A(k,R)|1−
p
n+ε. (5.13)

Decreasing ε if necessary, we may always assume ε ≤ p
n . Moreover, the same in-

equality is satisfied by −u. Comparing to the outcome of Theorem 5.25, we see that
we no longer require the term involving kp. However, H and ξ now depend on M .
Instead of Theorem 5.28, we now obtain the following improved statement:
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Proposition 5.33. Let u be bounded and satisfying (5.13) for every k ∈ R. Then if
|k0|+ sup|u| ≤M , we have

sup
QR/2

u .

(
1
Rn

ˆ
A(k0,R)

(u− k0)p dx
) 1
p ( |A(k0, R)|

Rn

)α
p

,

where α > 0 solves α2 + α = ε.

Proof. Without loss of generality, we assume k0 = 0. Otherwise, we replace u by
u− k0. Repeating the proof of Theorem 5.28, we arrive at

ˆ
A(k,ρ)

(u− k)p dx .
|A(k, r)| pn
(r − ρ)p

ˆ
A(k,r)

(u− k)p dx+ ξp|A(k,R)|1+ε

for every ρ < r ≤ R. Setting U(k, t) =
´
A(k,t)(u − k)p dx, we moreover find for

h < k, ρ ≤ R,

|A(k, ρ)| ≤ (k − h)−pU(h, r). (5.14)

In particular, we deduce

U(k, ρ) . (r − ρ)−pU(h, r)|A(h, r)|
p
n + ξp(k − h)−pU(k, r)|A(k, r)|ε. (5.15)

Multiplying the left-hand side of (5.15) with the left-hand side of (5.14) raised to
the power α and the right-hand side of (5.15) with the right-hand side of (5.14)
raised to the power α, we obtain, after setting φ(k, t) = U(k, t)|A(k, t)|α,

φ(k, ρ) .

( r

r − ρ

)p
+
(

ξrβ

k − h

)p r−nε

(k − h)pαφ(h, r)1+α.

This inequality holds for ρ < r ≤ R and h < k. Letting d ≥ ξRβ be a constant, we
will determine later and setting ki = d(1− 2−i), ri = R

2 (1 + 2−i), φi = φ(ki, ri), we
have shown, after simplifying

φi+1 ≤ cd−pα2pi(1+α)R−nεφ1+α
i .

Applying Lemma 5.29 with d ≥ cR−
nε
αpφ

1
p

0 , we conclude that

φ

(
d,
R

2

)
= 0.

Noting that d = ξRβ + cR−
nε
αpφ

1
p

0 is a valid choice of d, we can translate this to
obtain the desired inequality.

In order to take advantage of Proposition 5.33, we need to estimate |A(k,R)|
carefully, in particular, when k is close to supu. This is achieved in the following
Lemma.
Lemma 5.34. Suppose u is bounded and satisfies (5.13). Consider the constant k0 de-
fined by 2k0 = M(2R) +m(2R) = supQ2R

u+ infQ2R u. Assume |A(k0, R)| ≤ γ|QR|
for some γ < 1. If osc(u, 2R) ≥ 2ν+1ξRβ for some integer ν, then

|A(kν , R)| ≤ cR−
n
p
p−1
n−1 |QR|.

Here kν = M(2R)− 2−ν−1osc(u, 2R).
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Proof. Let k0 < h < k. Set

v =


k − h if u ≥ k
u− h if h < h < k

0 if u ≤ h.

Note that v = 0 on QR \A(k0, R) which is a set of positive measure by assumption.
Thus, Sobolev’s embedding applies and gives(ˆ

QR

v
n
n−1 dx

)1− 1
n

≤ c
ˆ

∆
|Dv| dx = c

ˆ
∆
|Du|dx,

where we denote ∆ = A(h,R) \A(k,R). In particular, using Hölder’s inequality, we
deduce

(k − h)|A(k,R)|1− 1
n ≤

(ˆ
QR

v
n
n−1 dx

)1− 1
n

≤ c|∆|1−
1
p

(ˆ
A(k,R)

|Du|p dx
) 1
p

.

However, by (5.13),
ˆ
A(k,R)

|Du|p dx .
1
Rp

ˆ
A(h,2R)

(u− h)p dx+ ξp|A(k, 2R)|1−
p
n+ε

.Rn−p(M(2R)− h)p + ξpRn−p+nε.

Noting that for h ≤ kν , M(2R)− h ≥M(2R)− kν ≥ ξRβ , we combine inequalities
to see

(k − h)|A(k,R)|1− 1
n . |∆|1−

1
pR

n−p
p (M(2R)− h).

Set for i ≤ ν, ki = M(2R) − 2−i−1osc(u, 2R), h = ki−1. Then, after raising to the
power p

p−1 , the inequality above gives

|A(kν , R)|
p
n
n−1
p−1 ≤ |A(ki, R)|

p
n
n−1
p−1 ≤ cR

n−p
p−1 |A(ki, R) \A(ki−1, R)|.

Summing from i = 1 to ν, this gives

ν|A(kν , R)|
p
n
n−1
p−1 . R

n−p
p−1 |A(k0, R)| . R

n−p
p−1 Rn ∼ R

p
n
n−1
p−1 .

We can now finally prove Hölder regularity of functions u satisfying (5.13), for
which −u also satisfies (5.13). In particular, this provides Hölder-regularity of quasi-
minima as claimed.

Theorem 5.35. Let u be a bounded function satisfying (5.13) with p > 1 for every
k ∈ R, so that −u also satisfies (5.13). Then u is (locally) Hölder-continuous in Ω.

Proof. We set as in Lemma 5.34 2k0 = M(2R)+m(2R). Without loss of generality,
we may assume |A(k0, R)| ≤ 1

2 |QR|, as otherwise the inequality is satisfied by −u.
Set kν = M(2R)− 2−ν−1osc(u, 2k). Note kν > k0. Applying Lemma 5.33 to kν , we
find

sup
QR/2

u− kν .

(
R−n

ˆ
A(kν ,R)

(u− kν)p dx
) 1
p ( |A(kν , R)|

Rn

)α
p

+ ξRβ
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. sup
QR

(u− kν)
(
|A(kν , R)|

Rn

)1+α
p+ ξRβ .

Choose now ν such that cν−
n
p
n−1
p−1 ≤ 1

2 . Then if osc(u, 2R) ≥ 2ν+1ξRβ due to Lemma
5.34, we find

M(R/2)− kν ≤
1
2(M(2R)− kν) + cξRβ .

In particular,

osc(u,R/2) ≤
(

1− 1
2ν+2

)
osc(u, 2R) + cξRβ .

Thus, in any case

osc(u,R/2) ≤
(

1− 1
2ν+2

)
osc(u, 2R) + c2νξRβ .

Applying an iteration lemma, Lemma 5.36, which we state after this proof, we
conclude

osc(u, ρ) .
(
ρ

R

)β
osc(u,R) + ξρβ

for ρ < R < min(R0, d(x0, ∂Ω)). This gives the required Hölder-regularity of u.

Lemma 5.36. Let φ(t) > 0, and assume there exists q and τ ∈ (0, 1) such that for
every R < R0, some 0 < β < δ and t ∈ (τk+1R, τkR),

φ(τR) ≤ τ δφ(R) +BRβ (5.16)
φ(t) ≤ qφ(τkR) (5.17)

Then for every ρ < R ≤ R0,

φ(ρ) ≤ C
((

ρ

R

)β
φ(R) +Bρβ

)
.

Proof. see Problem Sheet 4. We remark however that the second assumption is
satisfied with q = 1 if φ is non-decreasing.

5.6 Harnack’s inequality
We close our considerations on regularity theory by observing that the Hölder-

continuity, we proved in the previous section, allows us to deduce relatively easily
an important property known as Harnack’s inequality.

Theorem 5.37. Let u ∈ DG−P (Ω) with k0 = 0. Suppose u > 0 in Ω and ρ < R0
2 is

such that Q6ρ ⊂ Ω. Then

sup
Qρ

u ≤ C inf
Qρ
u+ ξρα.

The key new ingredient in the proof will be a careful analysis of the infimum of
a positive function satisfying DG−p , similar to Lemma 5.34.
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Lemma 5.38. Let 0 < u ∈ DG−p (Q) with k0 = 0 and Q = Q1. There exists γ0 > 0
such that if |B(θ, 1)| ≤ γ0|Q| for some θ > 0, then

inf
Q1/2

u ≥ θ

2 .

Proof. For h < k < θ, we set

v =


0 if u ≥ k
k − h if h < u < k

k − h if u ≤ h.

Note that for 1
2 ≤ ρ ≤ 1, v = 0 in Qρ \B(k, ρ). Moreover,

|Qρ \B(k, ρ)| ≥ 2−n|Q| − |B(θ, 1)| ≥ (2−n − γ0)|Qρ|.

Thus, if γ0 ≤ 2−n−1, we may apply Sobolev embedding to obtain

(k − h)|B(k, ρ)|1− 1
n ≤

(ˆ
Qρ

v
n
n−1 dx

)1− 1
n

≤ c
ˆ

∆
|Dv|dx

≤c|∆|1−
1
p

(ˆ
B(k,ρ

|Du|p dx
) 1
p

, (5.18)

where ∆ = B(k, ρ) \B(h, ρ). As u ∈ DG−p and u > 0, we have
ˆ
B(k,ρ)

|Du|p dx ≤ c

(R− ρ)p
ˆ
B(k,R)

(k − u)p dx+ ckp|B(k,R)|1−
p
n+ε (5.19)

≤ c

(R− ρ)p k
p|B(k,R)|1−

p
n+ε. (5.20)

Combining inequalities, we have

(k − h)|B(h, ρ)|1− 1
n ≤ ck

R− ρ
|B(k,R)|1−

1
n+ ε

p .

Set ri = 1
2 (1 + 2−i), ki = θ

2 (1 + 2−i and Bi = |B(ki, ri). Then the inequality above
reads

2−i−1B
1− 1

n
i+1 ≤ c2i+1B

1− 1
n+ ε

p

i ⇔ Bi+1 ≤ C4 ni
n−1B1+α

i ,

with α = εn
p(n+1) . Using Lemma 5.29, we find u ≥ θ

2 in Q1/2 provided

B0 = |B(θ, 1)| ≤ C− 1
α 4−

n
(n−1)α2) = γ1|Q|.

Choosing γ0 = min(γ1, 2−n−1) concludes the proof.

Lemma 5.38 can be upgraded into the stronger statement:

Lemma 5.39. Let 0 < u ∈ DG−p (Q2) with k0 = 0. For every γ ∈ (0, 1) there exists
λ(γ) > 0 such that if |B(θ, 1)| ≤ γ|Q1| for some θ > 0, then

inf
Q1/2

u ≥ λ(γ)θ.
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Proof. Setting ρ = 1 and R = 2 in (5.19), we find
ˆ
B(k,1)

|Du|p dx ≤ kp.

Combined with (5.18) this gives

(k − h)
p
p−1 |B(h, 1)|

p
n
n−1
p−1 ≤ ck

p
p−1 (|B(k, 1)| − |B(h, 1)|)

Now set ki = θ2−i for i ≤ ν, which we will determine at a later stage. Writing
bi = |B(k1, 1)|, we deduce

(θ2−i−1)
p
p−1 b

p
n
n−1
p−1

ν ≤ c(θ2−i)
p
p−1 (bi − bi+1).

Simplifying and summing gives

(ν + 1)b
p
n
n−1
p−1

ν ≤ c|Q| = c|Q|
p
n
n−1
p−1 .

Thus

bν ≤
(

c

ν + 1

)n
p
p−1
n−1

|Q|.

