Graph Polynomials from Laplacians

November 11, 2022

Kirchhoff polynomials

Given a graph G, we associate a parameter a_{j}. The Kirchhoff polynomial of G is defined by

$$
\mathcal{K}\left(a_{1}, \ldots, a_{n}\right)=\sum_{T \in \mathcal{T}_{1}} \prod_{e_{j} \in T} a_{j} .
$$

Kirchhoff polynomials

Given a graph G, we associate a parameter a_{j}. The Kirchhoff polynomial of G is defined by

$$
\mathcal{K}\left(a_{1}, \ldots, a_{n}\right)=\sum_{T \in \mathcal{T}_{1}} \prod_{e_{j} \in T} a_{j} .
$$

In physics parameters a_{j} are only associated to internal edges. We set

$$
\mathcal{K}_{i n t}\left(a_{1}, \ldots, a_{n_{i n t}}\right)=\mathcal{K}\left(G_{i n t}\right)=\sum_{T \in \mathcal{T}_{1}} \prod_{e_{j} \in(T \cap E)} a_{j} .
$$

Kirchhoff polynomials

Given a graph G, we associate a parameter a_{j}. The Kirchhoff polynomial of G is defined by

$$
\mathcal{K}\left(a_{1}, \ldots, a_{n}\right)=\sum_{T \in \mathcal{T}_{1}} \prod_{e_{j} \in T} a_{j} .
$$

In physics parameters a_{j} are only associated to internal edges. We set

$$
\mathcal{K}_{i n t}\left(a_{1}, \ldots, a_{n_{i n t}}\right)=\mathcal{K}\left(G_{i n t}\right)=\sum_{T \in \mathcal{T}_{1}} \prod_{e_{j} \in(T \cap E)} a_{j} .
$$

There is a simple relation between $\mathcal{K}_{\text {int }}$ and \mathcal{U} :

$$
\mathcal{U}\left(a_{1}, \ldots, a_{n_{i n t}}\right)=a_{1} \ldots a_{n_{i n t}} \mathcal{K}_{i n t}\left(\frac{1}{a_{1}}, \ldots, \frac{1}{a_{n_{\text {int }}}}\right) .
$$

Laplacian of a graph

Definition

Let G be a graph with n edges and r vertices. To each edge e_{j} one associates a parameter a_{j}. The Laplacian of the graph G is a $r \times r$-matrix L, whose entries are given by
$L_{i j}= \begin{cases}\sum a_{k} & \text { if } i=j \text { and edge } e_{k} \text { is attached to } v_{i} \text { and is not a self-loop, } \\ -\sum a_{k} & \text { if } i \neq j \text { and edge } e_{k} \text { connects } v_{i} \text { and } v_{j} .\end{cases}$

Laplacian with respect to internal vertices and edges

In Feynman graphs one distinguishes between external and internal edges. This motivates the following definition.

Definition

Denote by $G_{i n t}$ the internal graph of G. The Laplacian of G w.r.t. internal vertices and edges is defined as

$$
L_{i n t}(G)=L\left(G_{i n t}\right)
$$

Example

$\left(a_{1}+a_{4}\right.$

Example

$\left(\begin{array}{cc}a_{1}+a_{4} & \\ & a_{1}+a_{2}+a_{5}\end{array}\right.$

Example

$$
\left(\begin{array}{lll}
a_{1}+a_{4} & \\
& a_{1}+a_{2}+a_{5} & \\
& & a_{3}+a_{5}
\end{array}\right.
$$

Example

$$
\left(\begin{array}{cccc}
a_{1}+a_{4} & & \\
& a_{1}+a_{2}+a_{5} & & \\
& & a_{3}+a_{5} & \\
& & & a_{2}+a_{3}+a_{4}
\end{array}\right)
$$

Example

$$
\left(\begin{array}{cccc}
a_{1}+a_{4} & -a_{1} & & \\
-a_{1} & a_{1}+a_{2}+a_{5} & & \\
& & a_{3}+a_{5} & \\
& & & a_{2}+a_{3}+a_{4}
\end{array}\right)
$$

Example

$$
\left(\begin{array}{cccc}
a_{1}+a_{4} & -a_{1} & 0 & -a_{4} \\
-a_{1} & a_{1}+a_{2}+a_{5} & -a_{5} & -a_{2} \\
0 & -a_{5} & a_{3}+a_{5} & -a_{3} \\
-a_{4} & -a_{2} & -a_{3} & a_{2}+a_{3}+a_{4}
\end{array}\right)
$$

Matrix-tree theorem

We write $L[i]$ for the submatrix of L obtained by deleting the i th row and column.

