Exercise Sheet 0

This sheet will just be discussed in class

Exercise 0.1 We have seen in the lectures that the curve $C=y^{2}=x^{3}-1$ is not rational, and in particular the projection from a point $\pi: C \backslash\{P\} \rightarrow \mathbb{C}$ will be never injective. This is true for almost all the curves defined by a polynomial of degree three, but not for all of them. Some of these are actually rational.
a) Consider the curve $C=\left\{y^{2}=x^{3}\right\}$ and try to draw the real part of the curve. Consider the linear projection from the point $O=(0,0) \in C$ to the line $L=\{x=1\}$ and use it to give a rational parametrization of C.
b) Consider the curve $C=\left\{y^{2}=x^{3}+x^{2}\right\}$ and try to draw the real part of the curve. Consider the linear projection from the point $O=(0,0) \in C$ to the line $L=\{x=1\}$ and use it to give a rational parametrization of C.

Exercise 0.2 Show that any rational function $p(x) / q(x) \in \mathbb{C}(x)$ can be written as

$$
\frac{p(x)}{q(x)}=r(x)+\sum_{i=1}^{n} \frac{a_{i}}{\left(x-b_{i}\right)^{m_{i}}}
$$

for $r(x) \in \mathbb{C}[x]$ a polynomial, $a_{i}, b_{i} \in \mathbb{C}$ and $m_{i} \in \mathbb{N}$.
Exercise 0.3 Consider two distinct irreducible subsets $\mathbb{V}(f), \mathbb{V}(g) \subseteq \mathbb{A}^{2}$. We want to show that the intersection $\mathbb{V}(f, g)$ is finite.
a) Observe that the two polynomials $f(x, y)$ and $g(x, y)$ have no common factors in $\mathbb{C}[x, y]$ so that they also have no common factors in $K[y]$ where $K=\mathbb{C}(x)$ is the field of rational functions in x.
b) Since $K[y]$ is a PID, there are $a(y), b(y) \in K[y]$ such that $a(y) f(x, y)+b(y) g(x, y)=$ 1. Use this to conclude.

As a consequence prove
c) The irreducible closed subsets $X \subseteq \mathbb{A}^{2}$ are either a single point, a curve of the form $\mathbb{V}(f)$, where f is irreducible, and the whole space.