In particular, for ν sufficiently large, we may apply Lemma 5.38 in order to conclude
u ≥ θ2−ν−1 in Q1/2.

We now prove Theorem 5.37.

Proof of Theorem 5.37. We only consider the case ξ = 0 and R = 1. The general
case can be re-covered by rescaling and considering u+ ξRβ . We first prove that

u(x0) ≤ c inf
Q(x0,R)

u⇔ v = u(x)
u(x0) ≥ c > 0. (5.21)

It is easy to check that v ∈ DGp(Ω) with the same constants. Thus, due to Theorem
5.35, we obtain

oscQ(x,ρ)v ≤ coscQ(x,R)v

(
ρ

R

)β
≤ c‖v‖L∞(Q(x,R))

(
ρ

R

)β
, (5.22)

for x ∈ Ω and ρ < R < 1
2d(x, ∂Ω). For δ to be determined later, set kτ = (1− τ)−δ.

Choose τ0 to be the largest value of τ such that ‖v‖L∞(Q(x0,τ) ≥ kτ . Note that
since the left-hand side is bounded and the right-hand side diverges, τ0 ∈ [0, 1). Let
x ∈ Q(x0, τ0) be such that v(x) = ‖v‖L∞(Q(x0,τ0) ≥ (1− τ0)−δ. Then

‖v‖L∞(Q(x, 1−τ0
2 ) ≤ ‖v‖L∞(Q(x0,

1+τ0
2 ) < k 1+τ0

2
= 2δ(1− τ0)−δ.

Applying (5.22) with ρ = εR and R = 1−τ0
2 , we deduce

osc
Q(x, 1−τ0

2 ε)v ≤ c‖v‖L∞(Q(x, 1−τ0
2 ) ≤ c2

δ(1− τ0)εβ .

In particular,

v(x) ≥ v(x)− osc
Q(x, 1−τ0

2 ε)v ≥ (1− τ0)−δ(1− c2δεβ)
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for any x ∈ Q(x, 1−τ0
2 ε). Choosing ε = c−12−δ−1, this gives for x ∈ Q(x, 1−τ0

2 ε),

v(x) ≥ 1
2(1− τ0)−δ.

Applying (a re-scaled version of) Lemma 5.39 with γ = 0 and θ = 1
2 (1 − τ0)−δ, we

obtain µ(0, 2) such that for x ∈ Q(x, (1− τ)0ε),

v(x) ≥ µ(0, 2)
2 (1− τ0)−δ.

Iterating this argument we find for for any integer ν, x ∈ Q(x, 2ν−1(1− τ0)ε),

v(x) ≥ µ(0, 2)ν
2 (1− τ0)−δ.

Choose now ν such that 2 ≤ 2ν−1(1− τ0)ε < 4. Then

v(x) ≥ 1
2

(
8
ε

)log2(µ)
(1− τ0)−δ−log2(µ)

for x ∈ Q(x, 2) ⊃ Q(x0, 1). Choosing δ = − log2(µ), we have ε = µ
2c and deduce

v(x) ≥ 1
2

(
16c
µ

)log2(µ)

for x ∈ Q(x0, 1).
For ρ sufficiently small and Qρ ⊂ Ω, let x0 ∈ Qρ be such that u(x0) = supQρ u.

Taking R = 3ρ in (5.21), we find

sup
Qρ

u ≤ c inf
Q(x0,R)

u ≤ c inf
Qρ
u.

Theorem 5.37 is of particular interest when ξ = 0 in the defining equation of
DG+

p . We denote the corresponding function classes by DGO+
p , DGO−p and DGOp,

respectively. Note in particular that due to Theorem 5.25 this happens when u is a
quasi-minimum of

ˆ
Ω
f(x, u,Du) dx

with |z|p ≤ f(x, y, z) ≤ Λ|z|p. A covering argument in combination with Theorem
5.37 then gives

Theorem 5.40. Let Ω be bounded, connected and open. Suppose Σ b Ω. Let
0 < u ∈ DGOp(Ω). Then there exists C(Σ,Ω) > 0 such that

sup
Σ
u ≤ C inf

Σ
u.

Theorem 5.40 is a strong property as the following two examples illustrate: First,
we prove a strong maximum principle for u ∈ DGOp(Ω).

Theorem 5.41. Suppose Ω is connected, bounded and u ∈ DGOp(Ω). If u has an
interior minimum in Ω, then u is constant in Ω.
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Proof. Note that for any λ ∈ R, u + λ ∈ DGOp(Ω). Thus, we may assume that
infΩ u = u(x0) = 0 for some x0 ∈ int(Ω). Assume for a contradiction that there is
x ∈ Ω with u(x) > 0. We may find a finite sequence of balls Bi such that x0 ∈ B1
and x ∈ Bk with Bi ∩Bi+1 6= ∅. Due to Theorem 5.40, we deduce

sup
Bi+1

u ≤ c inf
Bi+1u

≤ c inf
Bi+1∩Bi

u ≤ c sup
Bi

.

As supB1 u ≤ c infB1 = 0, we deduce u(x) = 0, which is a contradiction.

A second consequence is a Liouville theorem.
Theorem 5.42. Suppose u ∈ DGOp(Rn) is such that for some c, u ≥ c in Rn. Then
u is constant.

Proof. Set λ = infRn u > −∞. Considering u − λ, we may assume without loss of
generality, that λ = 0. Using Theorem 5.41, we see that if u is not constant, then
u > 0 in Rn. By Theorem 5.37, for any R > 0,

sup
QR/2

u ≤ c inf
QR/2

u.

The right-hand side tends to 0 as R→∞, so that we deduce u = 0 in Rn.

6 Young measures and weak lower semi-continuity
We now return to a question we mentioned in Section 4. There we saw that in or-

der to prove existence, we required coercivity and lower-semicontiuity properties. In
Theorem 4.11, convexity of f(x, ·) was crucial in order to derive lower-semicontinuity
of the energy. Moreover, we saw that in the one-dimensional, as well as in the scalar,
setting, this convexity condition is essentially sharp. In the full vectorial setting this
is generally not the case and convexity can be replaced by a weaker notion. The
main result of this section will be an essentially sharp lower-semicontinuity state-
ment in this setting. The result will involve a notion called quasi-convexity, which
is naturally related to a general tool, known as Young measures, which we explore
first.

6.1 Young measures
Young measures are an useful and very versatile tool when attempting to identify

the limits under weak convergence. In the following example, we illustrate a typical
example, where such a question arises.
Example 6.1. Consider F [u] =

´
Ω f(x, vj) dx, where vj ⇀ v in L2(Ω). Note that

then (F [vj ]) is bounded and hence converges up to a subsequence. We can rephrase
identifying this limit as understanding the limit under weak* convergence of the
functions Fj(x) = f(x, vj), which are a bounded sequence in L1(Ω). A natural first
guess would be that

f(x, vj)
∗
⇀ f(x, v).

However, it is easy to see that in general this is not the case. Consider Ω = (0, 1)
and define for θ ∈ (0, 1) and a 6= b,

vj =
{
a if jx− bjxc ∈ [0, θ)
b if jx− bjxc ∈ [θ, 1].
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Suppose f is a smooth, bounded function such that f(x, a) = α, f(x, b) = β. Note
that

vj
∗
⇀ θa+ (1− θ)b

f(x, vj)
∗
⇀ θα+ (1− θ)β = F (x).

However, in general θα+ (1− θ)β 6= f(x, θa+ (1− θ)b).
Nevertheless, we can write

F (x) = 〈f(x, ·), νx〉 =
ˆ
f(x, z) dνx(z)

where we define

νx = θδa + (1− θ)δb.

Thus, the asymptotic distribution of values of (f(x, vj)) is captured by the probability
measure νx. The weak* limit of (f(x, vj)) is thus described by the collection of
probability measures (νx)x. We will call (νx)x the Young measure generated by (vj).

Our first task is to prove the existence of the Young measure generated by a
Lp-sequence (vj). This fact is known as the fundamental theorem of Young measure
theory.
Theorem 6.2. Let (vj) ⊂ Lp(Ω,RN ) be norm-bounded where p ∈ [1,∞]. Then there
exists a (non-relabeled) subsequence of (vj) and a family of probability measures
(νx)x∈Ω ⊂M 1(Rn) called the Lp-Young measure generated by (vj) such that

(i) (νx)x is weakly*-measureable
(ii) If p ∈ [1,∞), then

´
Ω
´
|z|p dνx(z) <∞, while if p =∞, there exists K ⊂ RN

compact such that supp νx ⊂ K for almost every x ∈ Ω.
(iii) For all f : Ω × RN → R Carathéodory such that f(x, vj) is uniformly L1-

bounded and equi-integrable,

f(x, vj) ⇀
(
x→

ˆ
f(x, z) dνx(z)

)
in L1(Ω).

If ν = (νx)x∈Ω satisfies (i) and (ii) in Theorem 6.2, we call ν a Lp-Young measure
and write ν ∈ Y p(Ω,RN ). When (vj) generates ν = (νx)x∈Ω, in the sense that (iii)
in Theorem 6.2 holds, we write vj

Y→ v.
Recall that (f(x, vj)) is equi-integrable if and only it is weakly pre-compact in

L1(Ω). Absorbing a test-function for weak convergence in f , we note that (iii) can
be re-written as ˆ

Ω
f(x, vj) dx→

ˆ
Ω

ˆ
f(x, z) dνx(z) dx = 〈〈f, ν〉〉. (6.1)

for all Carathéodory integrands f(x, z) such that (f(x, vj)) is uniformly L1-bounded
and equi-integrable. We refer to 〈〈f, ν〉〉 as the duality pairing between f and ν. The
barycenter [ν] ∈ Lp(Ω,RN ) of a Young-measure ν = (νx) ∈ Y p(Ω,RN ) is defined for
x ∈ Ω as

[ν](x) = [νx] = 〈id, νx〉 =
ˆ
z dνx(z).

Finally, we introduce the elementary Young measures δ[vj ] = (δ[vj ]x) ∈ Y p(Ω,RN )
by setting δ[vj ]x = δvj(x). Note that δ[vj ]x is only defined up to a set of L n-measure
0. This ambiguity will always be implicitly present.
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We comment that the reason we only require (i) and (ii) to hold in order to
define a Young mesaure is that for any parametrised measure ν = (ν)x∈Ω ⊂M 1(Rn)
satisfying (i) and (ii) we can construct a norm-bounded sequence (vj) ⊂ Lp(Ω,Rn)
such that (iii) is satisfied. In order to see this, note that in order to obtain (iii),
considering (6.1) it suffices to show that for φ ∈ S, ξ ∈ Γ, where S and Γ are dense
subsets of L1(Ω) and C0(RN ) respectively,

lim
j→∞

ˆ
Ω
ξφ(vj) dx =

ˆ
Ω
ξ(x)

ˆ
RN

φ(z) dνx(z) dx =
ˆ

Ω
ξ(x)φ(x) dx,

where φ(x) =
´
φ(z) dνx(z). In fact, it even suffices to take S countable. Using a

Vitali covering with balls centered around Lebesgue points of φ, it is not too difficult
to see that there are points aki in Ω and εki > 0 such that

ˆ
Ω
ξ(x)φ(x) dx = lim

k→∞

∑
i

φ(aki)
ˆ
aki+εkiΩ

ξ(x) dx.

for all ξ ∈ L1(Ω), where

Ω = ∪ (aki + εkiΩ) ∪Nk |NK | = 0.

