This week, we cover Section 3.1 from the book together with the following.

Definition 1. Let V be a representation of a group G. A subrepresentation of V is a G-invariant subspace W of V. A subrepresentation is itself a representation, where the map $G \times W \to W$ is the restriction of the map $G \times V \to V$ to $G \times W$. ♦

Definition 2. Let V be a subrepresentation of a representation V of G. Then the map
\[
G \times V/W \to V/W \\
(g, v + W) \mapsto g \cdot v + W
\]
turns V/W into a representation of G. This representation is called the quotient of V by W. ♦

Definition 3. Let V, W be representations of a group G. A G-linear map $f : V \to W$ that is
- linear, so $\varphi(\lambda v + \mu v') = \lambda \varphi(v) + \mu \varphi(v')$ for all $\lambda, \mu \in \mathbb{C}$ and $v, v' \in V$.
- G-equivariant, this means that $\varphi(g \cdot v) = g \cdot \varphi(v)$ for all $g \in G$ and $v \in V$.

Proposition 4. Let $\varphi : V \to W$ be a G-linear map. Then $\ker(\varphi)$ is a subrepresentation of V and $\text{im}(\varphi)$ is a subrepresentation of W.

Proof. The set $\ker(\varphi)$ is a subspace of V. For all $g \in G$ and $v \in \ker(\varphi)$, we have $\varphi(g \cdot v) = g \cdot \varphi(v) = g \cdot 0 = 0$ and so $g \cdot v \in \ker(\varphi)$. So $\ker(\varphi)$ is also G-invariant. So it is a subrepresentation of V. The set $\text{im}(\varphi)$ is a subspace of W. For all $g \in G$ and $w \in \text{im}(\varphi)$, we have $g \cdot w = g \cdot \varphi(v) = \varphi(g \cdot v) \in \text{im}(\varphi)$ for some $v \in V$. So $\text{im}(\varphi)$ is also G-invariant. So it is a subrepresentation of W. □

Example 5. Let V_{triv} be the representation of S_n on \mathbb{C} defined by
\[
\sigma \cdot x = x
\]
for all $\sigma \in S_n$ and $x \in \mathbb{C}$. Let V_{alt} be the representation of S_n on \mathbb{C} defined by
\[
\sigma \cdot x = \text{sign}(\sigma) x
\]
for all $\sigma \in S_n$ and $x \in \mathbb{C}$. Let V_{std} be the representation of S_n on \mathbb{C}^n defined by
\[
\sigma \cdot (v_1, \ldots, v_n) = (v_{\sigma^{-1}(1)}, \ldots, v_{\sigma^{-1}(n)})
\]
for all $\sigma \in S_n$ and $(v_1, \ldots, v_n) \in \mathbb{C}^n$.
- (1) The only G-linear map $V_{\text{triv}} \to V_{\text{alt}}$ is the map 0.
- (2) The map $V_{\text{triv}} \to V_{\text{std}}, x \mapsto (x, \ldots, x)$ is G-linear.
- (3) The map $V_{\text{std}} \to V_{\text{triv}}, (v_1, \ldots, v_n) \mapsto v_1 + \ldots + v_n$ is G-linear. ♠

Definition 6. Let $f : H \to G$ be a homomorphism and let V be a representation of G. Then the map
\[
H \times V \to V \\
(h, v) \mapsto f(h) \cdot v
\]
turns V into a representation of H. ♦

Definition 7. Let V be a representation of G and W a representation of H. Then the map
\[
(G \times H) \times (V \otimes W) \to V \otimes W \\
(g, h, \sum_{i=1}^{k} \lambda_i \cdot (v_i \otimes w_i)) \mapsto \sum_{i=1}^{k} \lambda_i \cdot (g \cdot v_i \otimes h \cdot w_i)
\]
turns $V \otimes W$ into a representation of $G \times H$. When $G = H$, we can use the homomorphism
\[
G \to G \times G \\
g \mapsto (g, g)
\]
to get a representation of G. ♦
The goal of this course is to get the same results for any finite group G in a unique way. Namely $e \cdot v = v$ for all $v \in V$. Any subspace of V is a subrepresentation and any linear map is also G-linear. So we see that a representation is irreducible if and only if it has dimension 1. Hence, every irreducible representation is isomorphic to \mathbb{C}. We have the following fundamental result:

