

Exercise Sheet 4

Submit by: Monday, 09/05/22, 10 am

Exercise 4.1 Let $f: X \to Y$ be a morphism of affine varieties and $f^*: A(Y) \to A(X)$ the corresponding morphism of the coordinate rings.

- a) Let $I \subseteq A(Y)$ be an ideal and let $V(I) \subseteq Y$ be the corresponding closed subset. Show that $f^{-1}(V(I)) = V(f^*(I))$.
- b) Let $K = \ker f^* \subseteq A(Y)$. Show that the closure of the image f(X) in Y coincides with V(K).
- c) Is it true that f is surjective if and only if f^* is injective? Consider both implications.
- d) Is it true that f is injective if and only if f^* is surjective? Consider both implications.

Exercise 4.2 Which of the following ringed spaces are isomorphic over \mathbb{C} ?

- a) $\mathbb{A}^1 \setminus \{1\}.$
- b) $V(x_1^2 + x_2^2) \subseteq \mathbb{A}^2$.
- c) $V(x_2 x_1^2, x_3 x_1^3) \setminus \{0\} \subseteq \mathbb{A}^3.$
- d) $V(x_1x_2) \subseteq \mathbb{A}^2$.
- e) $V(x_2^2 x_1^3 x_1^2) \subseteq \mathbb{A}^2$.
- f) $V(x_1^2 x_2^2 1) \subseteq \mathbb{A}^2$

Exercise 4.3 Prove the following statements.

- a) Every morphism $\mathbb{A}^1 \setminus \{0\} \to \mathbb{P}^1$ can be extended to a morphism $\mathbb{A}^1 \to \mathbb{P}^1$.
- b) Not every morphism $\mathbb{A}^2 \setminus \{0\} \to \mathbb{P}^1$ can be extended to a morphism $\mathbb{A}^1 \to \mathbb{P}^1$.
- c) Every morphism $\mathbb{P}^1 \to \mathbb{A}^1$ is constant.

Exercise 4.4 Prove the following statements.

- a) Every automorphism of \mathbb{A}^1 that fixes the origin is of the form f(x) = ax for one $a \in \mathbb{K}^*$. Hence every automorphism of \mathbb{A}^1 is affine.
- b) Every automorphism of \mathbb{A}^2 that fixes the origin is not of the form f(x) = Ax for one $A \in GL(2, K)$. Hence not every automorphism of \mathbb{A}^2 is affine.