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Abstract

In this essay, I present some recent development of the mathematical study of
the weak cosmic censorship conjecture (WCCC) restricted to spherically symmetric
systems. I show that for a large class of systems obeying the �Weak extension princi-
ple�, the resolution of the WCCC can be reduced to the trapped surface conjecture,
i.e. the conjecture that generically, the future development of suitable initial data is
either geodesically complete or contains a black hole region. Finally, I show that the
Einstein-Maxwell-Klein-Gordon system belongs to the class of systems considered
here, potentially opening a way to understand the collapse of rotating black holes.

A short note on conventions: Claims, de�nitions or sections marked by *** are not
necessary for the understanding of the rest of the essay but of independent interest.
Moreover, this essay contains a lot of Penrose diagrams: We use the convention that
dashed lines denote the topological boundary of these.

1 Introduction

Our modern understanding of gravity and how it interacts with matter is based on Ein-
stein's theory of general relativity (GR). In it, spacetime is described as a 4-dimensional
Lorentzian manifold with evolution governed by a certain system of partial di�erential
equations (PDEs) called the Einstein equations:

Rµν −
1

2
gµνR = 8πTµν (1)

where Rµν,R denote the Ricci and scalar curvature of the metric gµν and Tµν denotes
the energy momentum tensor of matter whose evolution will also be governed by some
equations of motion. In vacuum, the above equations can be shown to be of quasilinear
hyperbolic type (in a suitable gauge) and have a well-posed Cauchy-problem.

One of the most remarkable predictions of GR is the prediction of its own limitations,
namely the prediction of singularities. First noticed in the celebrated Schwarzschild so-
lution, it was believed for a long time that singularities are just mathematical curiosities
arising as artefacts from very high degrees of symmetries. However, in the 1960s, theo-
rems by Hawking and Penrose [15, 22] showed some evidence that singularities are indeed
generic features of gravitational collapse in GR by proving that non-compact initial data
containing a closed trapped surface evolve to a future development with singularities. The
natural question that has been studied2 subsequently was whether trapped surfaces are
evolutionary, i.e. if they can arise from initial data that contain no trapped surfaces. An
important breakthrough in this question was published by Schoen and Yau [26]: They
showed that asymptotically �at initial data containing a region where the mass density is
bounded below by some constant Λ contains a trapped surface if the length scale of that

2Of course, observations as well as numerical simulations also played a major role in the process of
understanding singularities as physical predictions of GR.
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region is (omitting constants) larger than Λ−1/2, reducing the question of trapped surface
formation to the question whether such densities can form during gravitational collapse.

Studying this problem is necessarily done by studying the Einstein equations (1) for which
the initial value problem is considerably richer than for a lot of other PDEs, as the global
causal geometry is not a priori constrained. Unfortunately, the theory of PDEs is not yet
advanced enough to allow us to tackle the completely general study of quasilinear hyper-
bolic PDEs in more than 1 spatial dimensions, so we either have to resort to analysing
special solutions or we have to impose additional symmetries to e�ectively reduce the
number of spatial dimensions. In 3 spatial dimensions, spherical symmetry is the only
sensible symmetry that reduces the number of spatial dimensions to 1. Most importantly,
spherical symmetry allows us to understand the conformal structure of a 3+1-dimensional
manifold M by just drawing conformally compacti�ed (so-called Penrose) diagrams cor-
responding to the 1+1-dimensional manifold Q = M/SO(3). These diagrams are not only
helpful for visualisation but are in fact completely rigorous mathematical tools capturing
the global conformal geometry of M .

Despite the notable simpli�cations spherical symmetry gives to us, there is one annoying
problem with it. In vacuum, Birkho�'s theorem tells us that any spherically symmetric
solution of eq. (1) belongs to the 1-parameter family of static Schwarzschild solutions.
Hence, in order to add non-trivial dynamics to the system, matter �elds need be included.

With this in mind, conditions for the dynamical formation of trapped surfaces have been
found for a variety of spherically symmetric matter system, e.g. for the massless Einstein-
Klein Gordon system [3], the Einstein-Vlasov system [24] or the Einstein-Maxwell-Klein
Gordon system [19]. It should be mentioned in this context that Christodoulou proved
in 2008, without restricting to spherical symmetry, that trapped surfaces can even form
from the vacuum collapse of gravitational waves [9], showing in complete generality that
singularities are a non-generic, physical prediction of GR.

Nevertheless, we are still far from understanding the nature of singularities. Perhaps
the most important conjecture in this context is the weak cosmic censorship conjecture
(WCCC), �rst formulated by Penrose in [23]. Its basic idea is that e�ects of singularities
arising from gravitational collapse3 and in particular, the singularities themselves, cannot
be observed by a distant observer because the singularity is hidden inside a black hole.
This means that we, the distant observers, are safe from whatever happens near singular-
ities (the answer to that question will hopefully be given by a theory of quantum gravity
at some point).

A more precise formulation is that, disregarding exceptional initial conditions,
asymptotically �at data have a maximal future development which possesses
a complete4 future null in�nity.

Keeping in mind the above comments on the need for spherical symmetry, we will study
the weak cosmic censorship for a large class of spherically symmetric, �weakly tame� sys-
tems. The assumptions made on these weakly tame matter systems are: i) the exclusion of
anti-trapped regions, ii) non-emptiness of future null in�nity, iii) matter satis�es the dom-
inant energy condition, iv) the weak extension principle which roughly states that �rst

3For the big-bang singularity, the opposite is believed to be true
4We will give a precise de�nition of the meaning of �completeness� in the context of spherical symmetry

in section 3.5. For the general case, see [8].
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singularities not emanating from the center of symmetry are preceded by a (marginally)
trapped region.

The main result of this essay is a result by Dafermos [12] that for these systems, the
WCCC can be reduced to the trapped surface conjecture which states that generically,
asymptotically �at data have a maximal future development which is either
geodesically complete or contains a (marginally) trapped surface.5

The essay will be structured as follows:

In section 2, we give an overview over some of the historical developments of studying
the WCCC.

In section 3, the main section of the essay, we thoroughly explain and discuss Dafermos'
paper �Spherically symmetric spacetimes with a trapped surface� [12], where he shows, for
spherically symmetric, asymptotically �at initial data with one end, that completeness of
future null in�nity can be inferred from the existence of a black hole region for the large
class of weakly tame matter systems described above.

In section 4, we will show that the Einstein-Maxwell-Klein-Gordon [20] system belongs
to this class of systems, thus ensuring that the above results hold for it. We then discuss
trapped surface formation for this system in section 5. A summary of the results will be
given in the �nal section.

2 Weak cosmic censorship: An overview

As explained in the introduction, the most promising approach to proving the WCCC is
to consider simple matter systems and their collapse within spherical symmetry. Over
the last few decades, various di�erent spherically symmetric matter models have been
studied and in particular, it was shown that the restriction to spherical symmetry still
allows for various subtle phenomena: Di�erent violations of the weak cosmic censorship
have been discovered in the realm of spherical symmetry and in many cases shown to be
non-generic.

The �rst and perhaps simplest model in this setting was the Einstein dust model by Op-
penheimer and Snyder: They modelled the collapsing matter as a spherically symmetric
perfect (pressureless) �uid with constant density. However, multiple numerical calcula-
tions showed that naked singularities occur in this model, i.e. that the WCCC is violated.
Christodoulou later [2] proved that even for inhomogeneous (spherically symmetric) den-
sities, naked singularities generically occur (in particular, he showed that the density in
the center of the matter diverges before a black hole forms). However, the failure of
the WCCC in this case is believed to come from the unrealistic assumption of vanishing
pressure despite diverging densities.

Giving up on the model (the problem of collapse of a realistic �uid model is still not
understood, see e.g. [6]), Christodoulou tackled a more realistic model, the model of a
self-gravitating, massless scalar �eld (the Einstein-Klein-Gordon system with vanishing
mass)

∇µ∇µφ = 0, Tµν = 8π(∇µφ∇νφ−
1

2
gµν∇ξφ∇ξφ)

5Precise de�nitions of these concept will be given later.
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His motivation to choose this particular coupling, apart from its simplicity, was that
on the one hand, the massless scalar model does not develop any singularities in the
absence of gravity (i.e. on �xed Minkowski background) - in contrast to Einstein dust.
On the other hand, spherically symmetric perturbations of Minkowski spacetime have
wave character and the massless scalar model satis�es the classical wave equation in the
absence of gravity. In a series of papers, he found conditions for the matter to disperse
in the in�nite future if suitably small initially (in contrast to Einstein dust, which always
collapses) and, more importantly, he found conditions on the initial data to guarantee
trapped surface formation [3].

He then started constructing counter-examples to the WCCC: Taking initial data of
bounded variation (he proved that the IVP is still well-posed for such initial data), he
moved on to the construction of interesting examples with additional symmetries in [5].
Analysing the global behaviour of these examples, he managed to show that there exist
asymptotically �at initial data such that the future development possesses a naked singu-
larity and an incomplete future null in�nity, seemingly violating weak cosmic censorship.
Furthermore, he showed that there exist initial data such that future null in�nity is com-
plete but the singularity is not covered by a black hole.6 However, he then �nally showed
in [7] that initial data leading to the above cases can be, even in the context of spherical
symmetry, regarded as exceptional. More precisely, he showed that any deviation from
these initial data leads to a future development that is either geodesically complete or
possesses a singularity covered by a black hole, and in particular has a complete future
null in�nity. A summary of his �ndings is given in [8], where he also gives his refor-
mulation of completeness of future null in�nity which we shall restate in the context of
spherical symmetry in section 3.5.

So Christodolou showed 3 things: First, the word �generic� in the WCCC cannot be
avoided. Secondly, the restriction to spherical symmetry can still lead to rich dynamics
that can potentially allow us to understand the more general problem. Finally, although
restricted to a certain system, he proved the �rst weak cosmic censorship theorem.7

However, as of now, it is the only non-trivial system that is fully understood w.r.t. the
WCCC (in fact, even w.r.t. the strong cosmic censorship conjecture). For various di�erent
systems, like the Einstein-Vlasov [13] or the Einstein-Maxwell-Klein-Gordon [20] system,
it has been proved that if a trapped surface forms, then the WCCC holds. It has also
been shown for these systems that under certain circumstances, trapped surfaces do form
[19, 24]. What remains to be shown for these systems, however, is the trapped surface
conjecture mentioned in the beginning, stating that generically, either trapped surfaces
form, or the future development is geodesically complete.

We should mention that to understand the WCCC, there is also the approach to search
for physically reasonable counter-examples: In this context, the ideas of e.g. �supercharg-
ing� [18, 1] a near extremal Reissner-Nordström black hole or �overspinning� [25] a near
extremal Kerr(-Newman) black hole, thus destroying their event horizon, have been given
attention. These possibilities have been shown via heuristic arguments, but are hoped to
be eliminated by e.g. taking gravitational backreaction e�ects [17] of the matter used to

6So naked singularities are not equivalent to incompleteness of future null in�nity! Nevertheless, in
these examples, the singularity itself cannot be observed from in�nity. Points arbitrarily close to it can,
however!

7Indeed, Christodoulou himself said the understanding of this system was a �milestone� in proving the
possibility of trapped surface formation due to focussing of gravitational waves.
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�supercharge�/�overspin� the black holes into account. Indeed, for the case of Reissner-
Nordström, the results of section 4 will show that there is no way of super-charging a RN
black hole.

Lastly, we mention that the search for counter-examples becomes simpler in AdS-spacetimes.
Such (mostly numerical) considerations are often motivated by results from String Theory.
In AdS, it is generally harder to form black holes while it is generally easier to form sin-
gularities making the WCCC more vulnerable. Moreover, the AdS-CFT correspondence
gives a non-perturbative way of describing such systems! In this context, Hertog et al.
[16] gave heuristic arguments for possibly creating naked singularities in AdS spacetimes
in the model of a self-gravitating Higgs �eld. However, some of these possibilities have
been ruled out by Dafermos in [11], using mainly the results of the next section.

3 Spherically symmetric spacetimes with a trapped sur-

face

In this section, I will thoroughly review and explain Dafermos' publication "Spherically
symmetric spacetimes with a trapped surface" [12] where he proves weak cosmic censor-
ship for a large class of spherically symmetric systems spacetimes containing a black hole
or8 a (marginally) trapped region9 or having a bounded area-radius on the event horizon.
For this class of systems, this work therefore reduces the proof of weak cosmic censorship
to the trapped surface conjecture.

The section is structured as follows: First, I will state, motivate and explain the as-
sumptions we make on our spacetime in sections 3.1-3.4. These assumptions will mostly
remain quite general, except for the so-called weak extension principle (WEP) which is
a statement about �rst singularities having to be preceded by a (marginally) trapped
region, unless they arise from the center of the spacetime. During the introduction of the
assumptions, we will also give all the necessary de�nitions, in particular the de�nition of
completeness of null in�nity.

