B. N. Khoromskij and I. Oseledets.
Quantics-TT Approximation of Elliptic Solution Operators in Higher Dimensions.
in progress, 2009.
B. N. Khoromskij.
O(d log n)-Quantics Approximation of n-d Tensors in High-Dimensional Operator Calculus.
Preprint MPI MIS Leipzig, 2009.
B. N. Khoromskij, V. Khoromskaia, and H.-J. Flad.
Numerical Solution of the Hartree-Fock Equation in the Multilevel Tensor-structured Format,
Preprint
44/2009, MPI MIS Leipzig, 2009.
B. N. Khoromskij.
Tensor-structured Preconditioners and Approximate Inverse of Elliptic Operators
in Rd. Preprint
82/2008, MPI MIS Leipzig, 2008. J. Constructive Approximation, DOI: 10.1007/s00365-009-9068-9, 2009.
B. N. Khoromskij and Ch. Schwab.
Tensor approximation of Multi-parametric Elliptic Problems in R^d.
ETH Zuerich, 2008 (in progress).
W. Hackbusch, B. N. Khoromskij, S. Sauter and E. Tyrtyshnikov.
Use of Tensor Formats in Elliptic Spectral Problems. Preprint
78/2008, MPI MIS Leipzig, 2008.
SIAM J. Numer. Anal., submitted.
B. N. Khoromskij, A. Litvinenko and H. G. Matthies.
Application of hierarchical matrices for computing the Karhunen-Lo'eve expansion. Preprint
81/2008, MPI MIS Leipzig, 2008. Computing, 84:49-67, 2009.
C. Bertoglio, and B. N. Khoromskij.
Low rank tensor-product approximation of projected Green kernels via sinc-quadratures. Preprint
79/2008, MPI MIS Leipzig, 2008.
H.-J. Flad, B. N. Khoromskij, D. Savostianov and E. Tyrtyshnikov.
Verification of the Cross 3d Algorithm on Quantum Chemistry Data. Preprint
80/2008, MPI MIS Leipzig, 2008. Rus. J. Numer. Anal. and Math. Modelling, 4 (2008), 1-16 .
B. N. Khoromskij and V. Khoromskaia.
Multigrid Accelerated Tensor Approximation of Function Related Multi-dimensional Arrays.
Preprint
40/2008, MPI MIS Leipzig,
2008, SIAM Journal on Scientific Computing, vol. 31, No. 4, pp. 3002-3026.
B. N. Khoromskij.
Fast and Accurate Tensor Approximation of Multivariate Convolution with Linear Scaling
in Dimension.
Preprint
36/2008, MPI MIS Leipzig, 2008. J. Comp. Appl. Math., accepted.
H.-J. Flad, W. Hackbusch, B. N. Khoromskij and R. Schneider.
Concept of data-Sparse Tensor-Product Approximation in Many-Particle Modeling. Preprint
3/2008, MPI MIS Leipzig,
2008. World Sci.Publ. (to appear).
B. N. Khoromskij.
On Tensor Approximation of Green Iterations for Kohn-Sham equations. Computing and Visualisation in Science , (2008) 11:259-271,
DOI:10.1007/s00791-008-0097-x,2008. Preprint
4/2008, MPI MIS Leipzig,
2008.
B. N. Khoromskij, V. Khoromskaia, S.R. Chinnamsetty and H.-J. Flad.
Tensor Decomposition in Electronic Structure Calculations on 3D Cartesian Grids. Preprint
65/2007, MPI MIS Leipzig, 2007. Journ. of Comp. Phys., accepted.
S.R. Chinnamsetty, M. Espig, B.N. Khoromskij, W. Hackbusch and H.-J. Flad.
Tensor Product Approximation with Optimal Rank in Quantum Chemistry.
Preprint 105, MPI MIS Leipzig, 2007. J. Chem. Phys., 127, 084110 (2007).
