D. Agostini, T. Markwig, J.Zintl
D. Klein

Exercise Sheet 5

Submit by: Monday, 23/05/22, 10 am

Exercise 5.1 Observe that if Z is a variety and if $X, Y \subseteq Z$ are (open or closed) subvarieties, then $X \cap Y \cong(X \times Y) \cap \Delta_{Z}$ where the second intersection is taken inside $Z \times Z$. Use this to prove the following.
a) The intersection of two open affine subsets in a variety is again affine.
b) If $X, Y \subseteq \mathbb{A}^{n}$ are irreducible affine varieties, and $X \cap Y \neq \emptyset$, then every component of $X \cap Y$ has dimension at least $\operatorname{dim} X+\operatorname{dim} Y-n$.

Now let $X, Y \subseteq \mathbb{P}^{n}$ be two closed projective subvarieties, such that $\operatorname{dim} X+\operatorname{dim} Y \geq n$.
c) Prove that $X \cap Y$ is nonempty. [Hint: use point (b) on the affine cones $C(X), C(Y)$].

Exercise 5.2 Let $L_{1}, L_{2} \subseteq \mathbb{P}^{3}$ be two disjoint lines an let $P \in \mathbb{P}^{3}$ be a point not lying on L_{1} or L_{2}. Show that there is a unique line through P that intersects both L_{1} and L_{2}.