For proving the completeness of future null in�nity in 3.5, we will then assume the exis-
tence of a black hole region to show that the area-radius function on the event horizon
of the black hole is bounded by the �nal Bondi mass, which will be su�cient to derive
the completeness of future null in�nity. From the proof, we will infer that indeed, even if
the black hole region is empty: as long as the extension of the area-radius function onto
the event-horizon is bounded, null in�nity is complete. In 3.6, we give a brief extension
of the results. We conclude our �ndings in 3.7.

3.1 First assumptions

I will here state the �rst assumptions we make on our system. Since we are dealing with
spherically symmetric systems, we will formulate the assumptions directly at the level of
a 1 + 1-dimensional Lorentzian submanifold Q+ (a subset of two-dimensional Minkowski

8 Indeed, we shall see that the existence of a (marginally) trapped region implies the existence of a
black hole region.

9Precise de�nitions of these and other concept mentioned here will be given at a later point.
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space) which should be thought of as the conformal compacti�cation of the quotient
manifold of a four-dimensional spherically symmetric Lorentzian manifold factored out
by the group action of SO(3). I will go into more detail on this after having stated the
following assumption. In general, whenever an assumption is introduced, it will then
immediately be assumed throughout this section.

3.1.1 The quotient manifold Q+

Let (R2,−dudv) denote Minkowski space with double null coordinates s.t. u, v both in-
crease with time. We choose the v-axis to be at 45 degrees to the horizontal and the
u-axis at 135 degrees. Whenever we mention chronological or causal future (or similar
concepts), we will mean it in the context of (R2,−dudv). So, for instance, the chrono-
logical past of p = (u′, v′) is I−(p) = {(u, v) : u < u′, v < v′} and the causal past is
J−(p) = {(u, v) : u ≤ u′, v ≤ v′}

Assumption A. Assume we have a bounded two-dimensional submanifold Q+ ⊂
R2 with boundary10 Γ∪S, where Γ (S) is a connected, non-empty, timelike (space-
like) curve and Γ ∩ S = {p}, where p is a single point. We assume that Q+ is
foliated by lines of constant u and lines of constant v with past-endpoint on Γ∪ S,
S, respectively.

We further assume that on Q+, we have C1-functions r ≥ 0, Ω > 0 with r(q) = 0
if and only if q ∈ Γ and metric −Ω2dudv. Finally, we assume that the so-called
Hawking mass m de�ned by

m(u, v) :=
r

2

(
1 +

4

Ω2
∂ur∂vr

)
(2)

satis�es |m|S | < c for some constant c, i.e. it is uniformly bounded along S.

10Note that this is a boundary in the sense of manifold with boundary, not in the sense of topological
boundary.
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Remark 1. As stated before, this should thought of as coming from some spherically
symmetric 4-dimensional Lorentzian manifold with metric −Ω2dudv + r2(u, v)γ , where
γ is the usual metric on a 2-sphere and

r(u, v) = (area(u, v)(4π)−1)1/2

is the area-radius function of the 2-sphere corresponding to (u, v) (and area(u, v) denotes
this sphere's area). More precisely, if we have an appropriate11 spherically symmetric
data set with initial Cauchy hypersurface Σ such that there exists a maximal Cauchy
development (M,−Ω2dudv + r2(u, v)γ) then Q+ can be regarded as the conformal com-
pacti�cation of (M ∩ J+(Σ))/SO(3). S then corresponds to Σ/SO(3). The assumption
that Q+ is foliated by lines of null rays with endpoint on Γ∪S is exactly the assumption
of global hyperbolicity of M(= D(Σ)).

Γ (in view of r(q) = 0 i� q ∈ Γ) corresponds to all q ∈M ∩J+(Σ) that are invariant under
SO(3), i.e. it corresponds to all the 2-spheres in M of vanishing volume. It is called the
center of symmetry of Q+. We therefore call rays of constant v "ingoing" and rays of
constant u "outgoing".

The assumption of connectedness and non-emptiness of Γ and S puts restrictions on
possible initial data. For example, if the initial data had topology of R×S2, as is the case
for the Einstein-Rosen bridge for the Kruskal spacetime, then the center would be empty.
If the topology of the initial data set were that of S3, then the center Γ would consist
of two connected components (corresponding to the two poles of the three-sphere). The
assumption holds if Σ has topology of R3 and one asymptotically �at end.

Remark 2. In general, we will need every single part of each assumption. However, it is
possible to drop the assumption r|Γ = 0 and still keep most of our results. I will clarify
in footnotes when we use this assumption and how it can be avoided.

3.1.2 Structure equations on Q+

The following assumption regards the structure equations on Q+ which should naturally
be thought of as coming from the Einstein equations onM . Again, I will give more details
after the assumption.

Assumption B. On Q+, we have a symmetric tensor with bounded components
Tuu, Tvv, Tuv = Tvu which are locally integrable along lines of constant u or con-
stant v. Then the following equations hold at each p ∈ Q+:

∂u(Ω−2∂ur) = −4πrΩ−2Tuu, (3)

∂v(Ω
−2∂vr) = −4πrΩ−2Tvv, (4)

∂um = 8πr2Ω−2(Tuv∂ur − Tuu∂vr), (5)

∂vm = 8πr2Ω−2(Tvu∂vr − Tvv∂ur), (6)

11For vacuum, for example, a theorem by Choquet-Bruhat and Geroch tells us that if the initial data
satis�es certain constraint equations then there exists a maximal Cauchy development, as seen in the
black holes course. Similar theorems will have to be shown on a case-by-case basis when one is dealing
with matter systems.
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Remark 3. Equations (3) - (6) are equations that would be implied by the Einstein
equations (1) (with the metric g again given by −Ω2dudv + r2(u, v)γ) and a spherically
symmetric energy-momentum tensor T that due to the symmetry has to take the form

Tabdx
adxb + f(u, v)r2(u, v)γ

for some function f , where I adopted the convention that I denote the coordinates on Q+

by lower case Latin letters. (I will denote the remaining "angular" ones by upper case
Latin letters.) I will here not write down the full calculations and instead only brie�y
sketch how to get the above equations from Einstein's equations: Using an analytical
software package, one can easily calculate the Ricci tensor. One can then substitute the
AB-components of Einstein's equation into the trace (with respect to the metric gab on
Q+) of the ab-components, and then substitute that trace back into the ab-components
of the Einstein equations to get12:

∇a∇br =
1

2r
(1− ∂c∂cr)gab − 4πr(Tab − gabgcdT cd) (7)

From this, one can infer equations (3) - (6). For example, for eq. (3), simply compute
that Γvuu = 0 and Γuuu = 2∂uΩ/Ω (note that the only non-vanishing components of the
inverse metric are guv = gvu = −2/Ω2). However, deriving eq. (7) requires that r,Ω are
C2-functions. To weaken the regularity restrictions on r,Ω, we here assumed eqns. (3) -
(6) directly.

Assumption B implies the following equations which we shall need later in this section:

Claim 1. From the assumption above, we get, if 1− 2m
r , ∂ur, ∂vr 6= 0:

∂u
∂vr

1− 2m
r

=
4πrTuu
∂ur

∂vr

1− 2m
r

(8)

∂v
∂ur

1− 2m
r

=
4πrTvv
∂vr

∂ur

1− 2m
r

(9)

Proof. Using the de�nition of 1− 2m/r = −4Ω−2∂ur∂vr (cf. eq. (2)), the LHS of eq. (8)
reads

∂u(− Ω2

4∂ur
) =

1

4
∂u(Ω−2∂ur)

(
Ω2

∂ur

)2

= 4(−4πrΩ−2Tuu)
−Ω2

4∂ur

∂vr

1− 2m
r

where we used equation (3) in the second step.

We thus proved eq. (8). The proof of eq. (9) is analogous and will be omitted here.
However, it can be simply obtained by copying the proof above and just swapping the u-
and v-indices.

3.1.3 Dominant energy condition

We further assume the energy momentum tensor to be non-negative, i.e.:

12For more details on this, see chapter 3 in [6] or the appendix of [14]
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Assumption C.
Tuu ≥ 0, Tvv ≥ 0, Tuv ≥ 0 (10)

Remark 4. Equation (10) is a consequence of the dominant energy condition. To see
why, consider the vector jµ := −Tµν V ν . Choose V s.t. only its u- and v-components
are non-zero. Then V is causal if V uV v ≥ 0.13 The �rst part of the dominant energy
condition, i.e. that j is causal, then implies14

jaja = gad(TdbV
bTacV

c) = −4Ω−2(TubTvcV
bV c) ≤ 0

from which we infer
TuuTuv ≥ 0 and TvvTuv ≥ 0 (11)

by choosing V v = 0 or V u = 0, respectively. The other requirement from the dominant
energy condition, namely that j is future-directed if V is, becomes

jaVa = −TabV aV b ≤ 0

and analogously (choosing V v = 0 or V u = 0) implies Tuu ≥ 0 and Tvv ≥ 0. So, looking
back at eq. (11), we see that Tuv can only be negative if Tuu = 0 = Tvv. In this case,
however, we get that jaVa = −2TuvV

uV v > 0 for all timelike vectors V (these have
V vV u > 0). So Tuv has to be non-negative.

So far, the assumptions introduced remain very general, with the only real restrictions
being made on the topology of the initial Cauchy surface. In the following subsections,
we shall analyse how much we can get out of just these assumptions and where we need
additional assumptions.

3.2 Regular, trapped and marginally trapped regions

In this subsection, we will make some statements on the behaviour of the functions r, its
derivatives and m in di�erent regions of Q+. We introduce the following very tractable
de�nitions15 of trapped, marginally trapped, regular and anti-trapped regions:

De�nition 3.1. We de�ne the regular region as

R := {q ∈ Q+ : ∂vr(q) > 0, ∂ur(q) < 0},

the trapped region as

T := {q ∈ Q+ : ∂vr(q) < 0, ∂ur(q) < 0},

the marginally trapped region16 as

13gabV
aV b = −Ω2V uV v

14Again, we take T to be spherically symmetric, so, in particular, TaA = 0.
15One computes that in spherical symmetry, the null expansions of spheres are given by θi = 4

Ω2r
∂ir,

i = u, v. This is yet another simpli�cation spherical symmetry gives to us, as we have very good control
over ∂ur, ∂vr via the eqns. 3,4.

16The wording Dafermos chooses in his paper might suggest that A is 1-dimensional. This, in general,
is not the case.
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A := {q ∈ Q+ : ∂vr(q) = 0, ∂ur(q) < 0},

and the anti-trapped region as

aT := {q ∈ Q+ : ∂vr(q) < 0, ∂ur(q) < 0}.

For the Kruskal spacetime, we have seen in the Black Holes course that region 2, the
interior of the black hole region is trapped, region 1 is regular and the event horizon
is marginally trapped. We have also seen that region 3, the white hole region is "anti-
trapped". To exclude such white-hole like regions from our spacetime, we introduce

Assumption D. We assume that ∂ur < 0 along S i.e. there are no anti-trapped
surfaces initially.

This assumption will, inter alia, allow us to deduce that ∂ur < 0 will hold everywhere on
Q+ (so white holes/anti-trapped surfaces are non-evolutionary). We will now show this
statement and several other very useful properties of the regions R, A and T .

Proposition 1. i) Q+ = R∪ T ∪ A, i.e. Q+ contains no anti-trapped regions.

ii) 1− 2m
r = 0 on A, 1− 2m

r < 0 on T and 1− 2m
r > 0 on R

iii) If (u, v) ∈ T , then (u, v′) ∈ T for all v′ > v as long as (u, v′) ∈ Q+

iv) If (u, v) ∈ T ∪ A, then (u, v′) ∈ T ∪ A for all v′ > v with (u, v′) ∈ Q+

v) In R, we have ∂vm ≥ 0, ∂um ≤ 0 and m ≥ 0. The �rst two inequalities hold also in

A.

Proof. i) By assumption A, for every p = (u, v) ∈ Q+, the ingoing null ray (v = const.)
through it has past endpoint q = (ub, v) on the boundary S. There, the quantity Ω−2∂ur
is negative (by assumptions A and D). Now, integrating17 eq. (3) from q to p along an
ingoing null ray gives, in view of the non-negativity of Tuu and Ω, that

(Ω−2∂ur)(u, v)− (Ω−2∂ur)(ub, v)︸ ︷︷ ︸
≤0

=

∫ u

ub

−4πrΩ−2Tuu(ū, v) dū ≤ 0.

Hence, ∂ur(u, v) < 0 for all (u, v) ∈ Q+ and the statement follows.

ii) Since 1 − 2m
r = −4Ω−2∂ur∂vr and ∂ur < 0 in Q+, we have sign(1 − 2m

r ) = sign(∂vr)
on Q+. Thus, the statement follows.

iii), iv) From eq. (4) and the positivity of Tvv, we see that along outgoing null rays
(u = const.), Ω−2∂vr is non-increasing towards the future, i.e., for v2 > v1:

17This, of course, requires the local integrability of the components of T and the continuity of Ω,
assured by assumptions A, B.
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(Ω−2∂vr)(u, v2)− (Ω−2∂vr)(u, v1) =

∫ v2

v1

−4πrΩ−2Tvv(u, v̄) dv̄ ≤ 0.

