Exercise Sheet 3

Please upload your solutions on URM or send them by email by Wednesday, November 16 at 14:00

Exercise 3.1 (4 points) Let $C=\{F(X, Y, Z)=0\}$ be a projective plane curve and $P \in C$ be a point. Prove the projective Jacobi's criterion that we have stated in class:

$$
\mathbb{T}_{P} C=\left\{[X, Y, Z] \left\lvert\, \frac{\partial F}{\partial X}(P) \cdot X+\frac{\partial F}{\partial Y}(P) \cdot Y+\frac{\partial F}{\partial Z}(P) \cdot Z=0\right.\right\}
$$

Exercise 2.2 (4 points) Let C be a reduced and irreducible plane curve (affine or projective). Show that C has finitely many singular points.

Exercise 2.3 (2 points)
a) Let $f(x) \in \mathbb{C}[x]$ be an univariate polynomial. Show that the curve $C=\left\{y^{2}=f(x)\right\}$ is smooth if and only if f has no multiple root.
b) Show that the projective Fermat curve of degree d, given by $C_{d}=\left\{X^{d}+Y^{d}+Z^{d}=0\right\}$ is smooth.