Matrix-tree theorem

We write $L[i]$ for the submatrix of L obtained by deleting the i th row and column.

Theorem
$\mathcal{K}=\operatorname{det} L[i]$.

Matrix-tree theorem

We write $L[i]$ for the submatrix of L obtained by deleting the i th row and column.

Theorem
$\mathcal{K}=\operatorname{det} L[i]$.
In particular, for every internal vertex v_{i} one has $\mathcal{K}_{\text {int }}=\operatorname{det} L_{i n t}[i]$. One can then recover the first Symanzik polynomial \mathcal{U} from $\mathcal{K}_{\text {int }}$ using

$$
\mathcal{U}\left(a_{1}, \ldots, a_{n_{\text {int }}}\right)=a_{1} \ldots a_{n_{\text {int }}} \mathcal{K}_{i n t}\left(\frac{1}{a_{1}}, \ldots, \frac{1}{a_{n_{i n t}}}\right) .
$$

Why matrix-tree?

The number of monomials in the Kirchhoff polynomial \mathcal{K} of G is equal to the number of spanning trees of G. Thus, evaluating the Kirchhoff polynomial at the vector $(1, \ldots, 1)$ counts this number. The matrix-tree theorem relates this to determinants of minors of the Laplacian.

Moving on to the second Symanzik polynomial

To obtain an expression for the second Symanzik polynomial, one needs to generalize the matrix tree theorem.

Moving on to the second Symanzik polynomial

To obtain an expression for the second Symanzik polynomial, one needs to generalize the matrix tree theorem. As before, we consider a graph with r vertices. Let $I=\left(i_{1}, \ldots, i_{k}\right)$ with $1 \leqslant i_{1}<\ldots<i_{k} \leqslant r$ and $J=\left(j_{1}, \ldots, j_{k}\right)$ with $1 \leqslant j_{1}<\ldots<j_{k} \leqslant r$. We write $|I|=i_{1}+\ldots+i_{k}$ and $|J|=j_{1}+\ldots+j_{k}$.

Moving on to the second Symanzik polynomial

To obtain an expression for the second Symanzik polynomial, one needs to generalize the matrix tree theorem. As before, we consider a graph with r vertices. Let $I=\left(i_{1}, \ldots, i_{k}\right)$ with $1 \leqslant i_{1}<\ldots<i_{k} \leqslant r$ and $J=\left(j_{1}, \ldots, j_{k}\right)$ with $1 \leqslant j_{1}<\ldots<j_{k} \leqslant r$. We write $|I|=i_{1}+\ldots+i_{k}$ and $|J|=j_{1}+\ldots+j_{k}$. Let $L[I, J]$ denote the submatrix of L obtained by deleting the rows from I and columns from J.

Moving on to the second Symanzik polynomial

We denote by $\mathcal{T}_{k}^{l, J}$ the set of all spanning k-forests such that each tree in a forest contains exactly one vertex $v_{i_{\alpha}}$ and one vertex $v_{j_{\beta}}$.

Moving on to the second Symanzik polynomial

We denote by $\mathcal{T}_{k}^{l, J}$ the set of all spanning k-forests such that each tree in a forest contains exactly one vertex $v_{i_{\alpha}}$ and one vertex $v_{j_{\beta}}$. We can write an element $F \in \mathcal{T}_{k}^{I, J}$ as $F=\left(T_{1}, \ldots, T_{k}\right)$, where T_{i} 's are trees.