(the same assumptions as for i) are needed here, apart from the foliation of Q+ with null
rays that have endpoint on the boundary of Q+). So, if ∂vr(u, v1) < 0, then ∂vr(u, v2) < 0
for all v2 > v1 as long as we are still in Q+. Clearly, the same statement still holds if we
replace < by ≤. Thus, the statement follows.

v) The inequalities ∂um ≤ 0, ∂vm ≥ 0 on R are immediate in view of eqns. (5), (6) and
the positivity of the energy momentum tensor. To now deduce that m ≥ 0 on R, consider
a point p = (u, v′) ∈ R. Then, from iv), (u, v) will also be in R (if it is in Q+) for all
v < v′. Let vb denote the (unique, since Γ, S are timelike/spacelike) point s.t. (u, vb) is
on the (geometrical) boundary of Q+. This exists because of the foliation of Q+ by null
rays with past endpoint on the boundary of Q+.

Then the inequality ∂vm ≥ 0 we just showed to hold in R implies m(u, v′) ≥ m(u, vb).
So we only need to show the following

Subclaim. m ≥ 0 on (Γ ∪ S) ∩R

Proof. Note that by Assumption A, m|Γ = 0 (because r|Γ = 0). To show positivity on
S ∩R, we will �rst show that m increases along S ∩R. The (by assumption A spacelike)
unit tangent vector along S (away from Γ), k = ku∂u+kv∂v, has k

v positive and therefore
ku negative (since 1 = kaka = −Ω2kukv). Now, using eqns. (5) and (6) and the positivity
of the energy-momentum tensor, we get

k ·m = 8πr2Ω−2(kuTuv∂ur︸ ︷︷ ︸
≥0

− kuTuu∂vr︸ ︷︷ ︸
≤0

+ kvTuv∂vr︸ ︷︷ ︸
≥0

− kvTvv∂ur︸ ︷︷ ︸
≤0

) ≥ 0

on S ∩ R. So indeed, m increases along S ∩ R. Now, let s be the coordinate along S
de�ned by k ·s = 1 and s = 0 at Γ∩S (so s is increasing away from Γ). If S∩R is empty,
we have nothing to show. If S ∩R is non-empty, there exists an sR ∈ S ∩R. Now, either
[0, sR] ∈ S ∩ R, in which case we are done because m(s = sR) ≥ m(s = 0) = 0. Or, by
continuity of ∂vr, there exists a 0 ≤ sA < sR with sA ∈ S ∩A s.t. (sA, sR) ∈ S ∩R. But
we now from ii) that m(s = sA) = r(s = sA)/2. Since r is by assumption A non-negative,
we have m(s = sR) ≥ (m(s = sA) ≥ 0 and thus proved the subclaim.
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Note that the subclaim we just proved shows that m(u, vb) ≥ 0 and we therefore get, by
∂vm ≥ 0 in R, that m(u, v′) ≥ 0. Hence, m(p) ≥ 0 for all p ∈ R. This completes the
proof.

In view of m|R ≥ 0 and m|A∪T ≥ r|A∪T /2 ≥ 0, we get the following corollary:

Corollary 3.1. The Hawking mass m is non-negative everywhere on Q+.

Remark 5. Referring to remark 2, it is clear that the positivity of the mass in R needs the
assumption r|Γ = 0. This is the only time we explicitly use the assumption. Nevertheless,
we will often use the positivity of the mass in R. I shall mark when we do this using
footnotes, also explaining how this can be circumvented.

The behaviour of r,m inR will, as I mentioned, play a crucial role in the upcoming proofs,
so I recommend the reader to familiarise himself with the situation which I summarised
in �gure 1

Figure 1: The blue arrows show the directions of increasing r/non-decreasing m. Also
captured in the �gure is the fact that if (u, v′) ∈ R, then (u, v) ∈ R for v < v′.

3.3 Future null in�nity

Since the weak cosmic censorship conjecture essentially claims the completeness of future
null in�nity for realistic spacetimes, we better de�ne future null in�nity. For that, we
�rst de�ne U , the set of coordinates u for which r(u, v) goes to in�nity for some v and
then de�ne future null in�nity as the the set of points (u, v′) s.t. u ∈ U and (u, v′) lies on
the topological boundary of Q+. More precisely:

De�nition 3.2. S acquires a unique limit point i0 in Q+ \ Q+. We will call this point
spacelike in�nity.

Further, we de�ne U := {u : supv:(u,v)∈Q+ r(u, v) =∞}.

Then, for each u ∈ U , there is a unique v′(u) such that (u, v′(u)) ∈ Q+ \Q+.18

We then de�ne future null in�nity as

I+ :=
⋃
u∈U

(u, v′(u)).

18Existence follows straight from the de�nition of U .
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A priori, there is no reason why I+ (or equivalently, U) should not be empty. Since u
strictly decreases along S (in the direction away from Γ), this does not change even if r
diverges along S. (i0 does not belong to I+.) However, if I+ is non-empty, we have the
following

Proposition 2. If I+ is non-empty, it is a connected, ingoing null ray with past limit
point i0.

To show that future null in�nity has to lie on an ingoing null ray emanating from i0 the
idea is that points "to the right of" that null ray would not satisfy the foliation assumption
from A whereas points "to the left of" can be shown to be �nite in view of ∂ur < 0 on
Q+. The connectedness will then follow from that same inequality.

Proof. Deviating from Dafermos' notation, we will call the coordinates of i0 (U∞, VI+)19.
Now, assume there is v> > VI+ such that (u, v>) ∈ I+. Then, there is a v′ ∈ (VI+ , v>)
with (u, v′) ∈ Q+. Then, the ingoing null ray though this point will not have past
endpoint on S, in contradiction to the global hyperbolicity assumption of assumption A.
So let us instead consider (u, v<) ∈ I+ with v< < VI+ . In view of ∂ur < 0 on Q+,
supQ+∩{v<v<} r ≤ supS∩{v<v<} r < ∞ (by the regularity assumption we made on r), so

we �nd that no points on I+ can have v < VI+ . Hence, I+ is a subset of {v = VI+}.
To prove connectedness, we remark that because ∂ur < 0 on Q+, we have that r cannot
be increasing along I+ (away from i0). More precisely, r(u, v) > r(u′, v) for all v < VI+ ,
u < u′ and thus limv→VI+ r(u, v) ≥ limv→VI+ r(u

′, v) for all u < u′. Hence, if (u′, VI+) ∈
I+, so is (u, VI+) for all u < u′. This proves the proposition.

Note that we needed assumption D for both the connectedness of I+ and the fact that
I+ lies on an ingoing null ray.

In the following, we will make

Assumption E. I+ is non-empty.

Remark 6. This assumption holds true for initial data with matter of compact support.
Because then, points arbitrarily close to both the initial hypersurface and to the topolog-
ical boundary emanating from i0 will not notice the initial matter. So for these points,
the metric will be given (by Birkho�'s theorem) by the Schwarzschild metric, which has

19This is perhaps in bad style because we do not know yet that I+ has a constant v-coordinate.

13



non-empty future null in�nity. We could also add an electromagnetic �eld that does not
have compact support on the initial hypersurface. Then the same argument as above
applies but with the Reissner-Nordström metric instead of the Schwarzschild metric (this
is of relevance to section 4).

In the proof of the above proposition, we have not made use of any of the speci�c in-
equalities on R,A or T from prop. 1, we instead only made use of the general inequality
∂ur < 0 on Q+. This is because we do not yet know anything about where in Q+ the
regular, trapped and marginally trapped regions lie. But since we now know something
about I+, this will change:

Proposition 3. We have Not shown in
[12]J−(I+) ∩Q+ ⊂ R (12)

Proof. Consider (u, VI+) ∈ I+. Then, limv→VI+ r(u, v) = ∞ implies that in each set
{u} × [v<, VI+), there must be, for all v< < VI+ , a point (u, v′) with ∂vr(u, v

′) > 0. But
we know from prop. 1iv) that if ∂vr(u, v

′) > 0 then ∂vr(u, v) > 0 for all v < v′ (so long
as we don't leave Q+). Hence, ∂vr > 0 in J−(I+) ∩ Q+ and thus the �rst statement
follows.

Proposition 4. The Hawking mass m can be extended to a function on I+ that is non- Not shown in
[12]negative20 and non-increasing away from i0.

Proof. The extendibility of m to I+ is a consequence of the assumption that m is uni-
formly bounded on S (assumption A). For, by the previous proposition, J−(I+)∩Q+ ⊂ R
and so, by prop. 1v), we have ∂um ≤ 0 in J−(I+)∩Q+. This means that m is in fact uni-
formly bounded in J−(I+)∩Q+ and thus extendible to I+. To see that it is non-negative
and non-increasing, we use the other inequalities from prop. 1v): m ≥ 0, ∂vm ≥ 0. We
then �nd that for all (u, VI+) ∈ I+, limv→VI+ m(u, v) ≥ 0. Similarly, ∂um ≤ 0 im-
plies that limv→VI+ m(u′, v) ≤ limv→VI+ m(u, v) for U∞ < u′ < u. This completes the
proof.

Since we just showed its existence, we now introduce the de�nition:

De�nition 3.3. For (u, VI+) ∈ I+, we de�ne the Bondi mass as
m(u, VI+) := limv→VI+ m(u, v), where the limit is of course taken from v < VI+ . Further,
we de�ne the �nal Bondi mass as the in�mum of the Bondi mass, Mf := infI+ M .

20For the non-negativity of the Bondi mass, the non-negativity of the Hawking mass is, a priori, needed.
However, we shall see later that this can be avoided.
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3.4 The weak extension principle

To �nally start proving the completeness of I+, we need one last assumption about the
nature of singularities in our spacetime.

Assumption F. If p ∈ R \ Γ̄ and q ∈ I−(p) ∩R such that J−(p) ∩ J+(q) \ {p} ⊂
R ∪A. Then p ∈ R ∪A.

This principle is depicted below:

Remark 7. Note that since q ∈ I−(p) (as opposed to J−(p)), the rectangle J−(p)∩J+(q)
always has non-vanishing volume.21 The content of this assumption is basically that all
possible singularities, unless on the center or on certain null parts of the boundary, have to
be preceded by some trapped region. This will become clearer through the consequences
of this assumption which I show below. We will discuss it a bit more in section 4.2.

This assumption, called the weak extension principle (WEP), is by far the most restricitive
assumption we make. The other assumptions were either fairly general assumptions on
the initial data, or even more general assumptions on their evolution (namely the Einstein
equations and the dominant energy condition). In contrast, this assumption is a statement
on the development of the initial data and the kinds of singularities arising in these
developments. To name a few22, it was shown to be true for the Einstein-Vlasov system
[13], the self-gravitating Higgs [11] and the Einstein-Maxwell-Klein-Gordon system [20].
For the latter, we will present the proof in the next section.

Dafermos now makes a minor claim regarding the topological boundary of Q+ that is
supposedly implied by this and prop. 1.

Claim 2. *** If there is a p ∈ R \ Q+, then p lies either on the ingoing null ray going Not shown in
[12]through the limit point i+ of I+ or on the outgoing null ray emanating from the limit

point of Γ, which we shall refer to as bΓ in the following.

I do not think that this statement is correct, at least I do not think it can be proved from
just prop. 1 and assumption F. Instead, I could only show this weaker claim:

Claim 3. ***If there is a non-empty, connected set X ⊂ R\Q+ that is not just a point, Not stated in
[12]X 6= {p}, then X lies either on the ingoing null ray going through the limit point i+ of

I+, or on any other ingoing null ray on the boundary of Q+, or on the outgoing null ray
emanating from the limit point of Γ.

21Our convention is that p /∈ I−(p) but p ∈ J−(p).
22See chapter 1.7.9 in [20] for a more comprehensive list
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Neither of these claims will be used for the proof of completeness of I+, but I still think
that a discussion of these claims may assist the reader in developing a better understanding
of the WEP and how we will use it in the next few proofs.

Proof. The above claim states connected subsets of R \ Q+ that are not just a point
cannot lie on a spacelike part of the boundary of Q+ or on any outgoing null ray parts of
the boundary of Q+, unless they end on the future limit point of Γ. We will prove this
by contradiction:

Assume �rst that X is contained in a spacelike part of the boundary. Take two points
(u, v) and (u′, v′) in X and take, WLOG, v′ > v, u′ < u (because we are in spacelike
part of the boundary). Because of the result from prop. 1iv) that if (ū, v̄′) ∈ R then
(ū, v̄) ∈ R for all v̄ < v̄′, we then get, by the assumption that X is connected, that the
set ((u′, u)× {v < v′}) ∩Q+ is contained in R. So clearly, for each point p = (ũ, ṽ) in X
with v < ṽ < v′ and thus u > ũ > u′, there is a q ∈ ((u′, u) × {v < v′}) ∩Q+ ⊂ R such
that q ∈ I−(p) and J−(p) ∩ J+(q) \ {p} ⊂ ((u′, u)× {v < v′}) ∩Q+ ⊂ R (where we used
that we are one a spacelike part of the boundary). Hence, by assumption F, p is not on
the boundary of Q+ after all, a contradiction. The diagram below illustrates the proof.