B. N. Khoromskij and V. Khoromskaia.
Low Rank Tucker-Type Tensor Approximation to Classical Potentials. Preprint
105/2006,
MPI MIS Leipzig, 2006. Central European Journal of Mathematics v.5, N.3, 2007, pp.523-550.
M.V. Fedorov, H.-J. Flad, G.N. Chuev, L. Grasedyck and B.N. Khoromskij.
A Structured Low-rank Wavelet Solver for the Ornstein-Zernike Integral equation. Computing 80(1), 2007, 47-73.
W. Hackbusch and B. N. Khoromskij.
Tensor-product Approximation to Multi-dimensional Integral Operators and Green's
Functions.
Journal of Complexity , 2007 , doi:10.1016/j.jco.2007.03.007.
W. Hackbusch, B. N. Khoromskij and S. A. Sauter.
Adaptive Galerkin boundary element methods with panel clustering. Numer. Math. 105 (2007), pp. 603-631.
B. N. Khoromskij.
Structured Data-sparse Approximation to High Order Tensors arising from the
Deterministic Boltzmann equation. Math. Comp. 76 (2007), pp. 1292-1315.
W. Hackbusch and B. N. Khoromskij.
Tensor-product Approximation to Multi-dimensional Integral Operators and Green's
Functions.
Preprint 38, MPI MIS, Leipzig 2006. SIAM J. Matr. Anal. Appl. , 30, no.3, 1233-1253, 2008.
W. Hackbusch and B. N. Khoromskij.
Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal
Operators.
Part I. Separable Approximation of Multi-variate Functions. Computing 76 (2006), pp. 177-202.
B. N. Khoromskij.
Structured Rank-
(r1,...,rd) Decomposition
of Function-related Operators in Rd. Comp. Meth. in Appl. Math. ,
v.6, No.2, (2006), 194-220. Preprint
6/2006, MPI MIS Leipzig, 2006.
W. Hackbusch and B. N. Khoromskij.
Low-rank Kronecker-product Approximation to Multi-dimensional Nonlocal
Operators.
Part II. HKT Representation of Certain Operators. Computing 76 (2006), pp. 203-225.
W. Hackbusch, B. N. Khoromskij and E. E. Tyrtyshnikov.
Approximate Iteration for Structured Matrices.
Preprint 112, MPI MIS, Leipzig, 2005. Numer. Math. , 109, 365-383, 2008.
W. Hackbusch, B. N. Khoromskij and E. E. Tyrtyshnikov.
Hierarchical Kronecker tensor-product approximations. Numer. Math. 13 (2005), pp. 119-156.
I.P. Gavrilyuk, W. Hackbusch and B.N. Khoromskij.
Hierarchical Tensor-Product Approximation to the Inverse and Related Operators
in High-Dimensional Elliptic Problems. Computing 74 (2005), 131-157.
I. P. Gavrilyuk, W. Hackbusch and B. N. Khoromskij.
Data-sparse approximation of a class of operator-valued functions. Math. Comp. 74 (2005), pp. 681-708.
W. Hackbusch, B. N. Khoromskij and R. Kriemann.
Direct Schur complement method by domain decomposition based on H-matrix
approximation. Computing and Visualization in the Sciences (2005), pp. 179-188.
I. P. Gavrilyuk, W. Hackbusch and B.N. Khoromskij.
Data-sparse approximation to the operator-valued functions of elliptic
operators. Math. Comp. 73 (2004), pp. 1297-1324.
W. Hackbusch, B.N. Khoromskij and R. Kriemann.
Hierarchical matrices based on a weak admissibility criterion. Computing 73 (2004), pp. 207-243.
B.N. Khoromskij and J.M. Melenk.
Boundary concentrated finite element methods.. SIAM Journal on Numerical Analysis 41 (2003), pp. 1-36.
L. Grasedyck, W. Hackbusch and B.N. Khoromskij.
Solution of large scale algebraic matrix Riccati equations by use of
hierarchical matrices. Computing , 70 (2003), 121-165.
B.N. Khoromskij.
Hierarchical Matrix Approximation to Green's Function
via Boundary Concentrated FEM. Numer. Math. ,
v.11, No.3, (2003), 195-223.
