Exercise Sheet 4

Please upload your solutions on URM or send them by email by Wednesday, November 23 at 14:00

Exercise 4.0 (Will be discussed in class) We want to finish the proof from last week. Let $F(x, y), G(x, y)$ two polynomials with multiplicity at 0 given by m, n respectively. Then we can write them as sums of their homogeneous terms $F=F_{m}+F_{m+1}+\ldots$ and $G=G_{n}+G_{n+1}+\ldots$. Assume that F_{m}, G_{n} are coprime and let $\mathfrak{m}=(x, y)$. We want to prove that $\mathfrak{m}^{n+m} \subseteq(F, G)$ in $\mathbb{C}[x, y]_{\mathfrak{m}}$.
a) Show that for any $d \geq m+n$ we have an exact sequence of vector spaces

$$
0 \rightarrow \mathbb{C}[x, y]_{d-m-n} \rightarrow \mathbb{C}[x, y]_{d-n} \oplus \mathbb{C}[x, y]_{d-m} \rightarrow \mathbb{C}[x, y]_{d} \rightarrow \mathbb{C}[x, y]_{d} /\left(F_{m}, G_{n}\right)_{d} \rightarrow 0
$$

and conclude that $\mathbb{C}[x, y]_{d}=\left(F_{m}, G_{n}\right)_{d}$.
b) Show that $\mathfrak{m}^{m+n} \subseteq(F, G)+\mathfrak{m}^{m+n+1}$ in $\mathbb{C}[x, y]$.
c) Conclude that $\mathfrak{m}^{n+m} \subseteq(F, G)$ in $\mathbb{C}[x, y]_{\mathfrak{m}}$.

Exercise 4.2 (10 points divided in three steps)
Here we wanto to study the so called blow-up of \mathbb{C}^{2} at the origin $O=(0,0)$. This is

$$
X=\left\{\left((z, w),\left[x_{0}, x_{1}\right]\right) \in \mathbb{C}^{2} \times \mathbb{P}^{1}(\mathbb{C}) \mid z x_{1}=w x_{0}\right\}
$$

a) (4 points) Let us show that X is a complex manifold of dimension two. Clearly X is a closed set of $\mathbb{C}^{2} \times \mathbb{P}^{1}(\mathbb{C})$. Put on X the induced topology. One can cover X with two open sets $X=U_{0} \cup U_{1}$ where

$$
U_{0}=\left\{\left((z, w),\left[x_{0}, x_{1}\right]\right) \in X \mid x_{0} \neq 0\right\}, \quad U_{1}=\left\{\left((z, w),\left[x_{0}, x_{1}\right]\right) \in X \mid x_{1} \neq 0\right\}
$$

We also have maps $\varphi_{0}: U_{0} \rightarrow \mathbb{C}^{2}, \varphi_{1}: U_{1} \rightarrow \mathbb{C}^{2}$ defined by

$$
\varphi_{0}\left((z, w),\left[x_{0}, x_{1}\right]\right)=\left(z, \frac{x_{1}}{x_{0}}\right), \quad \varphi_{1}\left((z, w),\left[x_{0}, x_{1}\right]\right)=\left(w, \frac{x_{0}}{x_{1}}\right)
$$

- Prove that U_{0}, U_{1} are charts of X, so that X is a complex manifold of dimension two.
- Prove that the projection map $\pi: X \rightarrow \mathbb{C}^{2}$ onto the (z, w) coordinates is holomorphic.
- Prove that $E:=\pi^{-1}(O) \cong \mathbb{P}^{2}$ and that $\pi: X \backslash E \rightarrow \mathbb{C}^{2} \backslash\{O\}$ is an isomorphism.
b) (2 points) Let $L \subseteq \mathbb{C}^{2}$ be a line passing through O with equation $L=\{a z+b w=0\}$ and consider its strict transform $\widetilde{L} \subseteq X$ defined as:

$$
\widetilde{L}=\overline{\pi^{-1}(L \backslash\{O\})}
$$

- Show that $\widetilde{L}=\{((z, w),[b,-a]) \mid a z+b w=0\}$.
- Show that $\pi^{-1}(L)=\widetilde{L} \cup E$ and describe the set of points of $\widetilde{L} \cap E$.

From your solution it will follow that the map $L \mapsto \widetilde{L} \cap E$ gives a bijection between lines through the origin of \mathbb{C}^{2} and points in E.

c) (4 points) Consider the plane curve $C=\left\{w^{2}=z^{3}+z^{2}\right\}$ and let $\widetilde{C} \subseteq X$ be its strict transform that is defined as $\widetilde{C}=\overline{\pi^{-1}(C \backslash\{O\})}$

- Show that $\widetilde{C} \cap E$ consists of two points, corresponding to the tangent lines to C at O.
- Show that \widetilde{C} is naturally a Riemann surface and that it is isomorphic to \mathbb{C}.