For the other possibility, assume X is contained in an outgoing null ray part of the
boundary of Q+ with u = u′. Let vmin be the minimal23 v s.t. (u′, v) is still on the
boundary. Now, assume that there is a point p = (u′, v′) on this null part of the boundary,
with v′ > vmin, which is in R. Then, by prop. 1iv), we get that {u′}× [vmin, v

′] ⊂ R. By
continuity, we can now �nd a ṽ ∈ (vmin, v

′) such that for some ũ < u′, the set [ũ, u′)×{ṽ}
is fully contained in R. We then again have, by prop. 1 iv), that the stripe [ũ, u′)× [v<, ṽ]
is fully contained in R for some v< < v0 large enough s.t. we haven't left Q+ yet (this is
why we must demand the null ray to not have the future limit point of Γ as endpoint). We
can now repeat the argument above: We have that [ũ, u′]×[v<, vmin]\(u′, vmin) ⊂ R∪A24

so assumption F tells us that the point (u′, vmin) is inR∪A, a contradiction. The diagram
below illustrates this.

23This is minimal and not in�mal because the set (Q+ \Q+) ∩ {u = uconst.} is closed for all uconst.
24Since R̄ ∩Q+ = (R∪A) ∩Q+
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So the scenarios of Claim 2 we could not exclude are exactly the following:

The scenario on the left is a scenario where there is a subset on an ingoing null part of
the boundary, in which case any rectangle as in assumption F will intersect the boundary,
so assumption F is not applicable here. The right scenario is a scenario where there is
only one point in R∩ (Q+ \Q+) such that any rectangle as in assumption F is not fully
contained in R∪A.
The reason we cannot exclude these scenarios is that, in general, we have no way of saying
that if (u′, v′) ∈ R, then (u, v′) in R for u < u′. This motivates the following proposition
which will be of major importance in the sequel.25

Proposition 5. If p = (u′, v′) ∈ R\Q+ with v′ < VI+ , umin = min{u : (u, v′) ∈ R\Q+} Not stated in
[12]and [u<, umin)×{v′} ⊂ R for some u< < umin. Then u

′ = ubΓ , i.e. p lies on the outgoing
null ray emanating from bΓ, the future limit point of Γ.

Proof. If [u<, umin)× {v′} ∩Q+ ⊂ R we �nd that

[u<, umin)× [v<, v
′] ⊂ R (13)

by prop. 1 iv) (for v< < v′ large enough so that we do not leave Q+). Now, there are
three cases which are also depicted in the diagram below. (Note that the topological
boundary cannot be timelike due to the foliation assumption from assumption A):

i) If p = (u′, v′) is on a spacelike part of the boundary, we have u′ = umin: Then, we get
from eq. (13) that

[u<, u
′]× [v<, v

′] \ {p} ⊂ R

So, by assumption F, p ∈ Q+, a contradiction.

25Dafermos does not explicitly state this, but I deem it necessary for the following proofs.
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ii) If p = (u′, v′) is on an outgoing null part of the boundary where u = const = u′, we also
have u′ = umin. Let's assume u′ < ubΓ . Pick the minimal vmin such that q = (u′, vmin)
is still on the boundary of Q+. Because u′ < ubΓ , it is clear that we can adapt equation
(13) to hold for a ṽ< < vmin large enough s.t. we have not left Q+. Then, we get from
eq. (13) that

[u<, u
′]× [ṽ<, vmin] \ {q} ⊂ R ∪A

and hence q ∈ Q+, a contradiction. So, if we are on an outgoing null part of the boundary,
then u′ = ubΓ .

iii) If p = (u′, v′) is on an ingoing null part of the boundary where v = const = v′:
Because v′ < VI+ , this cannot be on the ingoing null ray emanating from the future limit
point of I+. We then have that r = (umin, v

′) is on the boundary of Q+. Then, we get
from eq. (13) that

[u<, umin]× [v<, v
′] \ {r} ⊂ R ∪A

and hence r ∈ Q+, a contradiction.

Thus, the proposition follows.

Although not important in our context, we will brie�y mention the following

Corollary 3.2. If the topological boundary is not just the union of two null rays ema-
nating from the future limit points of Γ and I+, respectively, then, if a black hole region
exists, it cannot be regular everywhere.

For proving the completeness of I+, Dafermos makes use of an equivalent reformulation of
assumption F which replaces the condition p /∈ Γ with the assumption that p ∈ Q+ \{v =
VI+} and r(p) > 0. I will avoid using it in this section but it will become relevant again
in section 4.

3.5 Proof of completeness of future null in�nity

In this subsection, we will infer the completeness of I+ assuming the existence of a
(marginally) trapped region. What we will prove is a reformulation of the weak cos-
mic censorship conjecture due to Christodolou [8], but slightly adapted. To state this
reformulation in this context, it is helpful to introduce this

Compared to
[12], I changed
the de�nition
of H slightly.

De�nition 3.4. We call the future boundary of J−(I+) ∩ Q+, excluding i+, the event
horizon, H. We let UH denote the u-coordinate of the event horizon H.
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However, the wording "event horizon" only really makes sense if H ⊂ Q+. To see when
this is the case, we show the following

Proposition 6. If Q+ \ (J−(I+) ∩ Q+) is non-empty (i.e. if the black hole region is Not shown in
[12]non-empty), then H ⊂ Q+.

Proof. If Q+ \ (J−(I+) ∩Q+) is non-empty, there is a non-empty open interval {UH} ×
(v, v′) ∈ H∩Q+. Because of the assumption that Q+ is foliated by outgoing null rays with
past endpoint on Γ∪S, we immediately get that the half-open interval {UH}×[VΓ∪S , v

′) ∈
H ∩Q+, where VΓ∪S is the unique v s.t. (UH, VΓ∪S) ∈ Γ ∪ S.
Now, if v′ = VI+ , then the statement H ⊂ Q+ follows. Therefore, assume that v′ < VI+

and p = (UH, v
′) /∈ Q+. But then, any point q = (ũ, ṽ) ∈ J−(I+) ∩ Q+ ∩ I−(p) with

ṽ < v′ satis�es J−(p) ∩ J+(q) \ {p} ∈ R ∪A in view of equation 12.

So, by assumption F, we obtain p ∈ R∪A, a contradiction. This completes the proof.

Corollary 3.3. In particular, equation 12 then implies: If Q+ \ (J−(I+) ∩Q+) is non-
empty, then

H ⊂ R∪A. (14)

Note that H can have its past endpoint on S or Γ, however the latter case is much more
important for the issue of evolutionary black hole formation.

Our formulation of the weak cosmic censorship now takes the following form:

Reformulation of weak cosmic censorship Fix u0 < UH s.t. there exists a v0 < VI+

s.t. {u0} × [v0, VI+) ∈ Q+. Let X(u, v) on J−(I+) ∩Q+ be the ingoing null vector �eld
de�ned by demanding it to be parallely transported along u = u0 and along any ingoing
null ray. We specify26 the initial condition X(u0, v0) = ∂u.

Then I+ is future complete if, as v → VI+ , the a�ne length of X from u0 to UH diverges.
In other words, take the geodesic generators parallel to those of I+ and normalise them
along some outgoing null ray u = u0. Then, the a�ne length from u0 to UH of these
geodesic generators diverges as I+ is approached.

26In [8], the vector �eld is normalised on S instead.
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We are now ready to formulate the main result of Dafermos' paper:

Theorem 3.1. If Q+ \ (J−(I+) ∩Q+) is non-empty, then I+ is future complete.

Eq. 12 then yields the following

Theorem 3.2. If A ∪ T 6= ∅, I+ is future complete.

Proof. We will conduct the proof in 3 steps. First, we �nd the vector �eld X(u, v). To
show that its a�ne length diverges, we then need a Penrose inequality that bounds r on
the event horizon: r|H ≤ 2Mf . Prop. 5 will play a major role for this. Having shown this
Penrose inequality will allow us to introduce estimates on r,m with the help of which we
will be able to show that the a�ne length diverges.

3.5.1 Finding X(u, v)

We need to solve the initial value problem Not done in
[12]

∇uX(u, v) = 0, ∇vX(u0, v) = 0, X(u0, v0) = ∂u

Using that only the o�-diagonal components of the metric gab are non-vanishing, one �nds

Γubc =
1

2
guv(gvb,c + gvc,b − gbc,v)

Γvbc =
1

2
guv(gub,c + guc,b − gbc,u)

from which one can read o� that Γuuu = 2∂uΩ
Ω , 0 = Γuuv = Γvuv.

Now, since it is parallely transported, we can write X(u, v) = f(u, v)∂u for some function
f . Using the above result for the Christo�el symbols, we get

∇uX = (∂uf + f · Γuuu)∂u = (∂uf + f · 2∂uΩ

Ω
)∂u

So, for this to vanish, we require ∂u log(f) = −2∂u log(Ω) and hence f(u, v) = g(v)Ω−2(u, v)
for some function g. Parallel transport along u = u0 on the other hand requires:

∇vX = ∂vf |u=u0
∂u = 0.

Also using the initial condition, we �nd

X(u, v) =
Ω2(u0, v)

Ω2(u, v)
∂u (15)
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3.5.2 ***The outermost apparent horizon27

The following lemma is claimed in [12] to be necessary for his proof. However, in the
context Dafermos refers to it, it is not even helpful. It can be used for a part of the proof
of the Penrose inequality, but we will instead use prop. 5 for that, as it is the more general
result (as we shall see in the proof of this lemma). We still include the proof because it
is of independent interest, in particular for numerical studies.

De�nition 3.5. ***We de�ne the outermost apparent horizon as the set

A′ := {(u, v) ∈ A : (u∗, v) ∈ R∀u∗ < u and (u′, v) ∈ J−(I+) ∩Q+ for some u′}

Lemma 3.1. *** If A ∪ T is non-empty, then A′ is a non-empty, achronal28 curve
intersecting all ingoing null curves for v ≥ v0 for some v0 < VI+ .

Proof. To show that A′ is achronal, let p = (u, v) ∈ A′ and q = (u∗, v∗) ∈ A′ ∩ I−(p), i.e.
u∗ < u, v∗ < v. By de�nition of A′, (u∗, v) ∈ R. But now, from prop. 1iv) we get that
(u∗, v∗) ∈ R since v∗ < v, a contradiction.

For the second part of the lemma, let now (u′, v′) ∈ A ∪ T .29 Then, choose v0 > v′ s.t.
S∩{v ≥ v0} ∈ R. This exists because of equation (12) and the fact that I+ is non-empty
by assumption D and equation (12). Now, pick any point (u′′, v′′) on S with v′′ ≥ v0. If
we assume that [u′′, u′]×{v′′} ∈ Q+, then, since (u′, v′) ∈ A∪T , (u′, v′′) ∈ A∪T as well
(by prop. 1iv)). So, in view of eq. (12), there has to be a ũ < u′ such that (ũ, v′′) ∈ A′.
(To see why this is the case, note that if there is no u > UH with (u, v′′) ∈ A′, then we
still have (UH, v

′′) ∈ A′.)
So we get the intermediate result which is also depicted in the diagram below:

∀v′′ ≥ v0 with [u′′, u′]× {v′′} ∈ Q+, ∃ũ ∈ [u′′, u′] with (ũ, v′′) ∈ A′.
27This section is not important for the rest of the essay. Nevertheless, the result presented here is of

independent interest.
28Meaning no two points on it have a timelike separation
29In view of equation (12), u′ ≥ UH.
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We now need to discuss the assumption we made that [u′′, u′]×{v′′} ∈ Q+. This assump-
tion fails if and only if (u′, VI+) is not on the boundary of Q+, or, equivalently, if the null
ray u′ = const intersects the boundary at v < VI+ . (See the diagram below)

To see that in the lemma still holds in this case, as suggested by the diagram above, we
prove the following

Subclaim. If there exists a ū ≤ u′ s.t. (ū, v′′) = p ∈ (Q+ ∩{v < VI+}) \Q+, then the null
ray v′′ × [u′′, ū) intersects A.
So in particular, the subclaim implies that again there can be found a ũ < ū s.t. (ũ, v′′) ∈
A′.

Proof. The subclaim is an immediate consequence of prop. 5. For assume it is wrong.
Then (ū, v′′) = p ∈ (Q+∩{v < VI+})\Q+ and we get for the minimal umin s.t. (umin, v

′′)
is still on the boundary that there exists a u< such that [u<, umin)×{v′′} ∈ R (this would
be true for all u< as long as (u<, v

′′) is still in Q+. So prop. 5 tells us that umin = ubΓ ,
which is in contradiction to umin ≤ ū < ubΓ . This completes the proof

This completes the proof.
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3.5.3 Penrose inequalities on A′ and H

In this subsubsection, we will prove the following Penrose inequality30:

Lemma 3.2. On H, we have that r ≤ 2Mf .