In fact, as S is countable, we can ensure by working with points in the intersection
of Lebesgue points of all φ ∈ S, that the above identity holds for all φ ∈ S. Thus, it
suffices to consider the case where νx is a sum of Diracs and as we may ensure that
the sets (aki + εkiΩ) are disjoint, even to the case νx = δx0 . However, in this case
any Lp-approximation of the δ-function will give an appropriate sequence vj .

Before proving Theorem 6.2, we require two measure-theoretic statements. The
first is a disintegration argument.
Theorem 6.3. Let Ω ⊂ Rn open, µ ∈ M +(Ω × RN ) be a positive Radon measure.
Then there exists a weakly* measurable family (νx)x∈Ω ⊂ M 1(RN ) of probability
measures such that with κ ∈M +(Ω), where κ is defined by setting for B ⊂ Ω Borel

κ(B) = µ(B × RN ),

it holds that

µ = κ( dx)⊗ νx.

Furthermore, (νx)x∈Ω is κ-essentially unique.

Proof. Given φ ∈ C0(RN ) define µφ ∈M (Ω) by setting for a Borel set B,

µφ(B) =
ˆ
B×RN

φ(z) dµ(x, z).

Note that

µφ(B) ≤ ‖φ‖L∞(RN )µ(B × RN ) = ‖φ‖L∞(RN )κ(B).

Thus, applying the Besicovitch differentiation theorem, there exists a κ-measurable
map hφ : Ω→ R with

|hφ| ≤ ‖φ‖L∞(RN ), µφ = hφκ.

Fix D ⊂ C0(RN ) a dense and countable subset. Then there exists a κ-negligible set
N ⊂ Ω such that

hφ1(x) + hφ2(x) = hφ1+φ2(x) ∀x ∈ Ω \N,φ1, φ2 ∈ D .
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Set Tx[φ] = hφ(x) for x ∈ Ω \N , φ ∈ D . Note that

|Tx[φ]| ≤ ‖φ‖L∞(RN ).

Thus Tx is a linear bounded operator on D , which can be extended (as a linear
bounded operator) to C0(RN ). By the Riesz representation theorem for all x ∈ Ω\N
there exists νx ∈M (RN ) with |νx|(RN ) ≤ 1 such that

Tx[φ] =
ˆ
φ(z) dνx(z) ∀φ ∈ C0(RN ).

Setting νx = δ0 at x ∈ N , for all φ ∈ D ,

x→ 〈φ, νx〉 = Tx[φ] = hφ(x)

is a κ-measurable map. By approximation, the κ-measurability extends to φ ∈
C0(RN ). By a further approximation argument (using Theorem 6.4 below), the
weak* measurability of νx follows. Now, for φ ∈ D and B ⊂ Ω Borel,

ˆ
Ω×RN

1B(x)φ(z) dµ(x, z) = µφ(B) =
ˆ
B

hφ(x) dκ(x)

=
ˆ
B

ˆ
RN

φ(z) dνx(z) dκ(x) =
ˆ

Ω

ˆ
RN

φ(z)1B(x) dνx(z) dκ(x).

This is the claim of the theorem in the case f = 1B ⊗ φ. By an approximation
argument, the same identity holds for f ∈ C0(Ω × RN ) and also for f = 1B×Rn ,
whenever B is a Borel set.

It remains to see that the νx are probability measures. Indeed,

µ(B × RN ) =
ˆ
B

νx(RN ) dκ(x) ≤
ˆ
B

1 dκ(x) = µ(B × RN ).

Thus, νx(RN ) = 1 for κ-almost every x ∈ Ω. The uniqueness claim follows im-
mediately by applying the outcome of the theorem to f = φ ⊗ ψ with φ ∈ C0(Ω),
ψ ∈ C0(RN ).

Our next theorem concerns the fact that we can restrict f(x, z) to large sets on
which f(x, z) is continuous.
Theorem 6.4. Let f : Ω×RN → R be Carathéodory such that for almost every x ∈ Ω
f(x, ·) is uniformly continuous. Then there exists an increasing sequence of compact
sets Sk ⊂ Ω with |Ω \ Sk| → 0 such that f

∣∣
Sk×RN

is continuous.

Proof. Set gj(x) = supj
{
|f(x, z1)− f(x, z2)| : z1, z2 ∈ RN , |z1 − z2| ≤ 1

j

}
. As f is

Cara-théodory and since f(x, ·) is uniformly continuous for almost every x ∈ Ω,
gj → 0 pointwise almost everywhere. Let n ∈ N. By Egorov’s theorem there exists
K0 ⊂ Ω compact with |Ω \ K0| ≤ (2n)−1 such that gj → 0 uniformly on K0.
Let (zi) be dense in RN . By Lusin’s theorem, there exist Ki compact such that
|Ω \Ki| ≤ (2i+1n)−1 and f(·, zi) is continuous in Ki. Set Sn = K0 ∩ (∩Ki). Note
that |Ω \ Sn| → 0 as n→∞. Thus given ε > 0 there exists δ > 0 such that

|z1 − z2| ≤ 2δ ⇒ |f(x, z1)− f(x, z2)| ≤ ε

for all x ∈ Sn ⊂ K0. Given (x, z) ∈ Sn×RN , pick zi from (zj) such that |z−zi| ≤ δ.
For this zi, there exists η > 0 such that for all y ∈ Sn ⊂ Ki

|x− y| ≤ η ⇒ |f(x, zi)− f(y, zi)| ≤ ε.
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Thus, if also (x, z) ∈ Sn × RN and |x − x| ≤ η, |z − z| ≤ δ, noting that then
|zi − z| ≤ 2δ, we conclude

|f(x, z)− f(x, z)| ≤|f(x, z)− f(x, zi)|+ |f(x, zi)− f(x, zi)|+ |f(x, zi)− f(x, z)|
≤3ε.

Consequently f
∣∣
Sn×Rn

is continuous at (x, z).

The key ingredient in proving Theorem 6.2 will be the following compactness
principle.
Proposition 6.5. Let p ∈ [1,∞] and suppose (νj) ⊂ Y p(Ω,RN ) is a sequence of Lp
Young measures. If p ∈ [1,∞) assume

sup
j
〈〈|·|p, νj〉〉 = sup

j

ˆ
Ω

ˆ
RN
|z|p dνjx(z) dx <∞. (6.2)

If p =∞, assume that there exists K compact such that

supp νjx ⊂ K for almost every x ∈ Ω and all j ∈ N. (6.3)

Then there exists a non-relabeled subsequence and ν ∈ Y p(Ω,RN ) such that

〈〈f, νj〉〉 → 〈〈f, ν〉〉 (6.4)

as j → ∞ for all f : Ω → RN Carathéodory for which x → 〈f(x), νjx〉 is uniformly
L1-bounded and the equi-integrability condition

sup
j
〈〈|f(x, z)|1

∣∣
{|f(x,z)|≥h}, ν

j〉〉 → 0 (6.5)

as h→∞ holds. Moreover, if p <∞,

〈〈|·|p, ν〉〉 ≤ lim inf
j
〈〈|·|p, νj〉〉,

while if p =∞, for almost every x ∈ Ω,

supp νx ⊂ K.

We write νj ∗⇀ ν if

〈〈f, νj〉〉 → 〈〈f, ν〉〉

as j →∞ for all f ∈ C0(Ω×RN ). Note in particular that (6.4) implies that νj ∗⇀ ν.

Proof. We begin by proving the result in the case where f ∈ C0(Ω× RN ). Define

µj = L n
x xΩ⊗ νjx.

To be precise, this is short-hand notation for the Radon measures µj defined through
their action on f ∈ C0(Ω× RN ) by setting

〈f, µj〉 =
ˆ

Ω

ˆ
f(x, z) dνjx(z) dx.

As an example, if νj = δ[vj ], then for all f ∈ C0(Ω× RN ),

〈f, µj〉 =
ˆ

Ω

ˆ
f(x, z) dδvj(x) dx =

ˆ
Ω
f(x, vj) dx.
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Note that every such µj is a positive measure satisfying

|〈f, µj〉| ≤ |Ω|‖f‖L∞(Ω×RN ).

In particular, (µj) is uniformly bounded in C0(Ω × RN )∗. By Banach-Alaoglu,
there exists a non-relabeled subsequence and µ ∈ C0(Ω × RN ) such that for all
f ∈ C0(Ω× RN ),

〈f, µj〉 → 〈f, µ〉. (6.6)

We want to show that µ = L n
x xΩ⊗νx for a weakly* measurable parametrised family

ν = (νx)x∈Ω ⊂M 1(RN ) of probability measures. For this, we first observe that due
to (6.6), for all U ⊂ Ω open,

µ(U × RN ) ≤ lim inf
j→∞

µj(U × RN ) = |U |. (6.7)

Further for all K ⊂ Ω compact and R > 0,

µ(K ×B(0, R)) ≥ lim sup
j→∞

µj(K ×B(0, R))

= lim sup
j→∞

ˆ
K

ˆ
|z|≤R

1dνjx(z) dx

≥|K| − 1
Rp

sup
j
〈〈|·|p, νj〉〉.

Letting R →∞ and employing (6.3) (or (6.4) if p =∞), by the inner regularity of
Radon measures,

µ(K × RN ) ≥ |K|. (6.8)

In particular, (6.7) and (6.8) justify the application of Theorem 6.3 which gives that

µ = L n
x xΩ⊗ νx,

for some family (νx)x∈Ω of weak*-measurable probability measures. In particular,
for f ∈ C0(Ω× RN ),

lim
j→∞
〈〈f, νj〉〉 = lim

j→∞
〈f, µj〉 = 〈f, µ〉 = 〈〈f, ν〉〉.

Our next goal is to remove the continuity assumption on f . Thus assume f
is Carathéodory and such that there exists K ⊂ RN compact such that we have
supp f ⊂ Ω×K. As a consequence of this assumption for almost every x ∈ Ω,
f(x, ·) is uniformly continuous. Due to Theorem 6.4 there exist Sk b Ω with
|Ω \ Sk| → 0 such that f

∣∣
Sk×RN

is continuous. Let fk ∈ C0(Ω × RN ) be an ex-
tension of f

∣∣
Sk×RN

. We moreover assume that fk are uniformly bounded in k. This
can be achieved using the Tietze extension theorem, a cut-off and truncation. The
details are straightforward.

Then (〈fk(x, ·), νjx〉)j is weakly pre-compact in L1. Due to (6.6),

〈fk(x, ·), νjx〉⇀ 〈fk(x, ·), νx〉 in L1(Ω)

The same convergence clearly holds in L1(Sk). We now estimate
ˆ

Ω
|〈f(x, ·), νjx〉 − 1Sk〈f(x, ·), νjx〉|dx
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≤
ˆ

Ω\Sk
|〈f(x, ·), νjx〉|dx→ 0

uniformly in j, since f is bounded. The same estimate holds with νj replaced by ν.
Thus, we deduce that

〈f(x, ·), νjx〉⇀ 〈f(x, ·), νx〉 in L1(Ω).

It remains to remove the boundedness assumption on the support of f . For this
we note that, considering separately the positive and negative part of f , we may
assume f ≥ 0. For h ∈ N, choose ρh ∈ C∞c (R, [0, 1]) such that ρh = 1 on B(0, h),
supp ρh ⊂ B(0, 2h) and set

fh(x, z) = ρh(|z|
p
2 )ρh(f(x, z))f(x, z).

