Exercise Sheet 6

Submit by: Monday, 30/05/22, 10 am

Exercise 5.1

a) Let $F: X \rightarrow \mathbb{A}^{m}$ be a morphism from an irreducible variety X and let $D \subseteq \mathbb{A}^{m}$ be an hypersurface. Show that every component of $F^{-1}(D) \subseteq X$ has codimension at most one. Prove the same for a morphism $F: X \rightarrow \mathbb{P}^{m}$.

Now consider a morphism $F: \mathbb{A}^{n} \rightarrow \mathbb{P}^{m}$, we want to prove that F has the form $F=$ $\left[F_{0}, \ldots, F_{m}\right]$ for certain polynomials F_{i} such that $V\left(F_{1}, \ldots, F_{m}\right)=\emptyset$. Consider the open affine charts $U_{i}=\left\{Y_{i} \neq 0\right\}$ in \mathbb{P}^{m}. If $F^{-1}\left(V_{i}\right)=\mathbb{A}^{m}$ for some i, then we are done (why?). Otherwise, by the previous point, the $V_{i}:=F^{-1}\left(U_{i}\right)$ are complements of hypersurfaces.
b) Show that the induced maps $F_{\mid V_{i}}: V_{i} \rightarrow U_{i}$ can be written in the form

$$
F_{\mid V_{i}}: V_{i} \rightarrow U_{i} \quad x \mapsto\left[F_{i 0}(x), \ldots, F_{i m}(x)\right]
$$

for certain polynomials $F_{i j}$ such that $F_{i i}(x) \neq 0$ on V_{i} and moreover the polynomials $\left(F_{i 0}, \ldots, F_{i m}\right)$ have no common prime factor.
c) Prove that $F_{i i} \cdot F_{j k}=F_{i k} \cdot F_{j i}$. Deduce that $F_{j i}=g_{j i} \cdot F_{i i}$ for a certain polynomial $g_{j i}$ and observe that these polynomials $g_{i j}$ are actually nonzero constant.
d) Observe that

$$
F^{\prime}: \mathbb{A}^{n} \rightarrow \mathbb{P}^{m} \quad F^{\prime}(x)=\left[F_{00}(x), g_{01} \cdot F_{11}(x), \ldots, g_{0 m} \cdot F_{m m}(x)\right]
$$

is a morphism and coincides with F on V_{0}. Conclude that $F=F^{\prime}$.
Exercise 5.2 We want to show that any morphism $F: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ has the form $F=$ $\left[F_{0}, \ldots, F_{m}\right]$ where the F_{i} are homogeneous polynomials of the same degree with no common zero.
a) Consider the standard open subsets $U_{i}=X_{i} \neq 0 \subseteq \mathbb{P}^{n}$. Using the previous exercise, show that $F_{\mid U_{i}}$ has the form

$$
F_{\mid U_{i}}=\left[F_{i 0}, \ldots, F_{i m}\right]
$$

where the $F_{i h}$ are homogeneous polynomials of the same degree d_{i} and with no common factors.
b) Prove that $F_{i h} \cdot F_{j k}=F_{j h} \cdot F_{i k}$. Deduce that $F_{j h}=g_{j h} \cdot F_{i h}$ for some $g_{j h} \in K^{*}$.
c) Prove that $F_{00}, \ldots, F_{0 m}$ have no common zero and conclude that the morphism F is given by $F=\left[F_{00}, \ldots, F_{0 m}\right]$.

Exercise 5.3 A plane curve of degree d is a subvariety $C \subseteq \mathbb{P}^{2}$ given by

$$
C=\{F(X, Y, Z)=0\}
$$

where $F(X, Y, Z)$ is an homogeneous polynomial of degree d.
a) Show that plane curves of degree d are naturally parametrized by a projective space $\mathbb{P}^{N_{d}}$ of dimension $N_{d}=\binom{d+2}{2}-1$.
b) A plane curve C as above is called singular if there exists a point $p \in \mathbb{P}^{2}$ such that

$$
F(p)=\frac{\partial F}{\partial X}(p)=\frac{\partial F}{\partial Y}(p)=\frac{\partial F}{\partial Z}(p)=0
$$

Show that the locus $S_{d} \subseteq \mathbb{P}^{N_{d}}$ of singular plane curves is closed.
c) Can you give explicit equations for the locus S_{2} of singular plane quadrics? In general, the locus S_{d} is actually an hypersurface in $\mathbb{P}^{N_{d}}$ and its defining equation is called the discriminant.