Remark 8. Remind yourself of the de�nition of the �nal Bondi mass: Mf = infI+ M .

Proof. We will prove the lemma by contradiction. The strategy will roughly consist of
the following steps: We will assume that the lemma is wrong. Then, using mainly the
results from prop. 1 and eqns. (14),(12), we will show some basic inequalities for m, r in
the region [u0, UH]× [v0, VI+) which would allow us to infer that r diverges as v → VI+

for all u ∈ [u0, UH] (using that it diverges for u = u0). (We will not do this explicitly
but it will become clear in the proof.) Of course, this alone would not be a contradiction.
However, we will then see that we can de�ne a bigger region [u0, u

′]× [v0, VI+) for some
u′ > UH which will both be fully contained in R and ful�l very similar inequalities for
m, r (in fact, the region will be de�ned by imposing such inequalities). With a bit of
work, we will then again be able to infer that r in fact diverges for all u ∈ [u0, u

′] as v
approaches VI+ . That however implies that I+ has u-coordinates larger than UH. But
H is the future boundary of J−(I+)∩Q+, a contradiction. The reader may already wish
to refer to the two diagrams below for an illustration of the idea.

The proof will assume positivity of m as shown in prop. 1, but in view of remark 5, I will
mention when we assume it and how to avoid the assumption using footnotes with lower
case Latin letters. I recommend to skip these footnotes on �rst reading.

So let's start with the proof:

Suppose the lemma is not true. Then, there exists a point (UH, v0) ∈ H with

r(UH, v0) = R > 2Mf

Furthermore, there exists a point (u0, VI+) ∈ I+ s.t.a

m(u0, VI+) ≤M with M ∈ (Mf , R/2)

This is in fact the only point in this proof where we use the de�nition of Mf .
31

Note that this implies 1− 2M
R > 0. From eqns. (12), (14), we have

W := [u0, UH]× [v0, VI+) ⊂ (J−(I+) ∩Q+) ∪H ⊂ R ∪A,

so we see from prop. 1v) that we have the following inequalities:

∂vr|W ≥ 0, ∂ur|W < 0, ∂vm|W ≥ 0, ∂um|W ≤ 0

30A comprehensive review of the general relevance of Penrose inequalities and recent progress is given
in [21]

31Imagine we only had r(UH, v0) = R > 2Mf − ε. Then m(u0, VI+ ) ≤ M withM ∈ (Mf − ε/2, R/2)
would not necessarily be true anymore, for it would then be possible that R < 2Mf .

aEven if the Bondi mass were negative, we could still pick M > 0, for R/2 > 0.
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We infer that, on W , we have r|W ≥ R and m|W ≤M , and so, in particularb

m(u, v)

r(u, v)
≤ M

R
<

1

2
⇒ 1− 2m(u, v)

r(u, v)
≥ 1− 2M

R
> 0 ∀(u, v) ∈W

But prop. 1 tells us that in A, 1− 2m
r = 0, so we conclude that in fact W ⊂ R

So in summary,

W = [u0, UH]× [v0, VI+) ⊂ R, (16)

r|W ≥ R,m|W ≤M and (1− 2m

r
)|W ≥ 1− 2M

R
> 0

These results are depicted in the diagram below.

Note, in particular, that H ⊂ R. As mentioned before, we can show that an even larger
region ful�lling similar inequalities is contained in R:
Subclaim. There exists a u′ > UH and a R′ ∈ (0, R), such that

Z := [u0, u
′]× [v0, VI+) ⊂ R (17)

r|Z ≥ R′,m|Z ≤M and (1− 2m

r
)|Z ≥ 1− 2M

R′
> 0

Proof. As I outlined in the beginning of the proof, we will take these inequalities as
starting point, i.e. we will intersect Z with these inequalities and with R and then see
that these intersections, if u′ is chosen appropriately, do not cut anything away from Z.
So let us start the proof:

First, since H ⊂ R and thus ∂vr > 0 on H, and since ∂vr is continuous, there exists a
u′ > UH with (u′, v0) ∈ Q+ and ∂vr > 0 along [UH, u

′]×{v0} and hence [UH, u
′]×{v0} ∈

R. We can put a stronger restriction on u′: Let it additionally be small enough so that
r(u, v0) > R′ for all u ∈ [UH, u

′] where R′ satis�es R > R′ > 0 and 1 − 2M
R′ > 0 (this

exists because 1− 2M
r(UH,v0) = 1− 2M

R > 0 and the continuity of r). However, what is not

a priori clear is that we can also �nd a u′ such that all the above still holds in the entire
region [UH, u

′] × [v0, VI+) (in particular, it is not clear at all why this should still be in

bSince we can pickM positive, this equation is still valid for negativem, for then we have 1−2m/r > 1.
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Q+). But it turns out that the u′ as speci�ed above already su�ces to guarantee exactly
this, as we will show now: De�ne the sets

Y = [UH, u
′]× [v0, VI+), Y∩ = Y ∩Q+, (18)

Y∩∩ = Y∩ ∩ {(ū, v̄) : r(u, v) > R′′ ,m(u, v) < M ′ for allUH ≤ u ≤ ū, v0 ≤ v ≤ v̄}

for some M ′ > M, R′′ < R′ with 1− 2M ′

R′′ > 0.

We will now show that neither of the intersections cut something from the set Y , i.e. we
will show that Y∩∩ = Y∩ = Y .

We �rst show the �rst equality: Notice that Y∩∩ is clearly open in Y∩. Furthermore,
sincec 1 − 2m

r > 1 − 2M ′

R′′ > 0 in Y∩∩, Y∩∩ can neither have non-empty intersection with
A nor with T (by prop. 1ii)). So

Y∩∩ ⊂ R

Now, the only limit points of Y∩∩ w.r.t. Y∩ which could potentially not be contained in
Y∩∩ would be points (u, v) ∈ V∩ with r(u, v) = R′′ or m(u, v) = M ′. But since Y∩∩ ⊂ R,
it follows from the standard inequalities in R from prop. 1v), that r(ū, v̄) > R′ > R′′ and
m(ū, v̄) ≤M < M ′ for all (ū, v̄) ∈ Y∩∩. So we see that Y∩∩ has no limit points w.r.t. Y∩
that are not contained in Y∩∩, hence Y∩∩ is closed in Y∩ and the second intersection does
not cut anything away from the rest set, i.e. Y∩∩ = Y∩ (since Y∩ = [UH, u

′]×[v0, VI+)∩Q+

is connected and Y∩∩ 6= ∅ by construction).

So we indeed have

Y∩∩ = Y∩ = [UH, u
′]× [v0, VI+) ∩Q+ ⊂ R (19)

Now, let's show that to intersect with Q+ is redundant as well. For that, we want to show,
analogously to the above procedure, that Y∩ is open and closed in Y = [UH, u

′]×[v0, VI+).
Open-ness is again clear. To show closure, we want to show that

[UH, u
′]× [v0, VI+) ∩Q+ = [UH, u

′]× [v0, VI+) ∩Q+(= Y∩)

for the LHS is precisely the closure of the RHS in Y = [UH, u
′] × [v0, VI+). Assume the

equation is wrong. That would mean that, in view of equation (19), there are points in
(R\Q+) ∩ ([UH, u

′]× [v0, VI+)), let's call them (uc, vc), such that [UH, uc)× {vc} would
be in R. Then prop. 5 tells us that indeed uc = ubΓ . So, in particular, (uc, v0) ∈ R\Q+.
This contradicts the initial construction assumption that [UH, u

′] × {v0} ∈ R. We learn
that, since Y is connected, Y∩ = Y.

We summarise:

Y = [UH, u
′]× [v0, VI+) ⊂ R, (20)

r|Y > R′,m|Y ≤M and (1− 2m

r
)|Y > 1− 2M

R′
> 0

This is also depicted in the diagram below.

cAgain, M ′ can be chosen to be positive in which case the inequality is trivial for m negative.
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Looking back at eq. (16), we �nd that Z = Y ∪W satis�es the subclaim.

Now that this subclaim is established, we can use these inequalities on Z to show that
I+ extends beyond u = UH: First, we integrate eq. (5), for any (u∗, v∗) ∈ Z:

m(u0, v
∗)−m(u∗, v∗) = −

∫ u∗

u0

∂um(u, v∗) du (21)

= −
∫ u∗

u0

8πr2Ω−2(Tuv∂ur︸ ︷︷ ︸
≤0

−Tuu∂vr)

 (u, v∗) du

≥
∫ u∗

u0

(
8πr2Ω−2(Tuu∂vr)

)
(u, v∗) du

=

∫ u∗

u0

8πr2Tuu(− 4

Ω2
∂vr∂ur︸ ︷︷ ︸

1−2m/r

· 1

−4∂ur
)

 (u, v∗) du

=
1

2

∫ u∗

u0

(
4πrTuu
−∂ur

(r − 2m)

)
(u, v∗) du ≥ 0

In the third line, we used Tuv∂ur ≤ 0 and in the last, we inserted the de�nition of m (eq.
(2)). Now, we make use of the subclaim: The subclaim impliesd m(u0, v

∗)−m(u∗, v∗) <
M and (r − 2m)|Z ≥ R′ − 2M > 0. So we indeed have

2M

R′ − 2M
≥
∫ u∗

u0

4πrTuu
−∂ur

(u, v∗) du ∀(u∗, v∗) ∈ Z (22)

The integrand is familiar from eq. (8) which I repeat here for better readability32:

∂u
∂vr

1− 2m
r

=
4πrTuu
∂ur

∂vr

1− 2m
r

32Note that the assumptions made to get this equation, i.e. ∂ur 6= 0 6= (1− 2m/r), are true in R and
thus in Z.

dIf we allow the Hawking mass to be negative, then m(u0, v∗) − m(u∗, v∗) < 2M by the triangle
equality. Since we only want it to estimate it against some constant, this would also su�ce.
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It has the form ∂uf = gf , so ∂u log(f) = g. Integrating such an equation from u0 to u∗,
we get

log (f(u∗)/f(u0)) =

∫ u∗

u0

g(u)du

where I omitted the v-argument. Applying this to our case (and exponentiating), we
obtain

∂vr

1− 2m
r

(u∗, v∗) =
∂vr

1− 2m
r

(u0, v
∗) exp

(∫ u∗

u0

4πrTuu
∂ur

(u, v∗) du

)
(23)

≥ ∂vr

1− 2m
r

(u0, v
∗) exp

(
− 2M

R′ − 2M

)
where I used (22) and the positivity of the LHS (the subclaim guarantees that ∂vr and
1− 2m

r are positive in Z ⊂ R) for the estimate. Finally, we have that (1− 2m
r )(u∗, v∗) >

1− 2M
R′ , and because m is non-negativee in Z ⊂ R, 0 < (1− 2m

r )(u0, v
∗) ≤ 1. We arrive

at

∂vr(u
∗, v∗) ≥

(
1− 2M

R′

)
exp

(
− 2M

R′ − 2M

)
∂vr(u0, v

∗) ∀(u∗, v∗) ∈ Z (24)

Integrating this inequality (along the v-direction), we thus �nd that, if

limv∗→VI+ r(u0, v
∗) = ∞ (which is the case since u0 < UH), then limv∗→VI+ r(u

∗, v∗) =
∞ for all u∗ ∈ [u0, u

′]. Hence, since u′ > UH, we reached a contradiction to H being the
event horizon (remember that UH, the event-horizon's u-coordinate is the u-coordinate
of the future limit point of I+). This completes the proof.

Remark 9. In view of the inequality ∂um ≤ 0 on H ⊂ R∪A, it would have su�ced to
show that r|H∩{v≥v0} is bounded by Mf for su�ciently large v0. That means that we
could have used lemma 3.1 for proving Y∩ = Y instead of prop. 5.

Since r > 0 on H \ Γ, we get the corollary:

Corollary 3.4. In particular, the �nal Bondi mass is positive.

Furthermore, we get:

Corollary 3.5. On A′, we have that r ≤ 2Mf .

To see that this is a corollary of lemma 3.2, remember that ∂ur < 0 on Q+. So in view of
eq. (14), we get supH r ≥ supA′ (because A′ cannot have u-coordinates smaller thanUH).

In view of footnotes (a)-(e), we see that we in fact did not need the positivity of the mass
to derive the Penrose inequality (see remarks 2,5). The Penrose inequality is thus still
valid if we do not assume r|Γ = 0! In particular, in view of corollary 3.4, we get the
following

Lemma 3.3. Even without the proposition that m ≥ 0, the �nal Bondi mass and thus Not shown in
[12]the Bondi mass is positive. Moreover, lemma (3.2) still holds.

eIf m(u∗, v∗) is negative, then, in view of ∂vm ≥ 0, m either becomes positive for large enough v. Or
it approaches some �nite negative value, in which case 1− 2m/r → 1 as v approaches VI+ so we can for
instance choose a v∗ large enough such that (1− 2m/r)(u∗, v∗) < 2.
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3.5.4 Proof of completeness of future null in�nity

We can now use the Penrose equality on H to show that I+ is complete in the sense of
the reformulation in the beginning of the subsection. What we have to show is that the
a�ne length of X(u, v) from eq. (15) diverges, i.e. we have to show:

Lemma 3.4.

lim
v→VI+

∫ UH

u0

(X(u, v) · u)−1 du =∞ (25)

Proof. This proof will mostly recycle the ideas we used in the proof of the Penrose in-
equality. (I will again use Latin letter footnotes to make comments on how to avoid using
positivity of the mass.)