Moving on to the second Symanzik polynomial

We denote by $\mathcal{T}_{k}^{l, J}$ the set of all spanning k-forests such that each tree in a forest contains exactly one vertex $v_{i_{\alpha}}$ and one vertex $v_{j_{\beta}}$. We can write an element $F \in \mathcal{T}_{k}^{l, J}$ as $F=\left(T_{1}, \ldots, T_{k}\right)$, where T_{i} 's are trees. We can enumerate the T_{i} 's so that $v_{i_{\alpha}} \in T_{\alpha}$.

Moving on to the second Symanzik polynomial

We denote by $\mathcal{T}_{k}^{l, J}$ the set of all spanning k-forests such that each tree in a forest contains exactly one vertex $v_{i_{\alpha}}$ and one vertex $v_{j_{\beta}}$. We can write an element $F \in \mathcal{T}_{k}^{l, J}$ as $F=\left(T_{1}, \ldots, T_{k}\right)$, where T_{i} 's are trees. We can enumerate the T_{i} 's so that $v_{i_{\alpha}} \in T_{\alpha}$. Each tree in F contains exactly one $v_{j_{\alpha}}$, thus, there exists a permutation $\pi_{F} \in S_{k}$ such that $v_{j_{\alpha}} \in T_{\pi_{F}(\alpha)}$.

All-minors matrix-tree theorem

Theorem
$\operatorname{det} L[I, J]=(-1)^{|/|+|J|} \sum_{F \in \mathcal{T}_{k}^{I, J}} \operatorname{sign}\left(\pi_{F}\right) \prod_{e_{j} \in F} a_{j}$.

The all-minors matrix-tree theorem provides a way to recover the second Symanzik polynomial \mathcal{F}.

The all-minors matrix-tree theorem provides a way to recover the second Symanzik polynomial \mathcal{F}.
Consider a graph G with $n_{i n t}$ internal edges $\left(e_{1}, \ldots, e_{n_{\text {int }}}\right)$, $r_{\text {int }}$ internal vertices $\left(v_{1}, \ldots, v_{r_{\text {int }}}\right), n_{\text {ext }}$ external edges $\left(e_{n_{\text {int }}+1}, \ldots, e_{n_{\text {int }}+n_{\text {ext }}}\right)$ and $n_{\text {ext }}$ external vertices $\left(v_{r_{\text {int }}+1}, \ldots, v_{\text {rint }}+n_{\text {ext }}\right)$.

The all-minors matrix-tree theorem provides a way to recover the second Symanzik polynomial \mathcal{F}.
Consider a graph G with $n_{\text {int }}$ internal edges $\left(e_{1}, \ldots, e_{n_{\text {int }}}\right), r_{\text {int }}$ internal vertices $\left(v_{1}, \ldots, v_{r_{\text {int }}}\right), n_{\text {ext }}$ external edges $\left(e_{n_{\text {int }}+1}, \ldots, e_{n_{\text {int }}+n_{\text {ext }}}\right)$ and $n_{\text {ext }}$ external vertices $\left(v_{r_{\text {int }}+1}, \ldots, v_{r_{\text {int }}+n_{\text {ext }}}\right)$. We associate the parameters a_{i} to the internal edges $e_{i}\left(1 \leqslant i \leqslant n_{i n t}\right)$ and parameters b_{j} to the external edges $e_{n_{\text {int }}+j}\left(1 \leqslant j \leqslant n_{\text {ext }}\right)$.

Now consider the polynomial

$$
\mathcal{W}\left(a_{1}, \ldots, a_{n_{\text {int }}}, b_{1}, \ldots, b_{n_{\text {ext }}}\right)=\operatorname{det} L(G)\left[r_{\text {int }}+1, \ldots, r_{\text {int }}+n_{\text {ext }}\right] .
$$

\mathcal{W} is a polynomial of degree $r_{\text {int }}=n_{\text {int }}-I+1$.

Now consider the polynomial

$$
\mathcal{W}\left(a_{1}, \ldots, a_{n_{\text {int }}}, b_{1}, \ldots, b_{n_{\text {ext }}}\right)=\operatorname{det} L(G)\left[r_{\text {int }}+1, \ldots, r_{\text {int }}+n_{\text {ext }}\right]
$$

\mathcal{W} is a polynomial of degree $r_{\text {int }}=n_{\text {int }}-I+1$.
We write \mathcal{W} as a sum of polynomials homogeneous in the variables b_{j} : $\mathcal{W}=\mathcal{W}^{(0)}+\ldots+\mathcal{W}^{(m)}$, where $\mathcal{W}^{(k)}$ is homogeneous of degree k in the variables b_{j}.

