

Exercise Sheet 9

Please upload your solutions to URM or send them by email by Thursday, January 19 at 10:00

Exercise 9.1 (5 points) Let S be a compact and connected Riemann surface, D a divisor such that $H^0(X, D)$ is base-point-free of dimension r + 1 and let |D| the corresponding complete linear system. We choose a basis of $H^0(X, D)$ and we define the map

$$\varphi \colon S \to \mathbb{P}^r, \mapsto \varphi = [f_0, \dots, f_r]$$

we want to know when this map is an embedding.

- a) Show that the map is injective if and only if |D| separates points. This means that for any two distinct points $p, q \in S$ there is a divisor $E \in |D|$ such that $p \in E$ and $q \notin E$.
- b) Show that the differential of φ is everywhere injective if and only if |D| separates tangent vectors. This means that for every point $p \in S$ there is a divisor $E \in |D|$ such that $\operatorname{ord}_p(D) = 1$. Express this condition also in terms of the functions in $H^0(S, D)$.
- c) Prove that φ is an embedding, that is is injective with injective differential, if and only if

$$h^{0}(S, D - p - q) = h^{0}(S, D) - 2$$

for any two points $p, q \in S$, possibly coincident.

Exercise 9.2 (5 points) Let $E = \mathbb{C}/\mathbb{Z} + \tau\mathbb{Z}$ be a complex torus and let $p = \left[\frac{1}{2} + \frac{1}{2}\tau\right]$ be the zero of the theta function $\theta(z,\tau)$. Let also $n \ge 1$ be a positive integer.

- a) Prove that $h^0(E, n \cdot p) = n$. Conclude that if q is any point on E, then $h^0(E, n \cdot q) = n$. [*Hint:* Exercise 8.3 and translations].
- b) Let D be a divisor on E of positive degree n. Prove that $h^0(E, D) = n$.