The main estimate is now the following:

Ej,h

=
ˆ

Ω

ˆ
|f(x, ·)− fh(x, ·)|dνjx dx

≤
ˆ

Ω

ˆ ∣∣∣∣(1− ρh(|z|
p
2 )ρh(f(x, z)

)∣∣∣∣ |f(x, z)|dνjx(z) dx

≤
ˆ ˆ

{(x,z)∈Ω×RN : |z|
p
2≥h or |f(x,z)|≥h}

|f(x, z)|dνjx(z) dx

≤
ˆ

Ω

ˆ
z : |z|

p
2≥h,|f(x,z)|≤h

hdνjx(z) dx+
ˆ ˆ

{(x,z)∈Ω×RN : |f(x,z)|≥h}
|f(x, z)|dνjx(z) dx

≤ 1
h

ˆ
Ω

ˆ
z : |z|

p
2≥h

h2 dνjx(z) dx+
ˆ ˆ

{(x,z)∈Ω×RN : |f(x,z)|≥h}
|f(x, z)|dνjx(z) dx

≤ 1
h

sup
j
〈〈·|p, νj〉〉+ sup

j
〈〈|f(x, z)|1

∣∣
|f(x,z)|≥h, ν

j〉〉 → 0.

To obtain the convergence in the last line, we used (6.3) ((6.4) if p =∞) and (6.5).
In particular, this allows us to show

lim
j
|〈〈f, νj〉〉 − 〈〈f, ν〉〉| ≤ lim sup

j
|〈〈f − fh, νj〉〉|+ |〈〈fh, νj〉〉 − 〈〈fh, ν〉〉|

+ |〈〈fh − f, ν〉〉|.

By our arguments so far, we know that the second term tends to 0 as j →∞. The
first is nothing but Ej,h. Thus, we deduce that

lim
j
|〈〈f, νj〉〉 − 〈〈f, ν〉〉| ≤ lim sup

j
|〈fh − f, ν〉〉|.

But as f ≥ 0 and fh → f in pointwise, bounded convergence, the last term converges
to 0. Thus, we have shown (6.4) also in this case.

It remains to prove the moreover part. If p < ∞, given h ∈ N, set |z|h =
min(|z|, h). Then

lim inf
j
〈〈|·|p, νj〉〉 ≥ lim

j
〈〈|·|ph, ν

j〉〉 = 〈〈|·|ph, ν〉〉.

Letting h → ∞ and using monotone convergence, this gives the desired result. If
p =∞, take φ ∈ C0(Ω) and ψ ∈ C0(RN ) with suppψ ∩K = ∅. Then

〈〈φ⊗ ψ, ν〉〉 = lim
j
〈〈φ⊗ ψ, νj〉〉 = 0.

Thus supp νx ⊂ K for almost every x ∈ Ω as we are able to choose φ and ψ
arbitrarily.
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Theorem 6.2 is almost a direct consequence of Proposition 6.5.

Proof of Theorem 6.2. The theorem follows directly after applying Proposition 6.5
to the elementary Young measures (δ[vj ])j . The boundedness assumptions are sat-
isfied due to the Lp-bound on (vj). The equi-integrability condition follows due to
equi-integrability of (f(x, vj))j .

There is an alternative, more analytical, perspective and proof on Theorem 6.2.
Consider the set X = L∞w∗(Ω,M (RN )), the set of essentially bounded, weak* mea-
surable functions. It is possible to identify X = (L1(Ω, C0(RN ))∗. One then shows
that νj = (x → νjx)j are uniformly bounded in X. By the Banach-Alaoglu theo-
rem, we can then extract a weak* limit ν of (νj)j . ν inherits the property of being
a collection of probability measures. The precise representation of limits if f is
Carathéodory contained in Theorem 6.2 needs to be proven as before.

Without the equi-integrability condition (iii) in Theorem 6.2, we do not obtain
convergence anymore. However, a lower semi-continuity property is retained.

Proposition 6.6. Let p ∈ [1,∞] and (vj) ⊂ Lp(Ω,RN ) be a norm-bounded se-
quence generating a Young measure ν ∈ Y p(Ω,RN ). Let f : Ω × RN → [0,∞)
be Carathéodory. Then

lim inf
j

ˆ
Ω
f(x, vj(x)) dx = lim inf

j
〈〈f, δ[vj ]〉〉 ≥ 〈〈f, ν〉〉.

Proof. Set fh(x, z) = min(f(x, z), h). Then Theorem 6.2 applies and gives
ˆ

Ω
f(x, vj(x)) dx ≥

ˆ
Ω
fh(x, vj(x)) dx→ 〈〈fh, ν〉〉 =

ˆ
Ω

ˆ
fh(x, z) dνx(z) dx.

Letting h→∞ and applying dominated convergence, the result follows.

Before calculating a number of examples, we record a lemma, which was essen-
tially already noted in the proof of Theorem 6.2. However, this lemma is sufficiently
useful in practice that it is worth stating separately.

Lemma 6.7. There exists a countable family {φk⊗hk} ⊂ C0(Ω)×C0(RN ) such that
if (vj) ⊂ Lp(Ω,RN ) is uniformly Lp-bounded and ν ∈ Y p(Ω,RN ) is such that for all
k,

lim
j→∞

ˆ
φk(x)hk(vj(x)) dx =

ˆ
φk(x)〈hk, νx〉dx,

then vj
Y→ ν.

Proof. In the proof of Theorem 6.2, we saw that the Young measure generated by
a sequence (vj) ⊂ Lp(Ω,RN ) is determined already by its behaviour on functions
f ∈ C0(Ω× RN ). Since there exists a countable dense subset

{φk ⊗ hk} ⊂ C0(Ω)× C0(RN )

of C0(Ω× RN ) this concludes the proof.

Example 6.8. We calculate a number of examples for sequences generating Young
measures.
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(i) Let Ω = (0, 1). Set u(x) = 1
∣∣
(0,1/2] − 1

∣∣
(1/2,1). Extend u periodically to R.

Then the sequence given by setting uj(x) = u(jx) generates a Young measure
ν ∈ Y∞((0, 1)) with

ν = 1
2δ−1 + 1

2δ1.

The fact that ν ∈ Y∞((0, 1)) is immediate. Thus, consider φ ∈ C0(0, 1) and
h ∈ C0(R). Note that φ is uniformly continuous with modulus of continuity w
and h is uniformly bounded. In particular,

lim
j→∞

ˆ 1

0
φ(x)h(uj(x)) dx = lim

j→∞

j−1∑
k=0

ˆ (k+1)/j

k/j

φ(k/j)h(uj(x)) dx+O(w(1/j))

= lim
j→∞

j−1∑
k=0

1
j
φ(k/j)

ˆ 1

0
h(u(y)) dy

=
ˆ 1

0
φ(x) dx

(
1
2h(−1) + 1

2h(1)
)
.

Using Lemma 6.7, we conclude uj
Y→ ν.

(ii) Let Ω = (0, 1) and set uj(x) = sin(2πjx). Then uj
Y→ ν ∈ Y∞((0, 1)) where

ν = 1
π
√

1− y2
L 1
y x(−1, 1).

A formal proof of this is part of problem sheet 5.
(iii) Let Ω ⊂ R2 be a bounded Lipschitz domain. Suppose A,B ∈ R2×2 and a, b ∈ R2

are such that B −A = a⊗ b. Given θ ∈ (0, 1), set for x ∈ R2,

u(x) = Ax+
(ˆ x·b

0
ξ

)
a where ξ = 1∪z∈Z[z,z+1−θ).

Then (∇uj) generates ν ∈ Y∞((0, 1),R2×2) with

ν = θδA + (1− θ)δB .

One of the reasons Young measures are useful is that they allows us to detect
convergence properties of the sequence (vj) generating a Young measure ν. We
begin by noting that Young measure convergence implies weak convergence of (vj)
to the barycenter [ν].

Lemma 6.9. Let p ∈ (1,∞]. Suppose (vj) ⊂ Lp(Ω,RN ) generates the Young measure
ν ∈ Y p(Ω,RN ). Then

vj ⇀ [ν](x) in Lp(Ω,RN ) if p ∈ (1,∞)
vj
∗
⇀ [v](x) in L∞(Ω,RN ) if p =∞.

Proof. Since p > 1, as (vj) is norm-bounded, it is weakly pre-compact. In par-
ticular, it suffices to identify the limit of weak* converging subsequences. By the
Dunford-Pettis theorem, any such sequence is L1-equi-integrable. Thus, we can
apply Theorem 6.2 with the choice f(x, z) = z. This gives exactly the desired
conclusion.
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Further, we can use Young measure convergence in order to detect convergence
in measure.
Lemma 6.10. Let p ∈ [1,∞]. Suppose ν ∈ Y p(Ω,RN ) is generated by the norm-
bounded sequence (vj) ⊂ Lp(Ω,RN ). Let K ⊂ RN be compact. Then

d(vj ,K)→ 0 in measure ⇔ supp νx ⊂ K for a.e.x ∈ Ω.

For v ∈ Lp(Ω,RN ),

vj → v in measure ⇔ νx = δv(x) for a.e.x ∈ Ω.

Proof. Let f : Ω×RN → [0, 1] be Carathéodory and δ ∈ (0, 1). Then using Markov’s
inequality and noting that Theorem 6.2 applies to this choice of f ,

lim sup
j→∞

|{x ∈ Ω: f(x, vj(x)) ≥ δ}| ≤ lim
j→∞

1
δ

ˆ
Ω
f(x, vj) dx = 1

δ

ˆ
Ω

ˆ
f(x, ·) dνx dx.

However, as f ≤ 1,
ˆ

Ω

ˆ
f(x, ·) dνx dx ≤ δ|Ω|+ lim sup

j→∞
|{x ∈ Ω: f(x, vj(x)) ≥ δ}|.

As δ was arbitrary, we conclude that f(x, vj(x)) → 0 in measure if and only if we
have that 〈f(x, ·), νx〉 = 0 for almost every x ∈ Ω.

Set f(x, z) = d(z,K)
1+d(z,K) . Note f : Ω × RN → [0, 1] is Carathéodory. Noting that

f(x, vj)→ 0 in measure if and only if d(vj ,K)→ 0 and 〈f(x, ·), νx〉 = 0 for almost
every x ∈ Ω if and only if supp νx ⊂ K, we conclude the first part of the theorem.

To obtain the second part, consider the function f(x, z) = |z−v(x)|
1+|z−v(x)| and argue

similarly.

6.2 Gradient Young measures
We now wish to specialise the theory of Young measures we have established so

far to Young measures, which have a generating sequence that consists of gradients.
Definition 6.11. We say ν ∈ Y p(Ω,Rm×n) is a gradient Young measure if there
exists (uj) ⊂ W1,p(Ω,Rm) such that (Duj)

Y→ ν. We write ν ∈ GY p(Ω,Rm×d). If
u ∈W1,p(Ω,Rm) is such that [ν] = Du, we say u is an underlying deformation for
ν.

Note that if ν ∈ GY p(Ω,Rm×d) not all sequences generating ν will consist of
gradients. We are guaranteed only the existence of one such sequence. Thus, it is
useful to be able to obtain generating sequences that share certain properties of the
limiting Young measure.
Lemma 6.12. Let p ∈ (1,∞] and ν ∈ GY p(Ω,Rm×n). Suppose u ∈ W1,p(Ω,Rm)
is such that [ν] = Du. Then there exists (uj) ⊂ W1,p(Ω,Rm) such that we have
supp (uj − u) b Ω and Duj

Y→ ν. If p ∈ (1,∞), we may additionally ensure that
(Duj) is equi-integrable.

