Exercise Sheet 8

Please upload your solutions to URM or send them by email by Wednesday, December 21 at 14:00

Exercise 8.1 (3 points) Let S be a compact and connected Riemann surface and let $p \in S$ be a point. Consider nonzero meromorphic functions f_{1}, \ldots, f_{n} on S such that their orders at p are all distinct, i.e. $\operatorname{ord}_{p}\left(f_{i}\right) \neq \operatorname{ord}_{p}\left(f_{j}\right)$ if $i \neq j$. Prove that the f_{i} are linearly independent over \mathbb{C}.
Exercise 8.2 (3 points) Let $f(x) \in \mathbb{C}[x]$ be a polynomial of degree $2 g+2$ with distinct roots. Let X be the hyperelliptic curve given by $\left\{y^{2}=f(x)\right\}$. Recall that X is defined by gluing together the two charts $\left\{y^{2}=f(x)\right\}$ and $\left\{v^{2}=g(u)\right\}$ where $g(u)=u^{2 g+2} \cdot f\left(\frac{1}{u}\right)$ and the gluing is given by $u=\frac{1}{x}, v=\frac{y}{x^{9+1}}$.
a) For any $a \in \mathbb{C}$, compute the divisor of the rational function $x-a$ on X.
b) Compute the divisor of the function y.

Exercise 8.3 (4 points) Let $\tau \in \mathcal{H}$ be a complex number with positive imaginary part and let $E=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$ be the corresponding complex torus. We also denote by $\theta(z)=\theta(z, \tau)$ the corresponding theta function, and by $p=\left[\frac{1}{2}+\tau \frac{1}{2}\right]$ its unique zero on E.
a) Consider the higher logarithmic derivatives $\frac{d^{n} \log \theta}{d z^{n}}$ for $n \geq 2$. Prove that they define meromorphic functions on E.
b) Show moreover that $\frac{d^{n} \log \theta}{d z^{n}}$ has a pole of order n at p and no other poles.