1. Every finite-dimensional vector space is isomorphic to \mathbb{C}^n for some unique $n \in \mathbb{Z}_{\geq 0}$.
2. Every linear map $\mathbb{C}^n \to \mathbb{C}^m$ is of the form
 \[v \mapsto Av \]
 for some matrix $A \in \mathbb{C}^{m \times n}$. Conversely, for all matrices $A \in \mathbb{C}^{n \times m}$, the map
 \[\mathbb{C}^n \to \mathbb{C}^m \]
 \[v \mapsto Av \]
 is linear.
3. Let $v_1, \ldots, v_n \in V$ be a basis of V. Then the map
 \[\mathbb{C}^n \to V \]
 \[(x_1, \ldots, x_n) \mapsto x_1v_1 + \ldots + x_nv_n \]
 is an isomorphism.

Example 8. Let us study the case where $G = \{e\}$. In this case, every vector space V is a representation of G in a unique way. Namely $e \cdot v = v$ for all $v \in V$. Any subspace of V is a subrepresentation and any linear map is also G-linear. So we see that a representation is irreducible if and only if it has dimension 1. Hence, every irreducible representation is isomorphic to \mathbb{C}. We have the following fundamental result:

1. Every finite-dimensional vector space is isomorphic to \mathbb{C}^n for some unique $n \in \mathbb{Z}_{\geq 0}$.
2. Every linear map $\mathbb{C}^n \to \mathbb{C}^m$ is of the form
 \[v \mapsto A v \]
 for some matrix $A \in \mathbb{C}^{m \times n}$. Conversely, for all matrices $A \in \mathbb{C}^{n \times m}$, the map
 \[\mathbb{C}^n \to \mathbb{C}^m \]
 \[v \mapsto A v \]
 is linear.
3. Let $v_1, \ldots, v_n \in V$ be a basis of V. Then the map
 \[\mathbb{C}^n \to V \]
 \[(x_1, \ldots, x_n) \mapsto x_1v_1 + \ldots + x_nv_n \]
 is an isomorphism.

The goal of this course is to get the same results for any finite group G.

1. We want to find representations V_1, \ldots, V_k such that every representation of G is isomorphic to
 \[V_1^{\oplus a_1} \oplus \cdots \oplus V_k^{\oplus a_k} \]
 for some unique $a_1, \ldots, a_k \geq 0$.
2. We want to understand the G-linear maps between representations of this form.
3. Given a representation V, we want to be able to determine a_1, \ldots, a_k such that
 \[V \cong V_1^{\oplus a_1} \oplus \cdots \oplus V_k^{\oplus a_k} \]
 (and maybe even write down the isomorphism).

Let’s start with (2).

Lemma 9 (Schur’s Lemma).

1. Let V, W be irreducible representations of a group G and let $\varphi: V \to W$ be a G-linear map. Then either $\varphi = 0$ or φ is an isomorphism.
2. Let V be a finite-dimensional irreducible representation of a group G. Then every G-linear map $V \to V$ is of the form $v \mapsto \lambda v$ for some $\lambda \in \mathbb{C}$ (and every map of this form is G-linear).

Proof. (1) Let $\varphi: V \to W$ be a G-linear map. Then $\ker(\varphi)$ is a subrepresentation of V. Since V is irreducible, either $\ker(\varphi) = V$ or $\ker(\varphi) = 0$. The first case, we have $\varphi = 0$ and we are done. Assume the second case. Next note that $\im(\varphi)$ is a subrepresentation of W. Since W is irreducible, either $\im(\varphi) = 0$ or $\im(\varphi) = W$. In the first case, we have $\varphi = 0$ and we are done. Assume that second case. Now φ is both injective and surjective. So it is an isomorphism.

