D. Agostini, T. Markwig, J.Zintl
D. Klein

Exercise Sheet 9

Submit by: Monday, 27/06/22, 10 am

Exercise 9.1 Consider the twisted cubic curve $C \subseteq \mathbb{P}^{3}$ given by

$$
C=\left\{\operatorname{rk}\left(\begin{array}{lll}
X_{0} & X_{1} & X_{2} \\
X_{1} & X_{2} & X_{3}
\end{array}\right) \leq 1\right\}
$$

This is isomorphic to \mathbb{P}^{1} so it should be smooth. Prove it starting from the equations.
Exercise 9.2 Let $f\left(X_{0}, \ldots, X_{n}\right)$ be a homogeneous polynomial of degree d. Prove that

$$
\sum_{j=0}^{n} \frac{\partial f}{\partial X_{j}} \cdot X_{j}=d \cdot f
$$

In particular, if all the partial derivatives vanish at a point, then the polynomial vanishes at the point as well.

Exercise 9.3 Consider the space $\left.V_{n, d}=\mathbb{P}\left(K\left[X_{0}, \ldots, X_{n}\right]\right) \cong \mathbb{P}^{\left({ }^{n+d} d\right.}{ }_{d}\right)-1$ that parametrizes all nonzero homogeneous polynomials of degree d in $n+1$ variables up to a scalar. Inside it we have the locus of singular surfaces

$$
\Sigma_{n, d}=\left\{[f] \in V_{n, d} \mid \text { there exists } p \in \mathbb{P}^{n} \text { such that } \frac{\partial f}{\partial X_{j}}(p)=0 \text { for all } j=0, \ldots, n\right\}
$$

and the corresponding locus $Z_{n, d} \subseteq V_{n, d} \times \mathbb{P}^{n}$ given by

$$
Z_{n, d}=\left\{([f], p) \in V_{n, d} \times \mathbb{P}^{n} \left\lvert\, \frac{\partial f}{\partial X_{j}}(p)=0\right. \text { for all } j=0, \ldots, n\right\}
$$

a) Consider the second projection $p r_{2}: Z_{n, d} \rightarrow \mathbb{P}^{n}$ and prove that all the fibers are projective spaces of dimension $\binom{n+d}{d}-n-2$. This implies that $Z_{n, d}$ is irreducible of dimension $\binom{n+d}{d}-n-1$. Conclude that $\Sigma_{n, d}$ is irreducible.
b) Give explicit equations for $\Sigma_{n, 2}$.

Exercise 9.4 Let X be a variety and $f \in \mathcal{O}(X)$ a nonzero regular function. We consider the corresponding hypersurface $D=\mathbb{V}(f)$ and a point $p \in D$.
a) Show that $\operatorname{dim} T_{p} D \geq \operatorname{dim} T_{p} X-1$.
b) Show that if D is smooth at p then X is smooth at p as well. Show also that the converse does not need to hold.
c) Consider the quadric cone $X=\left\{z^{2}=x y\right\} \subseteq \mathbb{A}^{3}$ and the line $L=\{x=z=0\} \subseteq X$. Show that L cannot be cut out by a single regular function on X.