B.N. Khoromskij.
Data-sparse Elliptic Operator Inverse Based on Explicit
Approximation to the Green's Function. J. of Numer. Math.
(2003) v.11 No. 2, 135-162.
B.N. Khoromskij.
Hierarchical Matrix Approximation to Green's Function
via Boundary Concentrated FEM. J. of Numer. Math. ,
v.11, No.3, (2003), 195-223.
B.N. Khoromskij and J.M. Melenk.
Boundary Concentrated Finite Element Methods. SIAM J. Numer. Anal. , 41 (2003), pp.1-36.
I.P. Gavrilyuk, W. Hackbusch and B.N. Khoromskij.
H-Matrix Approximation for the Operator Exponential with
Applications. Numer. Math. (2002) 92: 83-111.
W. Hackbusch and B.N. Khoromskij.
Blended Kernel Approximation in the H-Matrix Techniques. Numer. Linear Algebra Appl. (2002) 9: 281-304.
B.N. Khoromskij and J.M. Melenk.
An Efficient Direct Solver for the Boundary Concentrated FEM in 2D. Computing 69: 91-117, 2002.
W. Hackbusch and B.N. Khoromskij.
Towards H-Matrix Approximation of the Linear Complexity.
Operator Theory: Advances and Applications, Vol. 121,
Birkhaeuser Verlag, 2001, 194-220.
I.P. Gavrilyuk, W. Hackbusch and B.N. Khoromskij.
H-Matrix Approximation for Elliptic Solution Operator in Cylinder Domains. East-West J. of Numer. Math. , v. 9, 1, 2001, 25-58.
W. Hackbusch and B. N. Khoromskij.
A Sparse H-Matrix Arithmetic. Part II: Application
to Multi-Dimensional Problems. Computing 64, 2000, 1, 21-47.
W. Hackbusch and B.N. Khoromskij.
H-Matrix Approximation on Graded Meshes.
The Mathematics of Finite Elements and Applications X, MAFELAP
1999, J.R. Whiteman (ed), Elsevier, Amsterdam, Chapter 19,
307-316, 2000.
W. Hackbusch, B.N. Khoromskij and S. Sauter..
On H2-Matrices.
In: Lectures on Applied
Mathematics (H.-J. Bungartz, R. Hoppe, C. Zenger, eds.),
Springer-Verlag, Berlin, 2000, 9-30.
W. Hackbusch and B.N. Khoromskij.
A Sparse H-Matrix Arithmetic: General Complexity Estimates. J. of Comp. and Appl. Math., 125 (2000) 479-501.
B. N. Khoromskij and G. Wittum.
Robust Schur complement method for
strongly anisotropic elliptic equations. J. Numer. Linear Algebra with Appl., 6 (1999), 1-33.
G.C. Hsiao, B.N. Khoromskij and W.L. Wendland.
Preconditioning for
Boundary Element Methods in Domain Decomposition.
Ing. Analysis with Boundary Elements, 25 (2001) 323-338.
B. N. Khoromskij and G. Wittum.
Robust Schur complement method for
strongly anisotropic elliptic equations. J. Numer. Linear Algebra with Appl., 6 (1999), 1-33.
B. N. Khoromskij and G. Wittum.
An asymptotically optimal Schur complement
reduction for the Stokes equation. Numer. Math. 81 (1999) 3, 345-375.
B.N. Khoromskij, G. E. Mazurkevich and G. Wittum.
Frequency filtering for elliptic interface problems with Lagrange
multipliers. SIAM J. Sci. Comp., v. 21, 2, 1999, 421-440.
B. N. Khoromskij.
On a sparse finite element approximation to
the boundary Poincaré-Steklov operators of planar elasticity.
In: "Analysis, Numerics and Applications of Differential and Integral Equations",
Pitman Research Notes in Mathematics, A. Jefferey, R. G. Douglas
and H. Brezis eds., 1997, 122-126.
