Bonus Sheet 1

This will be (maybe) be discussed on November 25
Exercise (Dual plane curves) We consider the projective plane \mathbb{P}^{2} with homogeneous coordinate $[X, Y, Z]$. The dual projective plane $\mathbb{P}^{2^{*}}$ is another projective plane with homogeneous coordinates $[a, b, c]$ that parametrizes lines in \mathbb{P}^{2}. More precisely, the point $[a, b, c] \in \mathbb{P}^{2 *}$ corresponds to the line

$$
\{a X+b Y+c Z=0\} \subseteq \mathbb{P}^{2}
$$

a) Show that there is a natural identification $\left(\mathbb{P}^{2^{*}}\right)^{*} \cong \mathbb{P}^{2}$.

Let $C \subseteq \mathbb{P}^{2}$ be a possibly singular plane curve defined by an irreducible homogeneous polynomial $F(X, Y, Z)$ of degree d. We denote by $C_{r e g} \subseteq C$ the open subset of regular points, so that for each $p \in \mathbb{C}_{\text {reg }}$ there is a well-defined tangent line $\mathbb{T}_{p} C$ to C at p. The Gauss map is the map

$$
\gamma: C_{\text {reg }} \longrightarrow \mathbb{P}^{2^{*}}, \quad p \mapsto \mathbb{T}_{p} C
$$

b) Show that γ is defined by homogeneous polynomials and show that it is non constant as soon as $d \geq 2$.

The closure of $\gamma\left(C_{\text {reg }}\right)$ inside \mathbb{P}^{2} is a plane curve C^{\vee}, called the dual curve of C. Let's make this concrete with a couple of examples:
c) Give an equation for the dual curves of the three curves $C_{1}=\left\{X^{2}+Y^{2}+Z^{2}=\right.$ $0\}, C_{2}=\left\{Z Y^{2}-X^{3}=0\right\}$ and $C_{3}=\left\{X^{3}+Y^{3}+Z^{3}=0\right\}$. For example, you can do this with a computer algebra system.

Now, we want to write the Gauss map analytically. Take a point $p \in C_{r e g} \cap\{Z \neq 0\}$ and suppose that in the affine coordinates x, y the curve has an analytic parametrization $t \mapsto(x(t), y(t))$, where t is a local coordinate at a point.
d) Show that in these coordinates the Gauss map can be written as $t \mapsto(p(t), q(t))$ with

$$
p(t)=\frac{\dot{y}(t)}{y(t) \dot{x}(t)-x(t) \dot{y}(t)}, \quad q(t)=-\frac{\dot{x}(t)}{y(t) \dot{x}(t)-x(t) \dot{y}(t)}
$$

Now, let $C \subseteq \mathbb{P}^{2}$ be a plane curve of degree d and $C^{\vee} \subseteq \mathbb{P}^{2 *}$ the dual curve. We can then take the dual of this second curve to get another curve $\left(C^{\vee}\right)^{\vee} \subseteq\left(\mathbb{P}^{2 *}\right)^{*}$. A fundamental fact about these is:
e) Biduality Theorem: Under the natural identification $\left(\mathbb{P}^{2^{*}}\right)^{*} \cong \mathbb{P}^{2}$ we have an identification $\left(C^{*}\right)^{*} \cong C$. Moreover, the composition of Gauss maps $C_{r e g} \rightarrow C^{\vee}$ and $C_{\text {reg }}^{\vee} \rightarrow\left(C^{\vee}\right)^{\vee} \cong C$ is the identity. Prove both statements.
In particular, we can use this fact to compute the degree of the dual curve C^{\vee}, when C is a smooth plane curve.
f) When C is smooth of degree d, show that $\operatorname{deg}\left(C^{\vee}\right)=d(d-1)$.
g) When C is smooth of degree d, show that C^{\vee} is never smooth, unless $d=2$. For example, consider the curve $C_{3}=\left\{X^{3}+Y^{3}+Z^{3}=0\right\}$ and the dual C_{3}^{\vee}. Can you interpret the singularities of C_{3}^{\vee} geometrically?

