Fachbereich Mathematik Daniele Agostini

Algebraic Geometry

Submit by: Monday, 09/05/22, 10 am

Exercise 12 a. and b. are an in class exercises. There is no need to hand the solution in.

Exercise 9: Let X be a topological space, \mathcal{F} a sheaf on X and $\varphi, \psi \in \mathcal{F}(U)$ two sections on the open subset $U \subseteq X$ of X.

- a. Show, if the stalks $\varphi_a = \overline{(U, \phi)}$ and $\psi_a = \overline{(U, \psi)}$ in \mathcal{F}_a coincide for all $a \in U$, the $\phi = \psi$.
- b. If X is an irreducible affine variety and $\mathcal{F} = \mathcal{O}_X$ and if there exists one $a \in X$ such that $\phi_a = \psi_a$, the $\phi = \psi$.

Exercise 10: Consider $X = \mathbb{R}$ with the euclidean topology and let $a \in X$ be any point. For which of the following sheaves is the stalk \mathcal{F}_a a local ring?

- a. ${\mathcal F}$ is the sheaf of continous functions.
- b. \mathcal{F} is the sheaf of locally polynomial functions.

Exercise 11: Let X be an affine variety and $Y \subsetneq X$ be an irreducible subvariety. Show that $A(X)_{I(Y)}$ is isomorphic to the K-algebra $\mathcal{O}_{X,Y}$, where

$$\mathcal{O}_{X,Y} := \{(U,\phi) \mid U \subseteq X \text{ open with } U \cap Y \neq \emptyset, \phi \in \mathcal{O}_X(U)\} / \sim$$

with $(U, \phi) \sim (V, \psi)$ if there is an open $W \subseteq U \cap V$ with $W \cap Y \neq \emptyset$ such that $\phi_{|W} = \psi_{|W}$.

Exercise 12: Let $f_1, \ldots, f_m \in K[x_1, \ldots, x_n]$ be polynomials and let $X \subseteq A_K^n$ an affine variety. Consider the morphisms

$$f: \mathbb{A}_{K}^{n} \longrightarrow \mathbb{A}_{K}^{m}: p \mapsto (f_{1}(p), \dots, f_{m}(p))$$

of affine varieties and

$$\pi: \mathbb{A}_{K}^{n+m} \longrightarrow \mathbb{A}_{K}^{m}: (p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}) \mapsto (q_{1}, \ldots, q_{m}).$$

a. Show that the graph $Graph(f)=\left\{\left(p,f(p)\right)\;\middle|\;p\in\mathbb{A}_K^n\right\}$ of f is an affine variety in \mathbb{A}_K^{n+m} with

$$I(Graph(f)) = \langle y_1 - f_1, \dots, y_m - f_m, I(X) \rangle.$$

b. Show that the image of f satisfies $Im(f)=\pi(Graph(f))$ and

$$I(Im(f)) = I \cap K[y_1, \dots, y_m].$$

In particular $\overline{Im(f)} = V(I \cap K[y_1, \dots, y_m]).$

c. The intersection of an Ideal I as above with the subalgebra $K[y_1, \ldots, y_m]$ can be computed in SINGULAR using the command **eliminate**. If the generating polynomials of I have coefficients over a subfield of K the computations can be done over this subfield. Use SINGULAR to compute the closure of the image of the map

$$f: \mathbb{A}^1_{\mathbb{C}} \longrightarrow \mathbb{A}^3_{\mathbb{C}}: t \mapsto (t, t^2, t^3).$$

The image is called the *twisted cubic*.