(2) Let $\varphi: V \to V$ be a G-linear map. Then φ has an eigenvalue $\lambda \in V$ with corresponding eigenvector $w \in V \setminus \{0\}$. Define $\psi: V \to V$ by $\psi(v) := \varphi(v) - \lambda v$ for all $v \in V$. One can check that ψ is a G-linear map. So by part (1), we know that $\psi = 0$ or ψ is an isomorphism. Note that $\psi(w) = \varphi(w) - \lambda w = 0$. So ψ cannot be an isomorphism. So $\psi = 0$. So $\varphi(v) = \lambda v$ for all $v \in V$. \qed

We get the following statement:

Proposition 10. Let G be a group and let V_1, \ldots, V_k be irreducible representations of G such that $V_i \not\cong V_j$ for all $i \neq j$. Let $a_1, \ldots, a_k, b_1, \ldots, b_k \in \mathbb{Z}_{\geq 0}$. Then every G-linear map
 \[\varphi: V_1^{\oplus a_1} \oplus \cdots \oplus V_k^{\oplus a_k} \to V_1^{\oplus b_1} \oplus \cdots \oplus V_k^{\oplus b_k} \]
 is of the form
 \[(v^{(1)}, \ldots, v^{(k)}) \mapsto (A^{(1)}v^{(1)}, \ldots, A^{(k)}v^{(k)}) \]
(and any map of this form is G-linear). Here $A^{(i)} \in \mathbb{C}^{b_i \times a_i}$, $v^{(i)} \in V_i^{\oplus a_i}$ and

$$A^{(i)}v^{(i)} := (A^{(i)}_{11}v_{1}^{(i)} + \ldots + A^{(i)}_{1a_i}v_{a_i}^{(i)}, \ldots, A^{(i)}_{a_1i}v_{1}^{(i)} + \ldots + A^{(i)}_{a_ia_i}v_{a_i}^{(i)})$$

Proof. To prove this, we need to show that there exist $\lambda_1, \ldots, \lambda_{b_i} \in \mathbb{C}$ such that

$$\varphi(0, \ldots, 0, v, \ldots, 0, \ldots, 0) = (0, \ldots, 0, \lambda_1v, \ldots, \lambda_{b_i}v, \ldots, 0)$$

for all i, j and $v \in V_i$. Here $(0, \ldots, v, \ldots, 0)$ is at position i and contains v at position j. Note that the map

$$V_i \rightarrow V_1^{\oplus b_1} \oplus \ldots \oplus V_k^{\oplus b_k}$$

$$v \mapsto \varphi(0, \ldots, 0, v, \ldots, 0, \ldots, 0)$$

is G-linear. The projection on a V_k is also G-linear. So the composition $V_i \rightarrow V_k$ is as well. If $k \neq i$, then this composition is 0. If $k = i$, this composition is $V_i \rightarrow V_i, v \mapsto \lambda v$ for some $\lambda \in \mathbb{C}$. This gives us what we want. □

Corollary 11. Let

$$\varphi : V_1^{\oplus a_1} \oplus \ldots \oplus V_k^{\oplus a_k} \rightarrow V_1^{\oplus b_1} \oplus \ldots \oplus V_k^{\oplus b_k}$$

be a G-linear map and let A_1, \ldots, A_k be the associated matrices. Then the following hold:

1. $\ker(\varphi) \cong V_1^{\oplus \dim(\ker A_1)} \oplus \ldots \oplus V_k^{\oplus \dim(\ker A_k)}$
2. $\im(\varphi) \cong V_1^{\oplus \dim(\im A_1)} \oplus \ldots \oplus V_k^{\oplus \dim(\im A_k)}$
3. The map φ is an isomorphism if and only if A_1, \ldots, A_k are all invertible.