Proof. The proof is divided in several steps.
Step 1. As Ω is Lipschitz, we can extend a generating sequence (Dvj) for ν to all
of Rn. Thus, we will always assume that (vj) ⊂ W1,p(Rn,Rm) with the uniform
bound supj ‖vj‖W1,p(Rn,Rm) <∞. Consider the sequence

Vj = M(|vj |+ |Dvj |),
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where M is the maximal function. Since (Vj) is uniformly bounded in Lp(Ω,Rm×n),
we may hence extract a (non-relabeled) sub-sequence generating a Young-measure
µ ∈ Y p(Ω,Rm×n).
Step 2. We first show the claim regarding equi-integrability. Introduce for h > 0
the truncation

τhs =
{
s if |s| ≤ h
h s
|s| if |s| > h.

Note that (τhVj) is uniformly bounded in L∞(Ω,Rm×n). For φ ∈ L∞(Ω), we find

lim
h→∞

lim
j→∞

ˆ
Ω
φ|τhVj |p dx = lim

h→∞

ˆ
Ω
φ

ˆ
|τhs|p dµx(s) dx

=〈〈φ⊗ |·|p, µ〉〉. (6.9)

To obtain the last identity, we used monotone convergence. Now choose natural
numbers j(k) > j(k − 1) such that∣∣∣∣ lim

j→∞

ˆ
Ω
|τkVj |p dx−

ˆ
Ω
|τkVn|p dx

∣∣∣∣ ≤ 1
k

for all n ≥ j(k). For l ≤ k and ψ ∈ L∞(Ω), we find
ˆ

Ω
ψ|τkVj(k)(x)|p dx ≤ ‖ψ‖L∞(Ω)

ˆ
Ω
|τkVj(k)(x)|p dx−

ˆ
(‖ψ‖L∞(Ω) − ψ)|τlVj(k)|p dx.

Using (6.9) with φ = 1Ω, we deduce

lim sup
k→∞

ˆ
ψ|τkVj(k)(x)|p dx

≤‖ψ‖L∞(Ω)〈〈1Ω ⊗ |·|p, µ〉〉 −
ˆ

Ω
(‖ψ‖L∞(Ω) − ψ)

ˆ
|τls|p dµx(s) dx.

Letting first l→∞ and then using monotone convergence, we have shown

lim sup
k→∞

ˆ
ψ|τkVj(k)(x)|p dx ≤ 〈〈ψ ⊗ |·|p, µ〉〉.

Applying the same argument to −ψ, we deduce that

|τkVj(k)(x)|⇀ (x→ 〈|·|p, µ〉) in L1(Ω).

Thus, by the Dunford-Pettis Theorem, (Wk) = (τkVj(k)) is a sequence which is
uniformly Lp-bounded and Lp-equi-integrable.

By properties of the maximal function, Wk is Lipschitz with Lipschitz constant
at most Ck on the set

Sk = {x ∈ Ω: Vj(k)(x) ≤ k}.

By the Kirszbraun theorem we may extend each vj(k) to a globally Lipschitz function
wk : Rn → Rm with Lipschitz constant at most Ck. On Sk, we may compute

|Dwk| = |Dvj(k)| ≤ Vj(k) = Wk.

For x ∈ Ω \ Sk, we find

|Dwk| ≤ Ck ≤ CWk.
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In particular, as Wk is equi-integrable, so is (Dwk). Moreover, by Markov’s inequal-
ity

|Ω \ Sk| ≤
‖Vk‖pLp(Ω)

kp
→ 0

as k →∞. Thus for φ ∈ C0(Ω) and h ∈ C0(Rm×n) we find
ˆ

Ω
|φ(x)h(Dwk(x))− φ(x)h(Dvk(x))|dx ≤ ‖φ‖L∞(Ω)‖h‖L∞(Rm×n |Ω \ Sk| → 0

as k → ∞. Invoking Lemma 6.7, we deduce that (Dwk) generates the same Young
measure as (Dvj).
Step 3. It remains to modify the boundary behaviour of (wk). By Rellich-Kondrachov
and Lemma 6.9 there exists a non-relabeled subsequence such that wk → u in
Lp(Ω,Rm). Let (ρj) ⊂ C∞0 (Ω, [0, 1]) with Gj = {x ∈ Ω: ρj = 1} and |Ω \ Gj | → 0
as j →∞. Set

uj,k = ρjwk + (1− ρj)u ∈W1,p
u (Ω,Rm).

Note that Duj,k = ρjDwk + (1 − ρj)Du + (wk − u) ⊗ Dρj . Let φ ∈ C0(Ω), h ∈
C0(Rm×n). Then

ˆ
Ω
|φ(x)h(Dwk)− φ(x)h(Duj,k)|dx ≤ |Ω \Gj |‖φ‖L∞(Ω)‖h‖L∞(Rm×n) → 0

uniformly in k. In particular, due to Lemma 6.7, after passing to a suitable diagonal
subsequence, we have proven the theorem.

As we saw in our examples, it can occur that (νx) ∈ Y p(Ω,Rm×n) is constant in
x. In this case, we write (νx) = ν and refer to ν as a homogeneous Young measure.
It is remarkable (and useful) that in the case of gradient Young measures it does
not matter on what domain we define ν.
Lemma 6.13. Let ν ∈ GY p(Ω,Rm×n) with p ∈ [1,∞]. Suppose [ν] = Du where
u ∈ W1,p(Ω,Rm) is linear on ∂Ω. Then, for any Lipschitz domain D ⊂ Rn, there
exists a homogeneous gradient Young measure ν ∈ GY p(D,Rm×n) such that

ˆ
hdν =

 
Ω

ˆ
hdνx dx

for all continuous h : Rm×n → R with p-growth (no growth-condition if p =∞).

Proof. We consider the case p < ∞. The case p = ∞ is easier. Due to Lemma
6.12, we may find (uj) ⊂ W1,p(Ω,Rm) with uj

∣∣
∂Ω = Fx for some F ∈ Rm×n and

Duj
Y→ ν. Using a Vitali covering argument, we can write

D = Zj ∪
(
∪Ω(ajk, r

j
k)
)
,

where |Zj | = 0 and Ω(ajk, r
j
k) = ajk + rjkΩ for some ajk ∈ D, 0 < rjk ≤

1
j . Set

vj(y) = rjkuj

(
y − ajk
rjk

)
+ Fajk if y ∈ Ω(ajk, r

j
k).

Note by direct calculation vj ∈W1,p(D,Rm) and

Dvj(y) = Duj

(
y − ajk
rjk

)
for y ∈ Ω(ajk, r

j
k).
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Using a change of variables, we calculate for φ ∈ C0(D) and h : Rm×n → R contin-
uous with p-growth,

ˆ
Ω
φ(y)h(Dvj) dx =

∞∑
k=1

ˆ
Ω(aj

k
,rj
k
)
φ(y)h

Duj

(
y − ajk
rjk

) dy

=
∞∑
k=0

rjkφ(ajk)
ˆ

Ω
h(Duj) dx+O(1/j)|D|

→ 1
|Ω|

ˆ
D

φ(x) dx
ˆ

Ω
h(z) dνx(z) dx.

Applying this with the choice φ = 1 and h(z) = |z|p, we see that we have the uniform
bound supj ‖Dvj‖

p
Lp(D,Rm) < ∞. Thus, there exists ν ∈ GY p(D,Rm×n) such that

Dvj
Y→ ν. By Lemma 6.12, we may additionally assume that (Duj) (and hence also

(Dvj)) are Lp-equi-integrable. In particular, for φ and h as above,
ˆ
D

φ(y)h(z) dνy(z) dy =
ˆ
D

φ(x)
 

Ω

ˆ
h(x) dνx(z) dx.

Thus (νy)y is constant in y. Choosing φ = 1 gives the desired result.

Lemma 6.13 is in fact a generalisation of the Riemann-Lebesgue lemma. Apply-
ing it to a fundamental Young measure, we recover the Riemann-Lebesgue lemma.
Lemma 6.14. Suppose u ∈W1,p(Ω,Rm) with p ∈ [1,∞] is linear on ∂Ω. Then there
exists a homogeneous gradient Young measure δ[Du] ∈ GY P (Ω,Rm×n) such that

ˆ
hdδ[Du] =

 
Ω
h(Du) dx.

for all continuous h : Rm×n → R with p-growth.

6.3 Quasiconvexity
In Section 4, we studied integrands of the form

F [u] =
ˆ

Ω
f(x, u,Du) dx

where u : Ω b Rn → Rm. In particular, we saw that if n = 1 or m = 1, then
convexity is essentially the necessary and sufficient condition on f(x, ·) in order to
obtain weak sequential lower semicontinuity of the functional. This, in combination
with a coercivity assumption led to the existence theory we developed so far, which
culminated in Theorem 4.11. However, we already indicated there that if m > 1 or
n > 1, then the convexity assumption can be relaxed. The purpose of this chapter
is to study the relevant convexity notion, which is known as quasiconvexity.

One of the main examples driving the development of the theory is the integrand

F [u] =
ˆ

Ω
det Dudx.

Here Ω ⊂ Rn and u ∈ W1,p
0 (Ω,Rm) for p ∈ [n,∞). Using the divergence theorem,

we see thatˆ
Ω

det Dudx =
ˆ

Ω
du1 ∧ . . . ∧ dun =

ˆ
∂Ω
u1 ∧ du2 ∧ . . . ∧ dun = 0.
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In particular, F is constant on W1,p
0 (Ω,Rm) and hence trivially weakly sequentially

lower semi-continuous. It will be an outcome of slightly more careful arguments in
this section, that actually F is even weakly sequentially lower semi-continuous on
W1,p(Ω,Rm). It is however easy to see that det is not convex. For example consider

A =
(
−1 −2
2 1

)
, B =

(
1 −2
2 −1

)
,

1
2A+ 1

2B =
(

0 −2
2 0

)
.

Then 1
2detA+ 1

2detB = 3 < 4 = det
( 1

2A+ 1
2B
)
.

A further motivation for relaxing the convexity assumption comes from mechan-
ics. A typical property of a mechanical system is frame-invariance. Formally, we
consider energy densities f : Rn×n → R with the property that

f(Qz) = f(z) ∀Q ∈ SO(n), z ∈ Rn×n. (6.10)

In many circumstances it is moreover natural to assume that a deformation that is
purely compressing or purely expanding increases the energy. In other words, we
want to assume that for any γ 6= 1,

f(γId) > f(Id). (6.11)

However, an energy density satisfying (6.10) and (6.11) cannot be convex! For
simplicity suppose n = 2 and define for γ ∈ (0, 2π),

Q =
(

cos(γ) − sin(γ)
sin(γ) cos(γ)

)
∈ SO(2).

Then if f was convex, we would obtain using (6.10),

f(cos γId) ≤ 1
2(f(Q) + f(Qt)) = f(Id),

in contradiction to (6.11). Thus f cannot be convex.
In order to resolve this issue, that convexity is not a suitable assumption for

problems in mechanics, Morrey introduced the concept of quasiconvexity.
Definition 6.15. A locally bounded Borel measurable function f : Rm×n → R is qua-
siconvex if

f(z) ≤
 
B1(0)

f(z + Dφ(y)) dy ∀z ∈ Rm×n, φ ∈W1,∞
0 (B1(0),Rm). (6.12)

As a further motivation for this definition of quasiconvexity, we note that affine
transformations are minimisers for their own boundary conditions for quasiconvex
integrands. Indeed, consider for u ∈W1,∞(B1(0)),Rm),

F [u] =
ˆ
B1(0)

f(Du(y)) dy

Suppose a(x) = y0 +Ax for some y0 ∈ Rm, A ∈ Rm×n. Then

F [a] =
ˆ
B1(0)

f(A) dx ≤
ˆ
B1(0)

f(A+ Dφ(x)) dx = F [a+ φ]

for any φ ∈ W1,∞
0 (B1(0),Rm). We remark that we will see shortly that the defi-

nition of quasi-convexity does not depend on the domain of definition (i.e. B1(0)).
However, first we show that convex functions are quasiconvex.
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Lemma 6.16. All convex functions are quasiconvex.

