Algebraic Geometry

Submit by: Monday, 09/05/22, 10 am
Exercise 12 a. and b. are an in class exercises. There is no need to hand the solution in.

Exercise 9: Let X be a topological space, \mathcal{F} a sheaf on X and $\varphi, \psi \in \mathcal{F}(U)$ two sections on the open subset $U \subseteq X$ of X.
a. Show, if the stalks $\varphi_{a}=\overline{(\mathrm{U}, \varphi)}$ and $\psi_{a}=\overline{(\mathrm{U}, \psi)}$ in \mathcal{F}_{a} coincide for all $\mathrm{a} \in \mathrm{U}$, the $\varphi=\psi$.
b. If X is an irreducible affine variety and $\mathcal{F}=\mathcal{O}_{X}$ and if there exists one $a \in X$ such that $\varphi_{a}=\psi_{a}$, the $\varphi=\psi$.

Exercise 10: Consider $X=\mathbb{R}$ with the euclidean topology and let $a \in X$ be any point. For which of the following sheaves is the stalk \mathcal{F}_{a} a local ring?
a. \mathcal{F} is the sheaf of continous functions.
b. \mathcal{F} is the sheaf of locally polynomial functions.

Exercise 11: Let X be an affine variety and $Y \varsubsetneqq X$ be an irreducible subvariety. Show that $A(X)_{I(Y)}$ is isomorphic to the K-algebra $\mathcal{O}_{X, Y}$, where

$$
\mathcal{O}_{X, Y}:=\left\{(\mathrm{U}, \varphi) \mid \mathrm{U} \subseteq X \text { open with } \mathrm{U} \cap \mathrm{Y} \neq \emptyset, \varphi \in \mathcal{O}_{X}(\mathrm{U})\right\} / \sim
$$

with $(\mathrm{U}, \varphi) \sim(\mathrm{V}, \psi)$ if there is an open $\mathrm{W} \subseteq \mathrm{U} \cap \mathrm{V}$ with $\mathrm{W} \cap \mathrm{Y} \neq \emptyset$ such that $\varphi_{\mid W}=\psi_{\mid W}$.
Exercise 12: Let $f_{1}, \ldots, f_{m} \in K\left[x_{1}, \ldots, x_{n}\right]$ be polynomials and let $X \subseteq \mathbb{A}_{k}^{n}$ an affine variety. Consider the morphisms

$$
f: \mathbb{A}_{\mathrm{k}}^{n} \longrightarrow \mathbb{A}_{\mathrm{K}}^{m}: p \mapsto\left(f_{1}(p), \ldots, f_{m}(p)\right)
$$

of affine varieties and

$$
\pi: \mathbb{A}_{\mathrm{k}}^{n+m} \longrightarrow \mathbb{A}_{\mathrm{k}}^{m}:\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}\right) \mapsto\left(q_{1}, \ldots, q_{m}\right)
$$

a. Show that the graph $\operatorname{Graph}(f)=\left\{(p, f(p)) \mid p \in \mathbb{A}_{k}^{n}\right\}$ of f is an affine variety in $\mathrm{A}_{\mathrm{k}}^{n+m}$ with

$$
I(\operatorname{Graph}(f))=\left\langle y_{1}-f_{1}, \ldots, y_{m}-f_{m}, I(X)\right\rangle
$$

b. Show that the image of f satisfies $\operatorname{Im}(f)=\pi(\operatorname{Graph}(f))$ and

$$
I(\operatorname{Im}(f))=I \cap K\left[y_{1}, \ldots, y_{m}\right]
$$

In particular $\overline{\operatorname{Im}(f)}=V\left(I \cap K\left[y_{1}, \ldots, y_{m}\right]\right)$.
c. The intersection of an Ideal I as above with the subalgebra $K\left[y_{1}, \ldots, y_{m}\right]$ can be computed in Singular using the command eliminate. If the generating polynomials of I have coefficients over a subfield of K the computations can be done over this subfield. Use Singular to compute the closure of the image of the map

$$
f: \mathbb{A}_{\mathbb{C}}^{1} \longrightarrow \mathbb{A}_{\mathbb{C}}^{3}: t \mapsto\left(t, t^{2}, t^{3}\right)
$$

The image is called the twisted cubic.

