Exercise Sheet 2

Please upload your solutions on URM or send them by email by Thursday, November 10 at 14:00

Exercise 2.1 (4 points) For the following pairs of plane projective curves C, D, compute their decomposition into irreducible components, compute the intersection points $C \cap D$ and the intersection multiplicity at each point.
a) $C=\left\{X^{2}+Y^{2}+2 Y Z=0\right\}$ and $D=\left\{Y^{3} X^{6}-Y^{6} X^{2} Z=0\right\}$.
b) $C=\left\{X Z+Y^{2}=0\right\}$ and $D=\left\{X Z^{2}+Y^{2} Z-X^{3}=0\right\}$.
c) $C=\left\{Y^{2}-X^{2}+Z^{2}=0\right\}$ and $D=\left\{Y^{2}-X^{2}+2 Y Z+Z^{2}=0\right\}$.

Exercise 2.2 (3 points) Consider two affine real plane curves $C(\mathbb{R})=\{F(x, y)=0\}$ and $D(\mathbb{R})=\{G(x, y)=0\}$ where $F(x, y), G(x, y) \in \mathbb{R}[x, y]$ are real polynomials. We define their real intersection multiplicity at a point $P \in \mathbb{A}^{2}(\mathbb{R})$ as $\mu_{P}(C, D)=\operatorname{dim}_{\mathbb{R}} \mathcal{O}_{P} /(F, G)$. We can then define the same notion for projective real plane curves by reducing to the affine case, as for complex curves. Using the complex Bezout's theorem prove that if $C(\mathbb{R})$ and $D(\mathbb{R})$ are two real projective plane curves, then

$$
\sum_{P \in C(\mathbb{R}) \cap D(\mathbb{R})} \mu_{P}(C, D) \equiv \operatorname{deg} C(\mathbb{R}) \cdot \operatorname{deg} D(\mathbb{R}) \quad \bmod 2
$$

In particular, two real projective curves of odd degree always have an intersection point.
Exercise 2.3 (3 points) Let $C=\{F(X, Y, Z)=0\}$ be a reduced and irreducible complex projective plane curve of degree $d>1$. A line in \mathbb{P}^{2} corresponds to a linear form $\ell(X, Y, Z)=a X+b Y+c Z$ up to multiplication by a nonzero scalar, hence these lines are parametrized themselves by the so-called dual projective plane $\left(\mathbb{P}^{2}\right)^{*}$ with coordinates $[a, b, c]$. Bezout's theorem tells us that a line $L \in \mathbb{P}^{2}$ intersects C in d points, counted with multiplicity. Prove that the set $Z \subseteq\left(\mathbb{P}^{2}\right)^{*}$ of lines which intersect C in less than d distinct points (without counting the multiplicity) is Zariski closed. [Hint: look up the discriminant of a univariate polynomial].