Proof. Let A ∈ Rm×n and V ∈ L1(B1(0),Rm×n) with
´
B1(0) V = 0. Then by the

Riesz representation theorem the requirement

〈h, µ〉 =
 
B1(0)

h(A+ V (x)) dx ∀h ∈ C0(Rm×n)

defines µ ∈ M 1(Rm×n). Indeed, note that |〈h, µ〉| ≤ ‖h‖L∞(Rm×n), 〈h, µ〉 ≥ 0 for
any h ≥ 0 and 〈1, µ〉 = 1. Consequently, µ ∈ C0(Rm×n)∗. Finally, we calculate

[µ] = 〈id, µ〉 = A+
 
B1(0)

V (x) dx = A.

Hence, by Jensen’s inequality, whenever h is convex,

h(A) = h([µ]) ≤ 〈h, µ〉 =
 
B1((0)

h(A+ V (x)) dx.

Choosing V = Dφ for φ ∈W1,∞
0 (B1(0),Rm) this concludes the proof.

We record two further elementary properties of quasiconvex functions.
Lemma 6.17. (i) In the definition of quasiconvexity (6.12), B1(0) may be replaced

by any bounded Lipschitz domain Ω ⊂ Rd.
(ii) If h has p-growth, then it suffices to test with φ ∈W1,p

0 (Ω,Rm) in (6.12).

Proof. In order to prove (i), we first prove the following claim: If Ω̃ is a bounded
Lipschitz domain and ψ ∈ W1,p

0 (Ω,Rm), then there exists ψ̃ ∈ W1,p
0 (Ω̃,Rm) such

that  
Ω
h(A+ Dψ) dx =

 
Ω̃
h(A+ Dψ̃) dx ∀h : Rm×n → R measurable

if one of the integrals exists and is finite. Note that (i) and the fact that the definition
of quasiconvexity does not depend on the domain is an immediate consequence of
the claim.

Using a Vitali covering argument we have seen a number of times already, write

Ω̃ = Z ∪
∞⋃
k=1

Ω(ak, rk)

where |Z| = 0, ak ∈ Ω, rk > 0 and Ω(ak, rk) = ak + rkΩ. Define

ψ̃(y) = rkψ

(
y − ak
rk

)
if y ∈ Ω(ak, rk).

We calculate for h : Rm×n → R measurable,
ˆ

Ω̃
h(A+ Dψ̃) dy =

∑
k

ˆ
Ω(ak,rK)

h

(
A+ Dψ

(
y − ak
rk

))
dy

=
∑
k

rdk

ˆ
Ω
h(A+ Dψ) dx = |Ω̃|

|Ω|

ˆ
Ω
h(A+ Dψ) dx.

We turn to (ii). Note that W1,∞
0 (B1(0),Rm) is dense in W1,p

0 (B1(0),Rm). Fur-
ther for h measurable with p-growth, the function φ→

ffl
B1(0) h(A+ Dφ) dx is well-

defined and continuous in W1,p(B1(0),Rm). Thus the claim follows by approxima-
tion.
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Checking quasiconvexity and working with it is in general difficult. Hence, it will
be useful to introduce another notion of convexity, that is weaker than quasiconvex-
ity, but easier to deal with.
Definition 6.18. A locally bounded, measurable function f : Rm×n → R is rank-one
convex if

f(θA+ (1− θ)B) ≤ θf(A) + (1− θ)f(B) (6.13)

for all θ ∈ (0, 1) and A,B ∈ Rm×n such that rank(A−B) ≤ 1.
Proposition 6.19. If h : Rm×n → R is quasiconvex, then it is rank-one convex.

Proof. Note that (6.13) trivially holds when rank(A − B) = 0. Thus, take A,B ∈
Rm×n with B −A = a⊗ b for some a ∈ Rn \ {0} and b ∈ Sn−1. For convenience we
work in the unit cube Qn. Note that this is allowed due to Lemma 6.17.

Step 1. Set F = θA+ (1− θ)B and define the laminate uj ∈W1,∞
0 (Qn,Rm) via

uj(x) = Fx+ 1
j
φ0(jx · b− bjx · bc)a

for x ∈ Qn. Here

φ0(t) =
{
−(1− θ)t for t ∈ [0, θ]
θt− t for t ∈ (θ, 1].

Note that

Duj =
{
F − (1− θ)a⊗ b = A for jx · b− bjx · bc ∈ [0, θ]
F + θa⊗ b = B for jx · b− bjx · bc ∈ (θ, 1].

In particular, for h locally bounded, measurable,

lim
j→∞

 
Qn

h(Duj) dx = θh(A) + (1− θ)h(B). (6.14)

Further, since φ0 is bounded, uj
∗
⇀ Fx in W1,∞(Qn,Rm).

Step 2. We need to replace (uj) by a sequence with boundary value Fx, ensuring
that (6.14) still remains valid. To this end, let (ρj) ⊂ C∞c (Qn, [0, 1]) such that
|Ω \Gj | → 0 where Gj = {x ∈ Qn : ρj(x) = 1}. Set

vj,k = ρjuk + (1− ρj)Fx ∈W1,∞
Fx (Qn,Rm).

Note

Dvj,k = ρjDuk + (1− ρj)F + (uk − Fx)⊗Dρj .

The last term converges to 0 uniformly in k due to Rellich-Kondrachov. In particular,
for fixed j,

lim sup
k→∞

‖Dvj,k‖L∞(Qn) ≤ lim sup
k→∞

‖Duk‖L∞(Qn) + |F | <∞.

Extracting a diagonal subsequence, we may thus ensure ‖Dvj,k(j)‖L∞(Qn) ≤ C <∞
independently of j. Setting vj = vj,k(j), we find as h is locally bounded

lim
j→∞

ˆ
Qn

|h(Dvj)− h(Duk(j))|dx ≤ lim
j→∞

ˆ
Qn\Gj

|h(Dvj)|+ |h(Duk(j))|dx

. lim
j→∞
|Qn \Gj | = 0.
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It is clear that if n = 1 or m = 1 rank-one convexity is equivalent to convexity.
Thus combining Lemma 6.16 and Proposition 6.19, if n = 1 or m = 1, convexity is
equivalent to quasiconvexity. We will go on to prove that the determinant (and other
examples) are quasiconvex, but not convex. The following example is illustrative of
the situation:
Example 6.20 (Albibert-Dacorogna-Marcellini (1988)). Suppose m = n = 2 and for
γ ∈ R define

hγ(A) = |A|2(|A|2 − 2γdetA).

Then
• hγ is convex if and only if |γ| ≤ 2

√
3

3 ≈ 0.94,
• hγ is rank-one convex if and only if |γ| ≤ 2√

3 ≈ 1.15,

• hγ is quasiconvex if and only if |γ| ≤ γqc, γqc ∈ (1, 2/
√

3].
In particular, a major open problem is whether rank-one convexity is equivalent

to quasiconvexity if m = n = 2. In the case where m > 2 or n > 2, rank-one
convexity does not imply quasiconvexity.

We turn to proving some more properties of rank-one (and thus also of quasi-
convex) functions.
Lemma 6.21. Suppose h : Rm×n → R is rank-one convex with h(z) ≤ M(1 + |z|p)
for all z ∈ Rm×n, and some M > 0, p ∈ [1,∞). Then h has p-growth.

Proof. Let R > 0 and F1 ∈ Rm×n such that h(F1) = inf |z|≤R h(z) (should this
not be well-defined, approximate h uniformly by continuous functions). Denote by
F1, . . . , F2mn the matrices obtained by flipping any number of indices in F1. The key
observation is that the two matrices which only differ at the (i, j)-entry lie on the
rank-one line R(ei⊗ ej) and their average has vanishing (i, j)-entry. Thus, applying
the definition of rank-one convexity mn-times, we find

h(0) ≤ 1
2mn

∑
k

h(Fk).

We deduce

2mnh(0) ≤ (2mn − 1) sup
|z|≤R

h(z) + inf
|z|≤R

h(z).

It follows that if |z| ≤ R,

−h(z) ≤M(2mn − 1)(1 +Rp)− 2mnh(0).

Choosing R = |z|, this shows

−h(z) ≤ M̃(1 + |z|p).

In fact, rank-one convex functions enjoy much better continuity properties than
being locally bounded. They turn out to be locally Lipschitz.
Lemma 6.22. If h : Rm×n → R is rank-one convex, then it is locally Lipschitz. If h
has p-growth, then there is C = C(m,n) > 0 such that

|h(A)− h(B)| ≤ CM(1 + |A|p−1 + |B|p−1)|A−B|.

In particular, if h is rank-one convex with linear growth, then it is globally Lipschitz.
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Proof. We will prove that

Lip(h,B(F, r)) ≤
√

min(m,n)osc(h,B(F, 6r)
3r .

Let A,B ∈ B(F, r) with rank(A−B) ≤ 1. Let M be the intersection of the ray from
B through A with ∂B(F, 2r). Then, since h is convex along the line connecting A
and B and difference quotients of convex functions are non-decreasing,

|h(A)− h(B)|
|A−B|

≤ |h(M)− h(B)|
|M −B|

≤ osc(h,B(F, 2r))
r

= α(2r). (6.15)

Now let A,B be two general matrices in B(F, r). Using the singular value de-
composition, we can find orthogonal matrices P and Q such that

B −A =
min(m,n)∑
i=1

σiP (ei ⊗ ei)Qt,

where σi ≥ 0 is the i-th singular value of B −A. Set

Ak = A+
k−1∑
i=1

σiP (ei ⊗ ei)Qt.

Then

|Ak − F | ≤ |A− F |+

√√√√k−1∑
i=1

σ2
i ≤ |A− F |+ |B −A| < 3r.

Further
min(m,n)∑
k=1

|Ak −Ak+1|2 =
min(m,n)∑
k=1

σ2
k = |A−B|2.

In particular, applying (6.15) to Ak, Ak+1 ∈ B(F, 3r), we may estimate

|h(A)− h(B)| ≤
min(m,n)∑
k=1

|h(Ak)− h(Ak+1)| ≤ α(6r)
min(m,n)∑
k=1

|Ak −Ak+1|

≤α(6r)
√

min(m,n)

min(m,n)∑
k=1

|Ak −Ak+1|2
 1

2

=α(6r)
√

min(m,n)|A−B|.

If h has p-growth, then osc(h,B(0, R)) ≤ M(1 + Rp). Setting F = 0 and
r = max(|A|, |B|), this gives the desired quantitative estimate.

We now return to the example we considered at the start of this section and prove
that the determinant is quasi-convex map. In fact, we will show that all minors are
quasiconvex. This will follow from the fact that for these quantities the integral
functional only depends on the boundary values. A function with this property is
called a null-Lagrangian.
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Definition 6.23. Define ordered multi-indices by setting

P (m, r) = {(i1, . . . , ir) ∈ {1, . . . ,m}r : i1 < i2 < . . . < ir, r ∈ 1, . . . ,min(m,n)}.

Let I ∈ P (m, r) and J ∈ P (n, r) be ordered multi-indices. The minor M : Rm×n → R
is given by setting for A ∈ Rm×n,

M(A) = M I
J (A) = det (AIJ),

where AIJ is the matrix obtained by considering the I-rows and J-columns of A. We
call r the rank of M .