Now consider the polynomial

$$
\mathcal{W}\left(a_{1}, \ldots, a_{n_{\text {int }}}, b_{1}, \ldots, b_{n_{\text {ext }}}\right)=\operatorname{det} L(G)\left[r_{\text {int }}+1, \ldots, r_{\text {int }}+n_{\text {ext }}\right]
$$

\mathcal{W} is a polynomial of degree $r_{\text {int }}=n_{\text {int }}-I+1$.
We write \mathcal{W} as a sum of polynomials homogeneous in the variables b_{j} : $\mathcal{W}=\mathcal{W}^{(0)}+\ldots+\mathcal{W}^{(m)}$, where $\mathcal{W}^{(k)}$ is homogeneous of degree k in the variables b_{j}.
Furthermore, we write

$$
\mathcal{W}^{(k)}=\sum_{\left(j_{1}, \ldots, j_{k}\right)} \mathcal{W}_{\left(j_{1}, \ldots, j_{k}\right)}^{(k)}\left(a_{1}, \ldots, a_{n_{i n t}}\right) b_{j_{1}} \ldots b_{j_{k}}
$$

where the sum is over all indices with $1 \leqslant j_{1}<\ldots<j_{k} \leqslant n_{\text {ext }}$.

The $\mathcal{W}_{\left(j_{1}, \ldots, j_{k}\right)}^{(k)}$ are homogeneous polynomials of degree $r_{i n t}-k$ in the variables a_{i}. One finds that

$$
\mathcal{W}^{(0)}=0, \mathcal{W}^{(1)}=\mathcal{K}_{i n t}\left(a_{1}, \ldots, a_{n_{\text {int }}}\right) \sum_{j=1}^{n_{\text {ext }}} b_{j}
$$

The $\mathcal{W}_{\left(j_{1}, \ldots, j_{k}\right)}^{(k)}$ are homogeneous polynomials of degree $r_{\text {int }}-k$ in the variables a_{i}. One finds that

$$
\mathcal{W}^{(0)}=0, \mathcal{W}^{(1)}=\mathcal{K}_{i n t}\left(a_{1}, \ldots, a_{n_{\text {int }}}\right) \sum_{j=1}^{n_{\text {ext }}} b_{j}
$$

Therefore,

$$
\mathcal{U}=a_{1} \ldots a_{n_{i n t}} \mathcal{W}_{(j)}^{(1)}\left(\frac{1}{a_{1}}, \ldots, \frac{1}{a_{n_{\text {int }}}}\right)
$$

for any j.

The $\mathcal{W}_{\left(j_{1}, \ldots, j_{k}\right)}^{(k)}$ are homogeneous polynomials of degree $r_{\text {int }}-k$ in the variables a_{i}. One finds that

$$
\mathcal{W}^{(0)}=0, \mathcal{W}^{(1)}=\mathcal{K}_{i n t}\left(a_{1}, \ldots, a_{n_{\text {int }}}\right) \sum_{j=1}^{n_{\text {ext }}} b_{j}
$$

Therefore,

$$
\mathcal{U}=a_{1} \ldots a_{n_{i n t}} \mathcal{W}_{(j)}^{(1)}\left(\frac{1}{a_{1}}, \ldots, \frac{1}{a_{n_{\text {int }}}}\right)
$$

for any j.
For \mathcal{F}_{0} one has

$$
\mathcal{F}_{0}=a_{1} \ldots a_{n_{i n t}} \sum_{(j, k)}\left(\frac{p_{j} \cdot p_{k}}{\mu^{2}}\right) \cdot \mathcal{W}_{(j, k)}^{(2)}\left(\frac{1}{a_{1}}, \ldots, \frac{1}{a_{n_{\text {int }}}}\right)
$$