At the same time, we use the Penrose inequality itself only once, and that is in the very
beginning: Pick R > 2Mf s.t., for a u0 < UH, the Bondi mass M = m(u0, VI+) has

R > 2M (26)

Then, for su�ciently large v0 < VI+ , all ingoing null rays with v ≥ v0 take the value
R exactly once in J−(I+), i.e. they intersect J−(I+) ∩ {r = R} exactly once. We call
these points (u∗(v), v). To see why these exist and are unique, let v0 < VI+ be large
enough such that r(u0, v0) > R. This is possible because r(u0, v) diverges towards VI+

for all u0 < UH. In view of J−(I+) ∩ Q+ ⊂ R (eq. (12)) and the inequality ∂vr > 0 in
R, we then know that r(u0, v) > R for all v ∈ [v0, VI+). So from the Penrose inequality
r|H ≤ 2Mf < R and the continuity of r, there is clearly at least one u∗(v) > u0 such
that r(u∗(v), v) = R for all v ≥ v0. But this point is also unique by the global inequality
∂ur < 0 on Q+ (prop. 1i)).33

However, at no point in this argument did we use the de�nition of Mf . We could have
replaced it with any other constant C as long as supH r < C.

The existence of the points v∗(u) allows us to make the following crucial estimate (the
integrand is positive) on the integral in eq. (25).∫ UH

u0

(X(u, v) · u)−1 du ≥
∫ u∗(v)

u0

(X(u, v) · u)−1 du (27)

Why is this estimate so helpful? On the set

W̃ = {(u, v) : v ∈ [v0, VI+), u0 ≤ u ≤ u∗(v)}

(which is contained in R by equation 12), the inequalities ∂ur < 0, ∂vr > 0, ∂um ≤
0, ∂vm ≥ 0 and the de�nition of u∗(v) imply:

m|W̃ ≤M, r|W̃ ≥ R⇒ (r − 2m)|W̃ ≥ R− 2M > 0 (28)

See the diagram below for a depiction of the situation:

33The unique existence of this point is where Dafermos claimed that Lemma 3.1 is needed.
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The positivity of the RHS comes simply from eq. (26). This inequality is reminiscent of
equation (20) in the previous proof and we will in fact make very similar use of it:

∫ u∗(v)

u0

(X(u, v) · u)−1 du =

∫ u∗(v)

u0

−Ω2(u,v)/4︷ ︸︸ ︷
∂ur∂vr

1− 2m
r

(u, v)

−4Ω−2(u0,v)︷ ︸︸ ︷
1− 2m

r

∂ur∂vr
(u0, v) du

=
1

∂ur(u0, v)

∫ u∗(v)

u0

exp

(∫ u

u0

4πrTuu
−∂ur

(ū, v) dū

)
∂ur(u, v) du

=
r(u∗(v), v)− r(u0, v)

∂ur(u0, v)
exp

(∫ u

u0

4πrTuu
∂ur

(ū, v) dū

)
=
r(u0, v)−R
−∂ur(u0, v)

exp

(∫ u

u0

4πrTuu
∂ur

(ū, v) dū

)
(29)

where I have used eq. (15) and the de�nition of the Hawking mass (eq. (2)) in the �rst step,
eq. (23) for ∂vr

1− 2m
r

(u, v), having replaced u∗ → u, v∗ → v, in the second step and simply

performed the integral in the penultimate one. In the last one, I used r(u∗(v), v) = R.

Now, recall eq. (21), replacing v∗ → v, u∗ → u:

m(u0, v)−m(u, v) ≥ 1

2

∫ u

u0

4πrTuu
−∂ur

(r − 2m)(ū, v) dū > 0

The positivity of the RHS follows from ∂ur < 0 and eq. (28). Eq. (28) then also implies
that the LHS is smaller thanf M and that the r−2m term in the integral can be estimated
against r − 2m > R− 2M . We therefore get, just as in eq. (22),

2M

R− 2M
≥
∫ u

u0

4πrTuu
−∂ur

(ū, v) dū > 0 ∀(u, v) ∈ W̃

Plugging this back into eq. (29)∫ u∗(v)

u0

(X(u, v) · u)−1 du ≥ r(u0, v)−R
−∂ur(u0, v)

exp

(
− 2M

R− 2M

)
. (30)

fOr smaller than 2M , if the Hawking mass can be negative. See footnote (d).
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We know that the numerator on the RHS diverges as v → VI+ (r(u0, v) → ∞), so to
show that the LHS diverges, all that is left to do is to show that the denominator of the
RHS remains �nite as VI+ is approached. Recall how we used eq. (8) to show that ∂vr is
bounded from below on ingoing null rays (eq. (24)). It turns out that we can use a very
similar argument to show that −∂ur is bounded from below on outgoing null rays34.

Note that in analogy to how eq. (8) implied eq. (23), we have that eq. (9) implies that

∂ur

1− 2m
r

(u0, v) =
∂ur

1− 2m
r

(u0, v0) exp

(∫ v

v0

4πrTvv
∂vr

(u0, v̄) dv̄

)
and thus

− ∂ur(u0, v) = −∂ur(u0, v0)

(
1− 2m

r

)
(u0, v)(

1− 2m
r

)
(u0, v0)

exp

(∫ v

v0

4πrTvv
∂vr

(u0, v̄) dv̄

)
(31)

where we added the minus sign so that both sides become positive. Finding estimates for
the 1− 2m

r terms is easy: For the term in the numerator, we haveg
(
1− 2m

r

)
(u0, v) ≤ 1,

whereas for the term in the denominator we have by equation (28)
(
1− 2m

r

)
(u0, v0) ≥

1− 2M
R > 0. Inserting these estimates yields

− ∂ur(u0, v) ≤ −∂ur(u0, v0)
1

1− 2M
R

exp

(∫ v

v0

4πrTvv
∂vr

(u0, v̄) dv̄

)
(32)

So we only need to �nd an estimate for the integral on the RHS. For this, we proceed
just as in eq. (21): We use equation (6) to write:

m(u0, v)−m(u0, v0) =

∫ v

v0

∂vm(u0, v̄) dv̄ (33)

=

∫ v

v0

8πr2Ω−2(Tvu∂vr︸ ︷︷ ︸
≥0

−Tvv∂ur)

 (u0, v̄) dv̄

≥
∫ v

v0

(
8πr2Ω−2(−Tvv∂ur)

)
(u0, v̄) dv̄

=
1

2

∫ v

v0

(
4πrTvv
∂vr

(r − 2m)

)
(u0, v̄) dv̄ ≥ 0

In the third step, we used positivity of Tvu∂vr in R and in the last step we plugged in
the de�nition of m, just as in equation (21).

Finally, by equation (28), we have that the LHS is smaller thanh M and that the r− 2m
term on the RHS and hence the entire RHS is positive (by ∂vr > 0 in R and the positivity
of the energy-momentum tensor). More concretely, it implies we can estimate the term
in the integral by r − 2m > R− 2M > 0 to arrive at what we wanted:

2M

R− 2M
≥
∫ v

v0

4πrTvv
∂vr

(u0, v̄) dv̄. (34)

34The reason why we could show boundedness below for ∂vr whereas we will now show boundedness
above for ∂ur is, of course, the di�erence in sign between ∂vr and ∂ur.

gSee footnote (e) for how this works when the Hawking mass is allowed to be negative.
hOr smaller than 2M , if the Hawking mass can be negative. See footnote (d).
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Plugging this back into equation (32), we get

− ∂ur(u0, v) ≤ −∂ur(u0, v0)
1

1− 2M
r(u0,v0)

exp

(
2M

R− 2M

)
= const. (35)

Since −∂ur is always positive in Q+, we thus showed that −∂ur(u0, v) is bounded. There-
fore, the RHS of eq. (30) indeed diverges and so does the LHS. This completes the proof
of the claim

and hence the proof of Theorem 3.1.

As mentioned in the proof, we did not need the speci�c Penrose inequality, we only
required to have some bound on r|H. So we in fact have the following

Theorem 3.3. Even if the black hole region is empty, i.e. if Q+ = J−(I+) ∩ Q+: As Not mentioned
in [12]long as the extension of the area radius onto H is bounded, i.e. if supH r < C for some

constant C, then I+ is complete.

This is a weaker statement than Theorem 3.1, however, and is independent of the WEP.

3.6 Extension of the results
Not shown in
[12]. State-
ment slightly
changed.

Finally, in view of remarks 2,5 and of footnotes a-h, we also have that the positivity of
the mass from prop. 1v) was nowhere needed for any of the results of this paper. We can
thus extend them to apply also to �reasonable� spherically symmetric initial data with
two asymptotically �at ends for which S is a connected piece of the quotient of one of
the ends and Γ is an ingoing null curve intersecting S only at its endpoing (r|Γ = 0 can
be dropped).

3.7 Conclusion and Outview

The results of this section show that for this broad class of systems the proof of WCCC can
be approached locally, by either showing that generically, either the future development
is complete or trapped regions form. Alternatively, in view of Theorem 3.3, it would also
su�ce to show that generically, if the black hole region is empty, the supremum of the
area-radius on H is bounded. The two main directions of interest that might bring us
closer to the resolution of the WCCC are: i) Search for physically relevant (spherically
symmetric) systems for which the WEP (or other assumptions made in this section)
does not apply; and understand the WCCC for them. This might give some intuition to
how the results of this section could be shown without use of the WEP. ii) Consider
spherically symmetric systems for which the WEP (and the other assumptions) hold and
understand the Trapped surface conjecture for these. This has so far only been done for
Christodoulou's scalar �eld model. Understanding this conjecture for more complicated
systems like the EMKG system considered in the next section might give hints how to
complete the proof of the WCCC for the class of systems considered here.
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4 The Einstein-Maxwell-Klein-Gordon system

In this section, I will discuss the previous results in the context of a speci�c space-
time: I will review Kommemi's publication and PhD thesis [20, 19] where he shows
that the results from the previous section are applicable to the the spherically symmet-
ric Einstein-Maxwell-Klein-Gordon (EMKG) system with self-gravitating charged, mas-
sive and spinless particles. This system is governed by the Einstein equations (1) with
Tµν = TEMµν + TKGµν and

TEMµν =
1

4π
(gαβFµαFνβ −

1

4
gµνF

αβFαβ) (36)

TKGµν = D(µφ(Dν)φ)† − 1

2
gµν

(
gαβDαφ(Dβφ)† + m2φφ†

)
(37)

∇νFµν = 2πei
(
φ(Dµφ)† − φ†Dµφ

)
(38)

DµDµφ = m2φ (39)

Here, m2 ∈ R≥0 is the real, non-negative (otherwise the dominant energy condition would
be violated) mass of the �eld, e ∈ R its charge35 and D = ∇ + ieA the gauge derivative
where A is the 1-form with dA = F .

This is a generalisation of Christodoulou's self-gravitating real and massless scalar �eld
(Fµν = =(φ) = 0 = e = m2) and of Dafermos' model [10]with =(φ) = 0 = e = m2. The
main di�erence to the former model is that this model allows for Cauchy horizons on the
null ray emanating from i+ which makes it a much richer object to study with regards to
strong cosmic censorship36. While this was also possible in Dafermos' model, that model
can only have one asymptotically �at end if Fµν = 0, as there, the charge must arise
from non-trivial topology37. The study of charged black holes is also motivated by the
similarity between rotating and charged black holes, i.e. it can be seen as a way to leave
the realm of spherical symmetry. However, in contrast to Christodoulou's model, WCCC
and SCCC are still unsolved for the EMKG system.

Nevertheless, important steps towards settling these questions have been made by Kom-
memi. In particular, he has shown that this model obeys a stronger extension principle
than the WEP from assumption F, thus showing applicability of the results from section 3
to the EMKG system. In this section, I will focus on presenting the proof of this extension
principle to the reader.

First, some necessary groundwork will be set in subsection 4.1, where I set up the IVP
such that assumptions A-E from the previous sections hold.

In subsection 4.2, I will then introduce the generalised extension principle (GEP) and
show that the GEP implies the WEP.

I will prove the GEP for th EMKG system in subsection 4.3, thus establishing applicability
of the results from the previous section.

Finally, I will summarise the results.

35For a discussion of why we can ignore the quantisation of the charge, see chapter 2.2.2 in Kommemi's
paper.