B.N. Khoromskij and G. Schmidt.
A fast interface solver for the
biharmonic Dirichlet problem on polygonal domains. Numer. Math. , 1998, 78: 577-596.
G. Schmidt and B.N. Khoromskij.
Boundary integral
equations for the biharmonic Dirichlet problem in non-smooth domains. J. of Integral Equations and Applications , v. 11, 2, 1999, 217-253.
B. N. Khoromskij and S. Proessdorf.
Fast computations with harmonic
Poincaré-Steklov operators on nested refined meshes. Advances in Comp. Math., 8 (1998), 111-135.
B. N. Khoromskij and S. Proessdorf.
Multilevel preconditioning on the
refined interface and optimal boundary solvers for the Laplace equation. Advances in Comp. Math. , 4 (1995), 331-355.
B.N. Khoromskij and G. Schmidt.
Asymptotically optimal interface
solvers for the biharmonic Dirichlet problem on convex polygonal
domains. ZAMM 76, Suppl. 1, 231-234, 1996.
B.N. Khoromskij and G. Wittum.
Robust iterative methods for
elliptic problems with highly varying coefficients in thin substructures. Numer. Math. 73: 449-472, 1996.
B.N. Khoromskij.
On the fast computations with the inverse to
harmonic potential operators via domain decomposition. J. Numer. Lin. Alg. with Applications , v. 3(2), 91-111,
1996.
F.-K. Hebeker and B.N. Khoromskij.
Geometry independent
preconditioners for boundary interface operators in elliptic problems. East-West J. of Numer. Math., vol.2, No. 1, 1994, 47-63.
B.N. Khoromskij and W.L. Wendland.
Spectrally equivalent
preconditioners for boundary equations in substructuring techniques. East-West J. of Numer. Math., vol.1, No.1, 1992, 1-26.
B.N. Khoromskij, G.E.Mazurkevich, I.P.Yudin and E.P.Zhidkov.
Numerical computations
of space field distribution for the dipole magnet. Math. Modelling ,
v.2, No.5, 1990, pp. 8-17 (in Russian).
B.N. Khoromskij, E.G. Nikonov and E.P. Zhidkov.
Solution of
eigenvalue problem for one class of hypersingular quasipotential
integral equations. Math. Modelling , v. 1, No.11, 1989, 77-91
(in Russian).
B.N. Khoromskij, G.E. Mazurkevich and E.P. Zhidkov.
Domain
decomposition method for magnetostatics nonlinear problems in combined
formulation. Sov. J. Numer. Anal. Math. Modelling , North Holland,
Antwerpen, vol.5, No.2, 1990, 120-165.
B.N. Khoromskij, E.G. Nikonov and E.P. Zhidkov.
Asymptotic
error estimates of Galerkin method for one class of quasipotential equations. Zh.Vychisl. Mat i Mat. Fiz., 1990, 30, No.6, 1280-1292 (in Russian).
B.N. Khoromskij and E.P. Zhidkov.
Some cost-effective algorithms using Toeplitz-type matrices. In: Numerical Processes and Systems (6)
. Nauka, Moscow,
1988, 134-144, (in Russian).
B.N. Khoromskij and E.P. Zhidkov.
Boundary integral
equations on special surfaces and their applications. Sov. J. Numer. Anal. Math. Modelling , North Holland,
Antwerpen, 1988, v.2, No. 6, 463-488.
B.N. Khoromskij.
Integral-difference method of solving the
Dirichlet problem for the Laplace equation. Zh. Vychisl. Mat. i Mat. Fiz.,
1984, 24, No.1, 53-64 (in Russian).
E.A. Ayrjan, B.N. Khoromskij and E.P. Zhidkov.
Fast
relaxation method for solving the
difference problem for the Poisson equation on a sequence of grids. Comp. Phys. Commun. 29(1983), 125-130.
B.N. Khoromskij, M. Nguen and R. M. Yamaleev.
Method for improving accuracy of discrete eigenvalue problem for
integral-differential equations. Differentz. Uravnenia,
1980, 16, No.7, 1293-1302 (in Russian).