Lemma 6.24. Let r ∈ {1, . . . ,min(m,n)}. Suppose M : Rm×n → R is a minor of
rank r. For p ∈ [n,∞], if u, v ∈W1,p(Ω,Rm) with u− v ∈W1,p

0 (Ω,Rm), then
ˆ

Ω
M(Du) dx =

ˆ
Ω
M(Dv) dx.

In particular, all minors are null-Lagrangians.

Proof. By a standard approximation and cut-off argument, we may assume without
loss of generality that u, v are smooth and supp (u− v) b Ω. Note |M(A)| . |A|r.
Thus, M is strongly continuous in W1,p for any p ≥ r.

After re-ordering coordinates, we may assume without loss of generality that M
is a principal minor, that is

M(Du) dx1 ∧ . . . ∧ dxn = du1 ∧ . . . ∧ dur ∧ dxr+1 ∧ . . . ∧ dxn.

Note that then

M(Du) dx1 ∧ . . . ∧ dxn = d(u1 ∧ du2 ∧ . . . ∧ dur ∧ dxr+1 ∧ . . . ∧ dxn). (6.16)

In particular, by the (generalised) divergence theorem,
ˆ

Ω
M(Du) dx1 ∧ . . . ∧ dxn =

ˆ
Ω
d(u1 ∧ du2 ∧ . . . ∧ dur ∧ dxr+1 ∧ . . . ∧ dxn)

=
ˆ
∂Ω
u1 ∧ du2 ∧ . . . ∧ dur ∧ dxr+1 ∧ . . . ∧ dxn

=
ˆ
∂Ω
v1 ∧ dv2 ∧ . . . ∧ dvr ∧ dxr+1 ∧ . . . ∧ dxn

ˆ
Ω
d(v1 ∧ dv2 ∧ . . . ∧ dvr ∧ dxr+1 ∧ . . . ∧ dxn)

=
ˆ

Ω
M(Dv) dx1 ∧ . . . ∧ dxn.

It is an immediate consequence that minors are quasiconvex.
Corollary 6.25. Let r ∈ {1, . . . ,min(m,n)}. All r × r minors M : Rm×n → R are
quasi-affine, that is M and −M are quasi-convex.

Proof. Let F ∈ Rm×n, ψ ∈W1,∞
0 (B1(0),Rm). Then due to Lemma 6.24,

M(F ) =
 
B1(0)

M(F ) dz =
 
B1(0)

M(F + Dψ(z)) dz.

The claim now follows directly.
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In fact, it was shown by Ball that any quasi-affine function is an affine function
of minors. Further to quasi-convexity, minors enjoy a surprising weak continuity
property.
Lemma 6.26. Let r ∈ {1, . . . ,min(m,n)}. Suppose M : Rm×n → R is a r × r-minor
and (uj) ⊂ W1,p(Ω,Rm) for p ∈ (r,∞]. If uj ⇀ u in W1,p(Ω,Rm) ( ∗⇀ if p = ∞),
then M(Duj ⇀M(Du) in L p

r (Ω) ( ∗⇀ if p =∞).

Proof. We only consider the case p < ∞ and m = n ∈ {2, 3}. Here we utilise the
explicit divergence structure of minors we employed in the proof of Lemma 6.24.

Note that 1× 1 minors M(Du) are just entries of Du and hence the statement is
immediate. Thus let M¬k¬l be a 2 × 2 minor in 3-dimensions. In the 2-dimensional
case, we use the same notation, even if the determinant is the only 2 × 2 minor.
Using cyclical indices to explicitly write (6.16) in this set-up, we find

ˆ
Ω
M¬k¬l (Duj) dx = −

ˆ
Ω
uk+1
j ∂l+2u

k+2
j ∂l+1ψ − uk+1

j ∂l+1u
k+2
j ∂l+2ψ dx

for all ψ ∈ C∞c (Ω). By density, the identity holds for all ψ ∈ (L p
2 (Ω))∗ ≡ L

p
p−2 (Ω).

The product on the right-hand side is a product of a Lp-strongly convergent se-
quence, a Lp-weakly convergent sequence and a fixed function in L

p
p−2 . By Hölder’s

inequality, we thus deduce
ˆ

Ω
M¬k¬l (Duj)ψ dx→

ˆ
Ω
M¬k¬l (Du)ψ dx

It remains to consider the case of the determinant in 3-dimensions. Recalling
that the cofactor-matrix may be written as a sum of minors, our work above shows
that cof(Duj) ⇀ cof(Du) in L p

2 (Ω). Using Cramer’s formula and the Piola identity
(which states div cof(Du) = 0) shows that

det (Du) =
3∑
l=1

∂lu
1(cof(Du))1

l =
3∑
l=1

∂l(u1cof(Du)1
l ).

Arguing first for smooth functions ψ and then by density, we deduce that for all test
functions ψ ∈ (L p

3 (Ω))∗ ≡ L
p
p−3 (Ω),

ˆ
Ω

det (Duj)ψ dx = −
3∑
l=1

ˆ
Ω
u1
jcof(Duj)1

l ∂lψ dx

→−
3∑
l=1

ˆ
Ω
u1cof(Du)1

l ∂lψ dx =
ˆ

Ω
det (Du) dx.

6.4 A Jensen-type inequality and rigidity
The relationship between quasi-convex functions and Young measures is given

by the following Jensen-type inequality.
Lemma 6.27. Let p ∈ (1,∞] and suppose ν ∈ GY p(B1(0),Rm×n) is a homogeneous
Young measure. Then for all h : Rm×n → R quasiconvex with p-growth (no growth
condition if p =∞),

h([ν]) ≤
ˆ
h(z) dν. (6.17)
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Note that if h is convex, the lemma is just Jensen’s inequality and holds for all
homogeneous Young measures, not just gradient Young measures.

Proof. Write F = [ν] and let h : Rm×n → R be quasiconvex with p-growth. Let
uj ⊂ W1,p

Fx(B1(0),Rm) with Duj
Y→ ν. Due to Lemma 6.12, we may assume that

(Duj) is Lp equi-integrable. Due to quasi-convexity of h,

h(F ) ≤
 
B1(0)

h(Duj) dx→
 
B1(0)

ˆ
hdν =

ˆ
hdν.

The convergence holds since h(Duj) is equi-integrable due to the equi-integrability
of (Duj) in Lp and the p-growth of h.

It can be shown that the converse also holds, that is (6.17) characterises homo-
geneous gradient Young measures within the class of homogeneous Young measures.
This is due to Kinderlehrer-Pedregal and in fact can be extended to the inhomoge-
neous case.

We record a consequence of Lemma 6.27 for quasi-affine functions. In light of
Corollary 6.25, the following applies in particular to minors.

Corollary 6.28. Let p ∈ (1,∞) and ν ∈ GY p(Ω,Rm×n) be a homogeneous gradient
Young measure. Then for all h : Rm×n → R quasi-affine with p-growth, we have

h([ν]) =
ˆ
hdν.

Lemma 6.27 raises the question of whether every Young measure is a gradi-
ent Young measure. For inhomogeneous Young measures the answer is clearly
no: Whenever ν is a gradient Young measure, [ν] is a gradient. In particular,
curl([ν]) = 0. Thus, take V with curl(V ) 6= 0. Then δ[V ] cannot be a gradient
Young measure. For homogeneous Young measures ν, [ν] is constant and hence
automatically a gradient.

Nevertheless, proving that a homogeneous Young measure is not a gradient
Young measure is in general not easy. A possible strategy is to prove that (6.17)
fails. In the following example we pursue a more direct strategy, based on a rigidity
result of Ball-James. Let A,B ∈ Rm×n, A 6= B and θ ∈ (0, 1). Consider the Young
measure

ν = θδA + (1− θ)δB ∈ Y∞(B1(0),Rm×n).

Note that we saw in Example 6.8 that for rank(A − B) ≤ 1, ν is a gradient Young
measure. We will show that for rank(A−B) ≥ 2, ν is not a gradient Young measure.
The key is the following rigidity result due to Ball-James.

Theorem 6.29. Let Ω ⊂ Rn be open, bounded and connected. Fix A,B ∈ Rm×n.
Then the following statements holds.

(i) Suppose u ∈W1,p(Ω,Rm) is such that Du ∈ {A,B} almost everywhere in Ω.
• If rank(A − B) ≥ 2, then Du = A almost everywhere or Du = B almost

everywhere.
• If B −A = a⊗ b for a ∈ Rm, b ∈ Sn−1 and Ω is convex, then there exists

h : R→ R Lipschitz with h′ ∈ {0, 1} almost everywhere and ν0 ∈ Rm such
that

u(x) = ν0 +Ax+ h(x · b)a.
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(ii) If rank(A−B) ≥ 2 and (uj) ⊂W1,p(Ω,Rm) is such that dist(Duj , {A,B})→ 0
in measure and uj

∗
⇀ u in W1,∞(Ω,Rm) for some u ∈ W1,∞(Ω,Rm), then

either Duj → Du = A in measure or Duj → Du = B in measure

Using Theorem 6.29, it is not difficult to show that ν cannot be a gradient
Young measure if rank(A − B) ≥ 2. Assume for a contradiction that rank(A −
B) ≥ 2 and (uj) ⊂ W1,∞(B1(0),Rm) is such that Duj

Y→ ν. By Lemma 6.10,
dist(Duj , {A,B}) → 0 in measure. Using Theorem 6.29, we deduce that either
Duj → A or Duj → B in measure. This is a contradiction by Lemma 6.10.

Proof of Theorem 6.29. To prove (i), after a translation, we may assume without
loss of generality that B = 0. Thus, we have Du = Ag for some function g : Ω→ R.
Mollifying u, we may assume g ∈ C∞(Ω). We will use that Du is curl-free, in the
sense that

∂i[Du]kj = ∂i∂ju
k = ∂j∂iu

k = ∂j(Du)ki .

Applying this to our situation, we deduce

Akj ∂ig = Aki ∂jg. (6.18)

We claim that if rank(A) ≥ 2, then Dg = 0. Indeed, suppose for a contradiction
that ξ = ∇g(x) 6= 0 for some x ∈ Ω. Set ak(x) = Akj

ξj(x) for any j such that ξj(x) 6= 0.
Due to (6.18), ak does not depend on j. Then

Akj = ak(x)ξj(x)⇔ A = a(x)⊗ ξ(x).

This gives the desired contradiction. Thus Dg = 0 and consequently, as Ω is con-
nected, u is affine in Ω. Note that the property of being affine is preserved under
mollification, so this completes the proof.

If rank(A) ≤ 1, A = a⊗ b for some a ∈ Rm, b ∈ Sn−1. Pick v ∈ Rn with v ⊥ b.
Then

d
dtu(x+ tv)

∣∣∣∣
t=0

= Du(x) · v = [abT v]g(x) = 0.

Thus u is constant in direction v. As v was an arbitrary direction orthogonal to v
and Ω is convex, u ≡ u(x · b). This implies the claim.

We now prove (ii). Again, after a translation, we may assume B = 0. As then
rank(A) ≥ 2, there exists a 2× 2 minor M : Rm×n → R with M(A) 6= 0. Set

Dj =
{
x ∈ Ω: |Duj −A| <

|A|
2

}
.

Then Duj−A1Dj → 0 in measure. Choosing a subsequence, we may further assume
that 1Dj

∗
⇀ ξ in L∞ for some ξ. Now for all w ∈ L1(Ω) and ε > 0,

ˆ
Ω

(Duj −A1Dj )w dx ≤ ‖Duj −A1Dj‖L∞(Ω)

ˆ
{|Duj−A1Dj rvert>ε}

w dx+ ε‖w‖L1(Ω).