36A topic which I will not expand on in this essay.
37Heuristically, for a �xed spacetime charge Q, we see that the usual formula Fuv = Q

r2
Ω2 blows up as

r → 0.
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4.1 The setup

Using standard methods, one can show that for the EMKG system, a generalisation of
Choquet-Bruhat and Geroch's theorem holds for smooth spherically symmetric initial
data sets (Σ, h, kij , Ei, Bi, Ai, φ, φ

′) satisfying certain constraint equations and Σ hav-
ing trivial topology. Here, Ei, Bi denote electric and magnetic �elds, respectively. In
particular, one shows that the spherical symmetry is preserved if imposed initially.38

With this in mind, we can state the following theorem the proof of which will form the
rest of this section:

Theorem 4.1. For smooth, spherically symmetric and asymptotically �at initial data
with one end satisfying assumption D (i.e. ∂ur < 0 initially), there exists a maximal
future development (M = Q+×r S2, gµν,Fµν , φ), where r denotes the area-radius function.
If we additionally assume that the initial data are chosen such that assumption E holds39,

then the results of section 3 apply.

As discussed in the remarks following their introduction, if we choose coordinates s.t.
the metric is given by g = −Ω2dudv + r2γ, assumptions A and B are trivially satis�ed.
Assumption C, the dominant energy condition, can easily be checked to be satis�ed from
eqns. (36) and (37) if m2 ≥ 0.40 So to prove the above theorem, we only need to show
that assumption F is satis�ed, i.e. that the spacetime obeys the weak extension principle.

Before we show this, however, we need to �x the electromagnetic gauge freedom. For
e 6= 0, the EKGM system is invariant under the local gauge transformations φ → e−ieχ,
Aµ → Aµ + ∂µχ. We can globally41 �x this gauge freedom by choosing

Au(u, v)|π−1(Γ∪S) = 0, Av(u, v) = 0

(The other components of A vanish by spherical symmetry.) The only non-vanishing
component of F is then Fuv = −∂vAu. We de�ne Qe = 2r2Ω2Fuv.

This gauge leads to the reduced system of eqns.:

38For more details on e.g. the meaning of spherical symmetry in this context, refer to Kommemi's
paper.

39The reader should go back to the discussion of the assumption to see when this holds. It is not the
goal of this essay to state the weakest possible assumption on the initial data such that assumption E
holds.

40Without this assumption, only the null energy condition is obeyed.
41A consequence of spherical symmetry. Again, refer to Kommemi's paper for more details.
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r∂v∂ur = −1

4
Ω−2 − ∂vr∂ur + m2πr2Ω2φφ† +

1

4
Ω2r−2Q2 (40)

r2∂u∂v log Ω = −2πr2
(
Duφ(∂vφ)† + ∂vφ(Duφ)†

)
− Ω2Q2

2r2
+

Ω2

4
+ ∂ur∂vr (41)

∂u(Ω−2∂ur) = −4πrΩ−2Duφ(Duφ)† (42)

∂v(Ω
−2∂vr) = −4πrΩ−2∂vφ(∂vφ)† (43)

∂uQe = 2πeir2
(
φ(Duφ)† − φ†Duφ

)
(44)

∂vQe = 2πeir2
(
φ†∂vφ− φ(∂vφ)†

)
(45)

−1

4
Ω2m2φ = ∂u∂vφ+ r−1(∂ur∂vφ+ ∂vr∂uφ) + eiΨ(A) (46)

Ψ(A) = Au(φr−1∂vr + ∂vφ)− 1

4
Ω2r−2Qeφ (47)

Here, Q2 = Q2
e + Q2

m where Qm denotes the magnetic charge coming from Fθφ. For the
purpose of this paper, the reader should ignore its inclusion42. A full derivation of these
equations is not given here, but I shall state where they come from: Eq. (40) follows from
eq. (7). Eq. (41) follows from the Einstein equations and relates the Gaussian curvature43

to the components Tθθ,Tφφ. The next two equations are simply eqns. (3),(4), whereas
eqns. (44)-(46) come from the equations of motions (38),(39) for the matter �elds.

4.2 The generalised extension principle

The extension principle Kommemi proves is (cf. the WEP, assumption F)

The generalised extension principle (GEP) Let p ∈ Q+, q ∈ (I−(p) ∩Q+)
s.t. D := (J−(p) ∩ J+(q)) \ {p} ⊂ Q+: If D has �nite spacetime volume, and if
there exists constants r0, R s.t.

0 < r0 ≤ r(p′) ≤ R <∞ ∀p′ ∈ D

Then p ∈ Q+.

Remark 10. While the statement of the WEP is that �rst singularities44 emanating from
the closure of the regular region can only arise on the center Γ, the GEP roughly states
that �rst singularities can only arise on parts of the boundary where r tends to 0.

Before proving it for the EMKG system in the next subsection, I shall show that the
GEP implies the WEP, assuming the dominant energy condition (in fact, the null energy
condition su�ces). For that, we need a

Proposition 7. Let p ∈ Q+ \{v = VI+} and assume assumptions A- D. Then the region
J−(p) ∩Q+ has �nite spacetime volume.

42Its inclusion is related to the fact that we may treat e as a continuous parameter. Qm = 0 whenever
e 6= 0.

43K = 4Ω−2∂u∂v log Ω in our coordinates. See [6], chapter 3, for example.
44For a precise de�nition, see paragraph 3.4, de�nition 6 in [20]
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Proof. Using that Q+ is a bounded subset of R2 and that the coordinates thus have �nite
ranges, writing the volume form as Ω2/2 = (−Ω−2∂ur)

−1(−∂ur)/2 and �nally recalling
equation45 (3) and ∂ur < 0 on Q+, this is easily proved. See chapter 3.2 in Kommemi.

Claim 4. Assuming assumptions A- D, the GEP implies the WEP.

Proof. Choose a point (U, V ) = p ∈ Q+ \Γ which satis�es the conditions of the WEP, i.e.
D = (J−(p) ∩ J+(q)) \ {p} ⊂ R ∪ A for some (U ′, V ′) = q ∈ (I−(p) ∩Q+). This implies
that V < VI+ , so the proposition above tells us that D has �nite spacetime volume. Now,
let r0 = r(U, V ′) and R = r(U ′, V ). Recalling ∂ur < 0, ∂vr ≥ 0 on R ∪ A, we get that
0 < r0 ≤ r(p′) ≤ R <∞, for all p′ ∈ D. So, from the GEP, p ∈ Q+ and hence the WEP
is established.

4.3 Proof of the GEP for the EMKG system

The previous disccusion of the GEP in section 4.2 was completely general. We now move
back to the EMKG system and prove that the GEP holds for it.

The proof will make use of a local existence result which will reduce the proof to showing
that the norm (de�ned for any subset Y ⊂ Q+)

N(Y ) := sup{|Ω|1, |Ω−1|0, |r|2, |r−1|0, |φ|1, |Au|0, |Qe|0} (48)

is bounded for Y = D with D as de�ned in the GEP. Here, |f |n is the restriction of the
Cn-norm on Q+ to Y .

We will now �rst show this claim in 2 propositions and then show the boundedness of
N(D).

With standard methods46 one proves the following

Proposition 8. Let X be the lightcone boundary [0, d]×{0}∪ {0}× [0, d]. Let k ≥ 0 and
let r > 0, Au be Ck+2 functions on X and Ω > 0, φ be Ck+1functions on X such that
eqns. (42),(43) hold on [0, d]×{0}, {0}× [0, d] respectively. Let | · |n, | · |n,u, | · |n,v denote
the Cn-norm on Q+ restricted to X, the Cn(u)-norm on [0, d]×{0} and the Cn(v)-norm
on {0} × [0, d] respectively and de�ne

Ñ(X) = sup{|Ω|1,u, |Ω|1,v, |Ω−1|0, |r|2,u, |r|2,v, |r−1|0, |φ|1,u, |φ|1,v, |Au|0, |Au|2,v, |∂vAu|1,u}
(49)

Then, there exist δ(Ñ) and Ck+2-functions r,Au -which are unique amongst C2-functions-
and Ck+1-functions Ω, φ -which are unique amongst C1-functions- such that r,Au,Ω, φ
satis�y the reduced system of equations (40)− (47) on the set [0, δ∗]× [0, δ∗] where δ∗ =
min(δ, d) and the restrictions of the these functions to X yield the initial data.

45The proof uses the monotonicity of Ω2∂ur which still holds if only the null energy condition is
assumed.

46See for example the appendix of [13]
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Proposition 9. Let (U, V ) = p ∈ Q+ \ Q+, (U ′, V ′) = q ∈ I−(p) ∩ Q+ s.t. D =
(J+(q) ∩ J−(p)) \ {p} ⊂ Q+. Then N(D) =∞.

Proof. We will assume N(D) < ∞ and use local existence and openness of Q+ to show
that we can extend Q+ uniquely past p and thus infer p ∈ Q+.

Take 2N(D) = Ñ and take δ(Ñ) > 0 as in the proposition above. Let δ(Ñ) be small
enough such that (U − δ

2 , V −
δ
2 ) is still in Q+. For convenience, translate the coordinates

such that this point becomes (0, 0).47 Clearly, X = [0, δ2 ] × {0} ∪ {0} × [0, δ2 ] ⊂ Q+, so
by openness of Q+ and continuity of all the functions and their derivatives occuring in
N(D), ∃δ∗ ∈ ( δ2 , δ) such that

X∗ = [0, δ∗]× {0} ∪ {0} × [0, δ∗] ⊂ Q+

andN(X∗) <∞. In particular, eqns. (44),(45) hold inX∗, which shows that the �niteness
of N(X∗) implies the �niteness of Ñ(X∗).48 We now are in a situation where the local
existence result from prop. 8 applies, i.e. there exists a unique solution in D∗ = [0, δ∗]×
[0, δ∗] which coincides with the previous solution in D ∩D∗.

But D∗ arose from initial data on a subset of Q+ and hence by maximality of Q+ (which
comes from the generalisation of Choquet-Bruhat), we have D∗ ⊂ Q+. Since p ∈ D∗, this
contradicts the assumption p ∈ Q+ \Q+.

We can now prove the GEP for the EMKG system as speci�ed in Theorem 4.1.

Theorem 4.2. Let (U, V ) = p ∈ Q+, (U ′, V ′) = q ∈ (I−(p) ∩ Q+) \ {p} s.t. D :=
(J−(p) ∩ J+(q)) \ {p} ⊂ Q+ and s.t.

W =

∫ V

V ′

∫ U

U ′
Ω2 dudv <∞ and 0 < r0 ≤ r(p′) ≤ R <∞ ∀p′ ∈ D (50)

Then N(D) <∞ and p ∈ Q+.

47Then p = ( δ
2
, δ

2
).

48The only norms within Ñ(X∗) where this is not immediately obvious are the second derivatives in
|Au|2,v , |∂vAu|1,u. But these appear precisely on the LHS's of eqns. (44),(45), where the RHS's only
contain bounded terms by the �niteness of N(X∗). (Recall Qe = −2r2Ω−2∂vAu) So these terms are
bounded as well.
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Proof. In view of prop. 8, showing that N(D) <∞ su�ces to infer p ∈ Q+.

Since X = [U ′, U ] × {V ′} ∪ {U ′} × [V ′, V ] ⊂ Q+ is compact and the solution as in
Theorem 4.1 is su�ciently regular, we can give several �nite bounds on |r|, |φ|, |A|, |Ω|
and derivatives of them, restricted to X. Using these bounds in combination with eq. (50)
and the reduced system of equations (40)-(47), we can then show a priori integral estimates
on several quantities in the region D = D∪{p}. The hardest part of the proof consists
of �nding a uniform bound for |rφ| in D.49 Once this is done, one can systematically
use eqns. (40)-(47) to show the other bounds.50 I will only cover parts of the proof and
will e.g. give only the bounds within X which we will make use of. For more details, the
reader is referred to section 4.3 in Kommemi's paper.

So let's begin: One can easily show from its de�nition (eqns. (36),(37)) that 4Tuv =
Ω2(m2φφ† +Q2/(4πr4)). Eq. (40) then gives

0 ≤
∫ V

V ′

∫ U

U ′
4πr2Tuvdudv =

∫ V

V ′

∫ U

U ′

1

2
∂u∂vr

2 +
1

4
Ω2dudv ≤ (R2 − r2

0) +
W

4
= const.,

where the last step comes directly from eq. (50). From this, one can see that the same
integral estimates hold for each of the summands of Tuv (they are both positive). Then,

writing F 2
uv =

Ω2r2Q2
e

4 · Ω2

r2 and using Cauchy-Schwarz one infers that a similar integral
estimate holds for |Fuv|(= | − ∂vAu|). Introducing now the bound |Au|X ≤ A we get∫ U

U ′
sup

V ′≤v≤V
|Au| du ≤ A(U − U ′) +

∫ U

U ′

∫ V

V ′
|∂vAu| dvdu = const.

