**Continuous dependence of the pressure field with respect to endpoints for ideal incompressible fluids. pdf, arXiv.**

To appear in Calculus of Variations and Partial Differential Equations.**Small noise limit and convexity for generalized incompressible flows, Schrödinger problems, and optimal transport.**pdf, arXiv.

Archive of Rational Mechanics and Analysis.

I defended my PhD, entitled **Incompressible optimal transport: dependence to the data and entropic regularization** and made under the supervision of Yann Brenier and Daniel Han-Kwan in June 2019. Here is the definitive version of the text, and here you can find the slides of the defense (in french).

- July 2019:
**Dependence with respect to the data in incompressible optimal transport.**

MAFRAN Conference, University of Cambridge, UK. - June 2019:
**Dependence with respect to the data in incompressible optimal transport.**

Workshop POTA, Cortona, Italy. - November 2018:
**Entropic regularization of incompressible optimal transport.**

GT CalVa, University Paris 7. - October 2018:
**Entropic regularization of incompressible optimal transport.**Slides

Oberwolfach Seminar: Optimal Transport Theory and Hydrodynamics (from Euler to Monge and vice versa). - September 2018:
**Penrose condition around rough velocity profiles.**Slides

MAFRAN days, University of Cambridge. - June 2018:
**The pressure field in the Brödinger problem.**

GFMUL seminar, University of Lisbon. - June 2018:
**Penrose condition around rough velocity profiles.**Slides

Workshop "Mathematical Advances in Fluid Mechanics", École Polytechnique. - June 2018:
**The Brenier model and the kinetic Euler equation.**

PhD students' seminar of IECL, Université de Lorraine. - March 2018:
**Non-uniqueness in the weak formulation of the Euler equation.**

Working group of the CMLS' analysis team, École Polytechnique. - February 2018:
**Some results about the pressure field in variational models for incompressible fluids.**Slides

MoKaBrainStorm, Université Paris Dauphine. - May 2017:
**Least action principle in an incompressible fluid.**

PhD students' seminar of CMLS and CMAP, École Polytechnique. - March 2017:
**Differential equations and the continuity equation induced by non-Lipschitz vector fields.**

Working group of LJLL and DMA's PhD students in analysis, ENS Paris.

**Problèmes de minimisation d'entropie avec contraintes.**

(My second master thesis, in probability.) pdf, Slides of the defense.**Équation d’Euler et principe de moindre action.**

(An introdution to my field of research.) pdf.**Méthodes variationnelles appliquées à la résolution et à l’étude des solutions d’équations de la mécanique des fluides.**

(My first master thesis, in analysis.) pdf.