Letting j → ∞, the first term on the right-hand side tends to 0. Thus as ε is
arbitrary, Duj

∗
⇀ Du = Aξ in L∞. By Lemma 6.26,

M(Duj)
∗
⇀M(Aξ) = M(A)ξ2.
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Further, similarly to above,

M(Duj)−M(A)1Dj
∗
⇀ 0 in L∞(Ω).

In particular, we deduce M(Duj)
∗
⇀M(A)ξ and hence ξ2 = ξ. In particular, ξ = 1D

for some set D ⊂ Ω and Du = A1D. As ‖1Dj‖L2(Ω) → ‖1D‖L2(Ω), by Radon-Riesz
theorem, 1Dj → 1D in L2(Ω). In particular, the same convergence holds in measure.
We deduce that Duj → A1D = Du in measure. Now by (i), Du = A or Du = 0
almost everywhere. Since by weak*-convergence of (uj), the limit is unique, this
concludes the proof.

6.5 Lower semi-continuity
We finally turn to one of the main results of this section. We return to studying

the problem

min
u∈W1,p

g (Ω,Rm)
F [u] F [u] =

ˆ
Ω
f(x,Du) dx,

where Ω ⊂ Rn is a bounded Lipschitz domain, p ∈ (1,∞), g ∈ W1− 1
p ,p(∂Ω,Rm)

and f is a Carathéodory function with p-growth, that is for some Λ > 0 and almost
every x ∈ Ω, every z ∈ Rm×n,

|f(x, z)| ≤ Λ(1 + |z|p).

The main difference with respect to Section 4 is that we want to assume only quasi-
convexity of f(x, ·), rather than convexity.

Suppose that we have a norm-bounded sequence (Duj) ⊂ W1,p(Ω,Rm×n), such
that (f(x,Duj)) is equi-integrable. Then up to subsequence there is ν ∈ GY p(Ω,Rm×n)
such that Duj

Y→ ν. In particular, this gives us a limit for f(x,Duj),
ˆ

Ω
f(x,Duj) dx→

ˆ
Ω

ˆ
f(x, z) dνx(z) dx.

Thus, to prove sequential weak lower semi-continuity of F in W1,p
g , it suffices to

show ˆ
f(x, z) dνx(z) ≥ f(x,Du)

for almost every x ∈ Ω. If ν is homogeneous, this is just Lemma 6.27. If ν is
non-homogeneous, the statement follows from a technique known as blow-up or
localisation technique.

Proposition 6.30. For p ∈ [1,∞), let ν = (νx)x∈Ω ∈ GY p(Ω,Rm×n). Then for al-
most every x0 ∈ Ω, νx0 is a homogeneous gradient Young measure, νx0 ∈ GY p(B1(0),Rm×n).

Proof. Let {φk ⊗ hk} ⊂ C0(Ω) × C0(Rm) be a countable family of test functions.
Then almost every x0 ∈ Ω is a simultaneous Lebesgue point for all the maps x →
〈hk, νx〉. Fix such x0 ∈ Ω. Let (uj) ⊂W1,p(Ω,Rm×n) be a sequence generating the
Young measure ν. By Lemma 6.12, we may assume (Duj) is uniformly Lp-norm
bounded and Lp equi-integrable.

Set for y ∈ B1(0) and writing [uj ]Br(x0) =
ffl
Br(x0) uj dx,

vrj (y) =
uj(x0 + ry)− [uj ]Br(x0)

r
.
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Then ˆ
B1(0)

φk(y)hk(∇vrj ) dx =
ˆ
B1(0)

φk(y)hk(Duj(x0 + ry)) dy

= 1
rn

ˆ
Br(x0)

φk

(
x− x0

r

)
hk(Duj(x)) dx

j→∞−−−→ 1
rn

ˆ
Br(x0)

φk

(
x− x0

r

)
〈hk, νx〉dx

= 1
rn

ˆ
B1(0)

φk(y)〈hk, νx0+ry〉dx

r→0−−−→
ˆ
B1(0)

φk(y)〈hk, νx0〉dx.

Further ˆ
B1(0)

|Dvrj |p dy =
ˆ
B1(0)

|Duj(x0 + ry)|p dx = 1
rn

ˆ
Br(x0)

|Duj |p dx.

In particular (Dvj) is uniformly bounded in Lp(B1(0),Rm×n). Note that this implies
that (up to passing to a subsequence) there exists a weak* limit of |Duj |pL nxΩ,
which we denote λ ∈M +(Ω). By the Besicovitch differentiation theorem,

lim sup
r→0

λ(B(x0, r))
rn

<∞

for almost every x0 ∈ Ω. Hence we assume this property from now on. Then, it
holds that

lim sup
r→0

lim
j→∞

ˆ
B1(0)

|Dvrj |p dx <∞.

Noting that [vrj ]B1(0) = 0, by Poincaré, we may extract a diagonal subsequence
wn = v

r(n)
j(n) such hat (wn) is uniformly bounded in W1,p(B1(0),Rm) and as n→∞,

ˆ
B1(0)

φk(y)hk(Dwn(y)) dy →
ˆ
B1(0)

φk(y)〈hk, νx0〉dy.

Using Lemma 6.7, this shows that Dwn
Y→ νx0 for almost every x0 ∈ Ω.

Proposition 6.30 actually also holds if p =∞, but proving this requires an addi-
tional component known as Zhang’s lemma. We instead turn to using Proposition
6.30 to prove a lower semi-continuity statement, first proven by Morrey (1952) un-
der additional technical assumptions and proven under the stated assumptions by
Acerbi-Fusco (1984), using different techniques than the one we use.
Theorem 6.31. Let p ∈ (1,∞). Suppose f : Ω×Rm×n → [0,∞) is Carathéodory and
has p-growth. Assume moreover that f(x, ·) is quasiconvex for almost every x ∈ Ω.
Then the associated functional F is weakly sequentially lower semi-continuous on
W1,p(Ω,Rm).

Proof. Let (uj) ⊂ W1,p(Ω,Rm) and u ∈ W1,p(Ω,Rm) with uj ⇀ u in W1,p. Then
up to subsequence there exists ν = (νx)x∈Ω ∈ GY p(Ω,Rm×n) with Duj

Y→ ν and
[ν] = Du. By Proposition 6.6,

lim inf
j→∞

ˆ
Ω
f(x,Duj) dx ≥ 〈〈f, ν〉〉.

78



For almost every x ∈ Ω by Proposition 6.30,
ˆ
f(x, z) dνx(z) ≥ f(x,Du).

Thus, combining estimates we see

lim inf
j→∞

F [uj ] ≥ F [u].

Combining Theorem 6.31 with the coercivity statement of Proposition 4.5 and
applying the direct method, we immediately obtain the following existence result:

Theorem 6.32. Suppose f : Ω × Rm×n → [0,∞) is Carathéodory and satisfies the
following assumptions:

(i) f has p-growth for some p ∈ (1,∞).
(ii) f is p-coercive, in the sense that for some λ > 0, f(x, z) ≥ λ|z|p.

(iii) f(x, ·) is quasiconvex for almost every x ∈ Ω.

Then the functional F over W1,p
g (Ω,Rm) for g ∈ W1− 1

p ,p(∂Ω,Rm) admits a min-
imiser.

Similar to Proposition 4.8, quasiconvexity also turns out to be a necessary condi-
tion for sequential weak lower semi-continuity. We only show this for homogeneous
integrands f ≡ f(z). The general case can be obtained by a localisation argument.

Proposition 6.33. Suppose f : Rm×n → R is continuous and has p-growth. If the as-
sociated functional F is sequentially weakly lower semi-continuous on W1,p(Ω,Rm)
(with or without boundary values), then f is quasiconvex.

Proof. After possibly translating and rescaling Ω, we may assume that B1(0) b Ω.
Let A ∈ Rm×n, φ ∈ W1,∞

0 (B1(0),Rm). By a Vitaly covering argument, we may
write

B1(0) = Zj ∪
∞⋃
k=1

B(ajk, r
j
k),

where |Zj | = 0, ajk ∈ B1(0), 0 < rjk ≤
1
j and B(ajk, r

j
k) = Brj

k
(ajk). Fix a smooth

function h : Ω \ B1(0) → Rm such that h(x) = Ax for x ∈ ∂B(0, 1) and with h
∣∣
∂Ω

equal to the given boundary value, if any are given. We define

uj(x) =

Ax+ rjkφ

(
x−aj

k

rj
k

)
for x ∈ B(ajk, r

j
k)

h(x) for x ∈ Ω \B1(0).

Since φ is uniformly bounded, uj → u in W1,p(Ω) where

u(x) =
{
Ax for x ∈ B1(0)
h(x) if x ∈ Ω \B1(0).

Moreover, since F is sequentially weakly lower semi-continuous,
ˆ
B1(0)

f(A) dx ≤ lim inf
j→∞

ˆ
B1(0)

f(Duj) dx
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= lim inf
j→∞

∑
k

ˆ
B(aj

k
,rj
k
)
f

A+ Dφ
(
x− ajk
rjk

) dx

= lim inf
j→∞

∑
k

(rjk)n
ˆ
B1(0)

f(A+ Dφ(y)) dy

=
ˆ
B1(0)

f(A+ Dφ) dx.

Thus f is quasiconvex.

One advantage of our proof of Theorem 6.31 is that it easily adapts to integrands
depending on u. Consider f : Ω× Rm × Rm×n → R with

|f(x, y, z)| ≤ Λ(1 + |y|p + |z|p) (6.19)

for some Λ > 0, p ∈ (1,∞), almost every x ∈ Ω and every (y, z) ∈ Rm×Rm×n. The
key idea is to identify the Young measure created by the joint sequence (uj ,Duj).

Lemma 6.34. Suppose (uj) ⊂ Lp(Ω,Rm), (Vj) ⊂ Lp(Ω,RN ) are norm-bounded such
that uj → u pointwise almost everywhere in Ω and Vj

Y→ ν for some ν ∈ Y p(Ω,RN ).
Then

(uj , Vj)
Y→ µ = (µx)x∈Ω where µx = δu(x) ⊗ νx.

Proof. Due to a density argument as for Lemma 6.7, it suffices to show convergence
for test functions

f(x, y, z) = φ(x)ψ(y)h(z) where φ ∈ C0(Ω), ψ ∈ C0(Rm), h ∈ C0(RN ).

We know that h(Vj)
∗
⇀ (x → 〈h, νx〉) in L∞. Moreover, ψ(uj) → ψ(u) pointwise

almost everywhere and hence strongly in L1 as ψ is bounded. In particular, this
implies that ψ(uj)h(Vj) converges weak* in the sense of measures. In other words,

ˆ
Ω
φ(x)ψ(uj)h(Vj) dx→

ˆ
Ω
φ(x)ψ(u)〈h, νx〉dx.

Lemma 6.34 allows us to ’freeze’ the u-coefficient and effectively argue as in the
proof of Theorem 6.31 to obtain a lower semi-continuity statement also for integrands
with u-dependence, originally due to Acerbi-Fusco (1984).

Theorem 6.35. Let p ∈ (1,∞) and suppose f : Ω×Rm×Rm×n is Carathéodory with
p-growth. Assume f(x, y, ·) is quasiconvex for almost every x ∈ Ω and every y ∈ Rm.
Then the associated functional F is sequentially weakly lower semi-continuous on
W1,p. If f is in addition p-coercive, then F admits a minimiser over W1,p

g (Ω,Rm)
for g ∈W1− 1

p ,p(∂Ω,Rm).
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