B.N. Khoromskij, M. Nguen and E.P. Zhidkov.
Method of improving accuracy of approximate solutions for nonlinear singular
integral equations of Chew-Low type. Zh. Vych. Mat. i Mat. Fiz.,
1981, 21, No.4, 962-969 (in Russian).
B.N. Khoromskij, M. Nguen, I.P. Nedelkov and E.P. Zhidkov.
On the investigation of one class of solutions for Chew-Low
equations. Zh. Vychisl. Mat. i Mat. Fiz., 1979 19, No. 4, 998-1014
(in Russian).
F.A. Gareev, S.A Goncharov, E.P. Zhidkov, I.V. Puzynin, B.N. Khoromskij
and R. Yamaleev.
Numerical solution of eigenvalue problems for nuclear theory
integro-differential equations. U.S.S.R. Comput. Math. Math. Phys.
17 (1977), No.2, 116-128.
B.N. Khoromskij and E.P. Zhidkov.
On the local convergence of iterative methods for solving nonlinear
operator equations. Dokl. Akad. Nauk SSSR, 231(1976), No. 5,
1052-1055; Soviet Math. Dokl. vol.17, No. 6, 1976.
B.N. Khoromskij.
Iterative Newton-type methods for nonlinear problems of mathematical physics.
Synopsis of Cand. Science (PhD) dissertation (Phys-Math.) ,
JINR, Dubna, 1978, (in Russian).
B.N. Khoromskij.
Optimization of numerical algorithms for solving
magnetostatics and theoretical physics problems.
Synopsis of Dr. Sci. dissertation (Phys.-Math.) , JINR, 11-91-113, Dubna,
1991, (in Rusian).
B. N. Khoromskij and G. Wittum.
Numerical Solution of Elliptic
Differential Equations by Reduction to the Interface.
Research monograph, LNCSE, No. 36, Springer-Verlag 2004.
B. N. Khoromskij.
Lectures on multilevel substructuring methods
for elliptic differential equations.
Preprint 98/4, ICA3, University of Stuttgart, 1998, 1-92.
B. N. Khoromskij.
Data-Sparse Approximation of Integral Operators.
MPI MIS, Lecture notes No. 17, Leipzig 2003, 1-61.
B. N. Khoromskij.
An Introduction to Structured Tensor-Product Approximation of Discrete
Nonlocal Operators.
MPI MIS, Lecture notes No. 27, Leipzig 2005, 1-279.
B.N. Khoromskij, E.K. Khristov, V. Lelek, J. Visner, E.P. Zhidkov
and I. Ulegla.
Iterative methods for solving the inverse scattering
problem (Survey)}.
In: Elementary Particles and Nuclear Physics, 9, v.3, Energoatomizdat,
Moscow, 1978, pp.710-769 (in Russian).
B.N. Khoromskij and E.P. Zhidkov.
Numerical methods on a sequence of grids and their
applications in magnetostatics and theoretical physics problems (Survey).
In: Elementary Particles and Nuclear Physics, 19, v.3, Energoatomizdat,
Moscow, 1988, pp.622-668 (in Russian).
E.A. Ajryan, A. Fedorow, O. Juldashev, B.N. Khoromskij, I. Shelaev,
E. Zhidkov.
Numerical algorithms of
magnet systems simulations for charged particles accelerators (Survey).
In: Elementary Particles and Nuclear Physics, 21, v.1, Energoatomizdat,
Moscow, 1990, pp.251-307 (in Russian).
B.N. Khoromskij, G.E. Mazurkevich and E.P. Zhidkov.
Combined Methods
for solving quasi-linear elliptic problems in unbounded domain.
In: Proc. of
International Confertence on Numerical Methods and Applications, Sofia,
Bulgaria, 1988, 197-206.
M. Gregus, B.N. Khoromskij, G.E. Mazurkevich and E.P. Zhidkov.
On approximation of nonlinear boundary integral equations for the combined
method.
