Algebraic Geometry

Submit by: Monday, 25/04/22, 10 am
Exercise 1: Let $X \subset \mathbb{A}_{k}^{3}$ be the union of the three coordinate axes.
a. Compute generators for the ideal $I(X)$.
b. Show that $I(X)$ cannot be generated by fewer than three elements.

Hint: in part b. one can use Nakayama's lemma after localising.
Exercise 2: Prove that every affine variety $X \subset \mathbb{A}_{k}^{n}$ consisting of only finitely many points can be written as the zero locus of n polynomials.

Hint: use interpolation and consider first the case that the x_{1}-coordinates of the points are different.

Exercise 3: [Irreducible components]

Let X be a topological space and Y a non-empty irreducible subspace of X. Show, that there is a maximal irreducible subspace Y^{\prime} in X containing Y, i.e. there is a $Y^{\prime} \subseteq X$ irreducible such that $Y \subseteq Y^{\prime}$ and for all irreducible $Y^{\prime \prime} \subseteq X$ with $Y^{\prime} \subseteq Y^{\prime \prime}$ we have $Y^{\prime}=Y^{\prime \prime}$.

Exercise 4: Let $X \subseteq A_{k}^{n}$ and $Y \subseteq A_{k}^{m}$ be two affine varieties and consider their product variety $\mathrm{X} \times \mathrm{Y}$ in $\mathbb{A}_{\mathrm{k}}^{n+m}$.
a. Show, for every $b \in Y$ the map $i_{b}: X \longrightarrow X \times Y: x \mapsto(x, b)$ is continous.
b. Show that the projections from $X \times Y$ to the X or Y map open sets to open sets.
c. Show, if X and Y are irreducible, then so ist $X \times Y$.