If we further introduce the bounds |r∂vr|X ≤ N, |r∂ur|X ≤ Λ for some constants N,Λ,
one can also show the boundedness of the integrals∫ U

U ′
sup

V ′≤v≤V
|r∂ur| du,

∫ V

V ′
sup

U ′≤u≤U
|r∂vr| dv

We now use these a priori bounds to show the uniform boundedness of rφ in D. For that,
we introduce the �nal bound |rφ|X ≤ Φ. We will do this by partitioning D into a a set of
smaller subregions: Given an ε > 0, de�ne a partition Djk = ([uj , uj+1]× [vk, vk+1]) ∩ D
with j, k = 0, ..., I(ε) and (u0, v0) = (U ′, V ′), (uI+1, vI+1) = (U, V ) such that, for all j, k∫ uj+

uj

∫ vk+1

vk

Ω2 + |Fuv|+ 4πr2Tuv dvdu < ε (51)∫ vk+1

vk

sup
uj≤u≤uj+1

|r∂vr| dv < ε∫ uj+

uj

sup
vk≤v≤vk+1

|r∂ur|+ sup
vk≤v≤vk+1

|Au| dv < ε

This can be done because we just showed global a priori estimates on these integrals over
D. Clearly, for j + k < 2I, the quantities Pjk = supDjk

|rφ| are �nite (in view of the

49The uniform boundedness of r is already given by eq. (50)
50In [13, 11], where only the WEP is proved, the proofs mainly rely on helpful properties of the Hawking

mass m in R ∪ A. These are obviously not applicable for the GEP.
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regularity of the solution in Q+). We will show that PII is also bounded by proving a
recursive estimate on the Pjk for j + k < 2I and then using an argument similar to the
arguments in the proof of the Penrose inequality (when we showed that Y∩∩ = Y∩ = Y ).

First, re-write eq. (46) as

∂u∂v(rφ) =φ∂u∂vr − eirΨ(A)− 1

4
m2Ω2rφ (52)

=φ∂u∂vr −
1

4
m2Ω2rφ− ei∂v(Aurφ)− ei

2
rφFuv

where we inserted the de�nitions of Ψ(A), Qe in the second step. Integrating this for
(u∗, v∗) ∈ Djk gives

(rφ)(u∗, v∗) =

∫ u∗

uj

∫ v∗

vk

(φ∂u∂vr+...) dvdu+(rφ)(u∗, vk)+(rφ)(uj , v
∗)−(rφ)(uj , vk) (53)

The ... denotes the other three terms in eq. (52). To give a recursive estimate, we need
bounds for the integral: Eq. (40) gives, using the triangle inequality and the expression
for Tuv:

|∂u∂vr| ≤
1

4
Ω2r−1 + |r∂ur||r∂vr|r−3 + 4πr2Tuvr

−1

We infer∣∣∣∣∣
∫ u∗

uj

∫ v∗

vk

(φ∂u∂vr) dvdu

∣∣∣∣∣ ≤
∫ u∗

uj

∫ v∗

vk

Pjk
r0
|∂u∂vr| dvdu ≤ Pjkr−1

0 (
1

4
εr−1

0 + r−3
0 ε2 + r−1

0 ε)

where we used eq. (51). The other 3 terms in the integral in eq. (52) are also bounded
by constants proportional to εPjk which follows directly51 from eq. (51). Since this and
eq. (53) hold for all (u∗, v∗) ∈ Djk, we get

Pjk ≤ O(ε)Pjk + sup
[uj ,uj+1]×{vk}

|rφ|+ sup
{uj}×[vk,vk+1]

|rφ|+ |(rφ)(uj,vk)| (54)

where the O(ε) term denotes terms at least linear in ε and otherwise only depending on
m2, e, r0. For j + k < 2I, Pjk is �nite: we can then choose ε small enough such that

Pjk ≤

≤Pj,k−1︷ ︸︸ ︷
sup

[uj ,uj+1]×{vk}
|rφ|+

≤Pj−1,k︷ ︸︸ ︷
sup

{uj}×[vk,vk+1]

|rφ|+2|(rφ)(uj,vk)| ≤ 2(Pj,k−1 + Pj−1,k)

Since I is �nite, it follows by induction that all the Pjk for j + k < 2I are bounded by a
constant depending only on the initial data and, more importantly, that for some �nite
constant52 C(ε)

sup
[uI ,uI+1]×{vI}

|rφ|+ sup
{uI}×[vI ,vI+1]

|rφ| ≤ PI,I−1 + PI−1,I ≤ C(ε)Φ (55)

51The way I wrote eq. (52) makes this slightly easier compared to Kommemi's way.
52Recall |rφ|X ≤ Φ
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To now make a statement about PII , we de�ne

DII∩ = {s ∈ DII : |(rφ)(ū, v̄)| < 4C(ε)Φ ∀(ū, v̄) ∈ (J−(s) \ {s}) ∩ DII}

The claim is that DII∩ = DII which would establish the boundedness of PII . Note that
DII is connected and DII∩ is open and by continuity non-empty. To show closure, take
eq. (54) and let PII∩ = supDII∩

|rφ| ≤ 4C(ε)Φ (the bound comes from the de�nition of
PII∩ and continuity). We get from eq. (54):

PII∩ ≤

≤C(ε)Φ from eq.(55)︷ ︸︸ ︷
sup

[uI ,uI+1]×{vI}
|rφ|+ sup

{uI}×[vI ,vI+1]

|rφ|+

≤C(ε)Φ︷ ︸︸ ︷
|(rφ)(uI,vI)|+O(ε) ·

≤4C(ε)Φ︷︸︸︷
PII∩

If we take ε small enough such that the O(ε)-term is smaller than 1/4, we obtain PII∩ ≤
3C(ε)Φ. So DII∩ does contain its limit points (w.r.t. DII) and we conclude DII = DII∩.
The result that |rφ| is bounded follows (since PII∩ = PII is �nite).

The bounds on the other quantities are now established by showing a bound on
|
∫ ∫ (

Duφ(∂vφ)† + ∂vφ(Duφ)†
)
dudv| and inferring the boundedness of |Ω|, |Ω−1| from

eq. (41). The other bounds follow from straightforward calculations.

We thus get N(D) <∞ hence prop. 8 ensures p ∈ Q+. This completes the proof.

This shows that Theorem 4.1 is true.

4.4 Conclusion and Outview

We established that the EMKG system belongs to the class of systems considered in
section 3. A point we did not expand on for this discussion is the question: What are
the least restrictive conditions under which the assumption of non-emptiness of I+can be
guaranteed? Apart from that, the main di�culty was to establish the GEP for this system,
which we showed to imply the WEP if the matter obeys the null energy condition.53

So in particular, we showed that if either the black hole region is non-empty, or supH r <
∞, then the WCCC holds true for the EMKG system. Remarkably, the results of this
section rule out the possibility of creating naked singularities by �super-charging� nearly
extremal black holes above extremality and thus destroying the event horizon. For the
constructed scenarios all have A non-empty, in which case we know WCCC to hold true
(and the event horizon cannot be destroyed in view of prop. 6).

For the �nal resolution of WCCC for this system, the results of this section suggest to
study conditions for trapped surface formation and perhaps establish generalisations of
Christodoulou's trapped surface theorem for the massless Einstein-Klein-Gordon system.
An alternative approach would be to show that generically, if no black hole regions form,
then supH r < ∞. Work in both of these directions has been done by Kommemi in his
PhD Thesis [19]. We will outline some of it in the next section.

53The GEP plays an important role in the discussion of SCCC for this system. It might thus be of
interest to discuss when systems obeying the WEP also obey the GEP.
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5 Trapped Surface formation for the EMKG system

Due to the additional repulsion coming from charge and mass of the scalar �eld, the anal-
ysis of trapped surface formation in the EMKG model can be expected to be more di�cult
than in Christodoulou's model. In this section, we present a result due to Kommemi [19]
which establishes a criterion for trapped surface formation. The idea is motivated by
Christodoulou's corresponding result in [3].

Kommemi considers initial data (at the level of Q+) on a light cone Cin ∪ Cout where
the (truncated) null rays are parametrised by Cin = [0, u1), Cout = [0, v1). Initally, we
have two C2-functions r > 0, φ with the properties that ∂vr|Cout

> 0, ∂ur|Cin = −1 and
φ|Cin = 0. (So we just have Minkowski data on Cin.)

He then de�nes54 a mass functionm(0, v) (withm(0, 0) = 0) and a charge function Q(0, v)
in terms of r and φ and the two quantities

δ0(v) =
r(0, v)

r(0, 0)
− 1, η0(v) =

2(m(0, v)−m(0, 0))

r(0, v)

The mass function will indicate the formation of trapped surfaces: If µ = 2m
r = 1, then

a marginally trapped surface forms. The theorem he then shows is:

Theorem 5.1. Let α ∈ (0, 1) and δ0(v)� 1 su�ciently small. If55

lim
u→u1

r(u, 0) ∼ r(0, v)δ0(v)α and η0(v) ∼ δ0(v)α log δ0(v) (56)

Then there exists a unique (globally hyperbolic, spherically symmetric) black hole space-
time (M = Q+ ×r S2, gµν , φ, Fµν) such that Cin ∪ Cout ⊂ Q+ embeds into Q+ as56

D+(Cin ∪ Cout)∩Q+ = J+(Cin ∪ Cout)∩Q+ and such that the functions r, φ,Q,m, where
m denotes the Hawking mass on Q+, restrict properly to Cin ∪ Cout.

The proof consists roughly of the following steps. First, Kommemi introduces x(u, v) =
r(u,v)
r(0,v) (so x(0, v) = 1) . He then assumes that no marginally trapped regions exist in

54For the details, refer to Kommemi's work [19].
55The notation: x ∼ y means there exist constants a, b s.t. by < x < ay.
56I assume that Kommemi meant in fact D+(Cin ∪ Cout) = J+(Cin ∪ Cout) ∩ Q+. However, if the

boundary is spacelike, we know from the previous results (corollary 3.2) that there exists a (marginally)
trapped region in J+(Cin ∪ Cout) ∩ Q+ anyway. We can therefore ignore this case and for the proof
assume the boundary to be null.
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the region D = [0, u1) × [0, v] for some 0 < v < v1, i.e. ∂vr|D > 0. This and the �rst
part of eq. (56) can be used to take limu→u1 r(u, v) ≥ limu→u1 r(u, 0) = 1

2δ
α
0 r(0, v), so

x(u1, v) ≥ δα0 /2. With this result, he derives the following estimate on the evolution of µ:

d

dx
(xµ(x)) ≤ δα0 /x (57)

The proof of this estimate uses several bootstrap arguments (as in the �nal part of the
proof of Theorem 4.2) and the reduced system of equations (40)-(47) as well as the fact
that φ vanishes on Cin. Now, he uses the second estimate from eq. (56): Assuming
(η0(v) =)µ(0, v) ≥ −αδα0 log δ0 + δα0 , integration of the equation above easily gives, for
su�ciently small δ0, that µ(xmax) ≥ 1 for some x(0, v) = 1 > xmax ≥ δα0 > x(u1, v), a
contradiction!

This shows that (marginally) trapped surfaces do form under certain circumstances for
the EMKG system which in turn adds more weight to the previous results which showed
that spacetimes with a marginally trapped surface obey the WCCC.

6 Conclusion

In this essay, we considered a large class of spherically symmetric, asymptotically �at
initial data with one end, with the most restrictive assumption on it being the weak
extension principle. For these systems, we showed in section 3 that completeness of
future null in�nity can be inferred from either the existence of a trapped region (or
more generally, a black hole region) or, even if the black hole region is empty, from the
boundedness of the area-radius function r on the event horizon H. In fact, the main work
that had to be done in the case of the black hole region being non-empty was establishing
a Penrose inequality on H, namely supH r ≤ 2Mf , where Mf denotes the �nal Bondi
mass. We showed that the results can also be applied to appropriate initial data with
two ends.

To add weight to these results, we showed in section 4 that the Einstein-Maxwell-Klein-
Gordon system belongs to the class of systems considered before. This model is of interest
since it generalises the well-understood massless Einstein-Klein-Gordon system studied
by Christodoulou and is in fact the simplest generalisation of it where the charge is not
induced from non-trivial topology. Due to the similarity between charge and angular
momentum, it is hoped that the understanding of the EMKG system with regards to the
cosmic censorship conjectures will play an important role in understanding non-spherically
symmetric collapse.

We showed that the EMKG system obeys the generalised extension principle which is
stronger than the WEP. This in turn showed that the results from section 3 apply to the
EMKG system.

Finally, we presented a criterion for the formation of trapped surfaces for the EMKG
system in section 5.

The WCCC for this system thus depends on showing that solutions for it with an empty
black hole region and supH r =∞ are non-generic. A possible approach to this problem
would be to show that for the EMKG system, similar results as for Christodoulou's
chargeless and massless system in [4] hold, i.e. that the IVP for initial data of bounded

41



variation is still well-posed, a similar sharp extension criterion holds and a trapped surface
formation criterion stronger than the one formulated in section 5 holds. If this can be
shown, work by Kommemi [19] will ensure that the WCCC is generically true for the
EMKG system.

As a �nal remark, we note that establishing a trapped surface theorem stating that gener-
ically, either A is non-empty or the future development is geodesically complete would
not only ensure that the WCCC holds: If one could, in addition to its non-emptiness,
show that A has a limit point on bΓ, the future limit point of the center of symmetry Γ,
then the C2-formulation of the SCCC would hold as well [20]!
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