The $\mathcal{W}_{\left(j_{1}, \ldots, j_{k}\right)}^{(k)}$ are homogeneous polynomials of degree $r_{\text {int }}-k$ in the variables a_{i}. One finds that

$$
\mathcal{W}^{(0)}=0, \mathcal{W}^{(1)}=\mathcal{K}_{i n t}\left(a_{1}, \ldots, a_{n_{\text {int }}}\right) \sum_{j=1}^{n_{\text {ext }}} b_{j}
$$

Therefore,

$$
\mathcal{U}=a_{1} \ldots a_{n_{i n t}} \mathcal{W}_{(j)}^{(1)}\left(\frac{1}{a_{1}}, \ldots, \frac{1}{a_{n_{\text {int }}}}\right)
$$

for any j.
For \mathcal{F}_{0} one has

$$
\mathcal{F}_{0}=a_{1} \ldots a_{n_{i n t}} \sum_{(j, k)}\left(\frac{p_{j} \cdot p_{k}}{\mu^{2}}\right) \cdot \mathcal{W}_{(j, k)}^{(2)}\left(\frac{1}{a_{1}}, \ldots, \frac{1}{a_{n_{\text {int }}}}\right)
$$

Then \mathcal{F} is obtained by

$$
\mathcal{F}(a)=\mathcal{F}_{0}(a)+\mathcal{U}(a) \sum_{i=1}^{n_{\text {int }}} a_{i} \frac{m_{i}^{2}}{\mu^{2}}
$$

Deletion and contraction of edges

An edge of a graph is called a bridge if deleting this edge increases the number of connected components.

Deletion and contraction of edges

An edge of a graph is called a bridge if deleting this edge increases the number of connected components. If an edge is neither a bridge nor a self-loop, then it is called a regular edge.

Deletion and contraction of edges

An edge of a graph is called a bridge if deleting this edge increases the number of connected components. If an edge is neither a bridge nor a self-loop, then it is called a regular edge. For a graph G and a regular edge e we define G / e to be the graph obtained from G by contracting e and $G-e$ to be the graph obtained from G by deleting e.

Deletion and contraction of edges

An edge of a graph is called a bridge if deleting this edge increases the number of connected components. If an edge is neither a bridge nor a self-loop, then it is called a regular edge. For a graph G and a regular edge e we define G / e to be the graph obtained from G by contracting e and $G-e$ to be the graph obtained from G by deleting e.
The Laplacian of the graph behaves nicely under these operations. This allows to define graph polynomials \mathcal{U} and \mathcal{F} recursively.

Deletion and contraction of edges

An edge of a graph is called a bridge if deleting this edge increases the number of connected components. If an edge is neither a bridge nor a self-loop, then it is called a regular edge. For a graph G and a regular edge e we define G / e to be the graph obtained from G by contracting e and $G-e$ to be the graph obtained from G by deleting e.
The Laplacian of the graph behaves nicely under these operations. This allows to define graph polynomials \mathcal{U} and \mathcal{F} recursively. For any regular egde e_{k} we have

$$
\begin{aligned}
\mathcal{U}(G) & =\mathcal{U}\left(G / e_{k}\right)+a_{k} \mathcal{U}\left(G-e_{k}\right) \\
\mathcal{F}_{0}(G) & =\mathcal{F}_{0}\left(G / e_{k}\right)+a_{k} \mathcal{F}_{0}\left(G-e_{k}\right)
\end{aligned}
$$

Deletion and contraction of edges

The recursion terminates when all edges are either bridges or self-loops. Graphs with such property are called terminal forms.

Deletion and contraction of edges

The recursion terminates when all edges are either bridges or self-loops. Graphs with such property are called terminal forms. For such graphs we have

$$
\mathcal{U}=a_{r_{\text {int }}} \ldots a_{n_{\text {int }}}, \mathcal{F}_{0}=a_{r_{\text {int }}} \ldots a_{n_{\text {int }}} \sum_{j=1}^{r_{\text {int }}-1} a_{j}\left(\frac{-q_{j}^{2}}{\mu^{2}}\right)
$$

where the parameters $a_{r_{\text {int }}}, \ldots, a_{n_{\text {int }}}$ correspond to independent loop momenta.