In: Boundary Element Methods XI, 1989, Springer-Verlag, v. 2,
(ed. Brebbia C.A.), 100-106.
B.N. Khoromskij, G.E. Mazurkevich and E.P. Zhidkov.
Box-type decomposition algorithms for solving 3-D elliptic problems.
In: Proc. of Fourth International
Symposium on Domain Decomposition Methods, SIAM,
Philadelphia (1991), 213-222.
B.N. Khoromskij and G.E. Mazurkevich.
Preconditioners for one class
of elliptic problems in nonsimply-connected domains.
In: Proc. of V-th Conference
on Domain Decomposition Methods ; SIAM Publ., Philadelphia (1992), 56-61.
B. N. Khoromskij and G. Wittum.
An asymptotically optimal substructuring method
for the Stokes equation.
In: Domain Decomposition Methods in Sciences
and Engineering, P.E. Bjorstad,
M.S. Espedal and D.E. Keyes eds., Domain Decomposition Press,
Bergen 1998, 31-39.
B. N. Khoromskij and G. Wittum.
Robust interface reduction for highly
anisotropic elliptic equations.
Proceedings of 5-th EMG Conference,
W. Hackbusch and G. Wittum eds., Lecture Notes in Comp. Science
and Eng., Springer Verlag, 1998, 140-156.
B. N. Khoromskij and G. Wittum.
Towards a stable multilevel
method for elliptic equations with jumping diffusion and anisotropy
coefficients.
NNFM, vol. 70, W. Hackbusch and G. Wittum eds., Vieweg-Verlag,
1999, 88-103.
B. N. Khoromskij and G. Wittum.
Robust preconditioning for
elliptic equations with anisotropy and in presence of thin geometries.
In: Proc. of
ENUMATH II Conference, H.G. Bock et al. eds.,
World Scientific, Singapore, 1999, 140-150.
B.N. Khoromskij.
Robust preconditioning for FEM/BEM interface
elliptic problems with rough parameters.
In: Proc. of 15-th
GAMM Seminar, Kiel, 1999. Numerical Methods for Composites
(W. Hackbusch and S. Sauter eds.), Vieweg-Verlag, 2000.
W. Hackbusch, B.N. Khoromskij and R. Kriemann.
Direct Schur Complement Method by Hierarchical Matrix Techniques.
in: DDM15 Conference proceedings
(D. Keyes, O. Widlund, R. Kornhueber (eds.) 2004.
I. P. Gavrilyuk, W. Hackbusch and B.N. Khoromskij.
data-Sparse Approximation to a Hierarchy of Operator-valued Functions.
In: Proc. of 18-th GAMM Seminar, Leipzig 2002, 31-52
(ISBN 3-00-009258-7, http://www.mis.mpg.de).
B. N. Khoromskij and Litvinenko.
Domain Decomposition based H-matrix Preconditioner for
the Skin Problem in 2D and 3D.
Preprint 95, MPI MIS Leipzig 2006
in: DDM17 Conference proceedings, to appear.
B.N.Khoromskij.
High accuracy extrapolation method for
solution of BVPs with operators invariant with respect to the rotation of
coordinate system.
Preprint JINR, P5-80-736, Dubna, 1980, 15pp. (in Russian).
B.N. Khoromskij.
Quasi-linear elliptic equations in the incomplete nonlinear formulation
and methods for their preconditioning.
Preprint JINR, E5-89-598, Dubna, 1989.
B.N.Khoromskij.
A preconditioning technique for the
solution of 3-D elliptic problems by substructuring with cross-lines.
Preprint JINR, E11-90-181, Dubna, 1990, 39pp.
B.N. Khoromskij, G.E. Mazurkevich and E.G. Nikonov.
Cost-effective
computations with boundary interface operators in elliptic problems.
Preprint JINR, E11-163-93, Dubna, 1993.
B. N. Khoromskij.
Direct and mixed Schur complement methods
for the Stokes equation.
Preprint 98/5, ICA3, University of Stuttgart, 1998.