Exercise Sheet 10

Please upload your solutions to URM or send them by email by Thursday, January 26 at 10:00

Exercise 10.1 (5 points) Let $C=\{F(X, Y, Z)=0\}$ be a smooth plane projective curve of degree $d \geq 3$. In the affine chart $\{Z \neq 0\}$ we obtain the affine curve $C \cap\{Z \neq 0\}=$ $\{f(x, y)=0\}$ where $f(x, y)=F(x, y, 1)$. Prove that a basis of the space $H^{0}\left(C, \omega_{C}\right)$ of holomorphic differential forms is given by

$$
\omega_{a, b}=\frac{x^{a} y^{b}}{f_{y}} d x, \quad \text { for } a, b \in \mathbb{N}, a+b \leq d-3
$$

where $f_{y}=\frac{\partial f}{\partial y}$. In particular, you should show how these forms, a priori defined only on $C \cap\{Z \neq 0\}$, extend to the whole curve C.
Exercise 10.2 (5 points) Take $\tau \in \mathcal{H}$ and the corresponding complex torus $X=\mathbb{C} / \mathbb{Z}+\mathbb{Z} \tau$. We also take the theta function $\theta(z)=\theta(\tau, z)$ and its zero $p=\left[\frac{1}{2}+\frac{1}{2} \tau\right]$. The embedding induced by $D=3 p$ is

$$
\varphi: X \hookrightarrow \mathbb{P}^{2}, \quad \varphi=\left[1, \frac{\partial^{2} \log \theta}{\partial z^{2}}, \frac{\partial^{3} \log \theta}{\partial z^{3}}\right]
$$

a) Show that a basis of $H^{0}(X, 4 p)$ is given by $1, \frac{\partial^{2} \log \theta}{\partial z^{2}}, \frac{\partial^{3} \log \theta}{\partial z^{3}},\left(\frac{\partial^{2} \log \theta}{\partial z^{2}}\right)^{2}$
b) Show that $\left(\frac{\partial^{3} \log \theta}{\partial z^{3}}\right)^{2}+4\left(\frac{\partial^{2} \log \theta}{\partial z^{2}}\right)^{3} \in H^{0}(X, 4 p)$, possibly via computer algebra. Deduce that

$$
\left(\frac{\partial^{3} \log \theta}{\partial z^{3}}\right)^{2}+4\left(\frac{\partial^{2} \log \theta}{\partial z^{2}}\right)^{3}=a\left(\frac{\partial^{2} \log \theta}{\partial z^{2}}\right)^{2}+b \cdot \frac{\partial^{2} \log \theta}{\partial z^{2}}+c+d \cdot \frac{\partial^{3} \log \theta}{\partial z^{3}}
$$

for certain $a, b, c, d \in \mathbb{C}$.
c) Looking at the involution $\sigma: \mathbb{C} \rightarrow \mathbb{C}, \sigma(z)=-z$, deduce that $d=0$.
d) Conclude that $\varphi: X \hookrightarrow \mathbb{P}^{2}$ gives an isomorphism of X with the elliptic curve $E=$ $\left\{y^{2}=-4 x^{3}+a x^{2}+b x+c\right\}$.

