

Exercise Sheet 8

Please upload your solutions to URM or send them by email by Wednesday, December 21 at 14:00

Exercise 8.1 (3 points) Let S be a compact and connected Riemann surface and let $p \in S$ be a point. Consider nonzero meromorphic functions f_1, \ldots, f_n on S such that their orders at p are all distinct, i.e. $\operatorname{ord}_p(f_i) \neq \operatorname{ord}_p(f_j)$ if $i \neq j$. Prove that the f_i are linearly independent over \mathbb{C} .

Exercise 8.2 (3 points) Let $f(x) \in \mathbb{C}[x]$ be a polynomial of degree 2g + 2 with distinct roots. Let X be the hyperelliptic curve given by $\{y^2 = f(x)\}$. Recall that X is defined by gluing together the two charts $\{y^2 = f(x)\}$ and $\{v^2 = g(u)\}$ where $g(u) = u^{2g+2} \cdot f(\frac{1}{u})$ and the gluing is given by $u = \frac{1}{x}, v = \frac{y}{x^{g+1}}$.

- a) For any $a \in \mathbb{C}$, compute the divisor of the rational function x a on X.
- b) Compute the divisor of the function y.

Exercise 8.3 (4 points) Let $\tau \in \mathcal{H}$ be a complex number with positive imaginary part and let $E = \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$ be the corresponding complex torus. We also denote by $\theta(z) = \theta(z, \tau)$ the corresponding theta function, and by $p = \lfloor \frac{1}{2} + \tau \frac{1}{2} \rfloor$ its unique zero on E.

- a) Consider the higher logarithmic derivatives $\frac{d^n \log \theta}{dz^n}$ for $n \ge 2$. Prove that they define meromorphic functions on E.
- b) Show moreover that $\frac{d^n \log \theta}{dz^n}$ has a pole of order n at p and no other poles.