Exercise Sheet 1

Please upload your solutions on URM by Wednesday, November 2 at 14:00

Exercise 1.1 (4 points) A complex projective plane curve $Q \subseteq \mathbb{P}^{2}$ of degree two is called a quadric or a conic.
a) Show that any homogeneous polynomial $F(X, Y, Z)$ of degree two can be written in the form

$$
F(X, Y, Z)=\left(\begin{array}{lll}
X & Y & Z
\end{array}\right) \cdot A \cdot\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)
$$

where A is a 3×3 symmetric matrix. Hence, plane conics correspond to 3×3 symmetric matrices, up to multiplication by a nonzero scalar.
b) The rank of a plane conic is defined to be the rank of a corresponding symmetric matrix. Show that a conic has rank 1 if and only if it is of the form $Q=2 L$ where L is a line, that it has rank 2 if and only if it is of the form $Q=L_{1}+L_{2}$ where L_{1}, L_{2} are two distinct lines, and that it has rank 3 if and only if it is reduced and irreducible.

Exercise 1.2 (3 points) Let $k=\mathbb{R}$ or $k=\mathbb{C}$. Then the projective space $\mathbb{P}^{n}(k)$ has also an Euclidean topology, which is simply the quotient topology $\mathbb{P}^{n}=\left(k^{n+1} \backslash\{0\}\right) /(k)^{*}$ that makes the projection map $\pi: k^{n+1} \backslash\{0\} \rightarrow \mathbb{P}^{n}(k)$ continuous. Here we put the Euclidean topology on k^{n+1}.
a) Prove that the real or complex projective space $\mathbb{P}^{n}(k)$ is compact and Hausdorff with the Euclidean topology.
b) Prove that $\mathbb{P}^{1}(\mathbb{R})$ is homeomorphic to the circle S^{1} whereas $\mathbb{P}^{1}(\mathbb{C})$ is homeomorphic to the sphere S^{2}. [Hint: you can look up and use the properties of the Alexandrov compactification]

Exercise 1.3 (3 points) Let $F(X, Y, Z) \in \mathbb{C}[X, Y, Z]$ be a homogeneous polynomial of degree d.
a) Let $\nabla F=\left(\frac{\partial F}{\partial X}, \frac{\partial F}{\partial Y}, \frac{\partial F}{\partial Z}\right)$ be the row vector of partial derivatives of F. Prove the Euler identity:

$$
d \cdot F=\nabla F \cdot\left(\begin{array}{lll}
X & Y & Z
\end{array}\right)^{t}
$$

b) Let $H F$ be the Hessian matrix of the second partial derivatives of F. Prove that

$$
(d-1) \cdot \nabla F=\left(\begin{array}{lll}
X & Y & Z
\end{array}\right) \cdot H F .
$$

