Exercise Sheet 8

These exercises will be discussed on January 27

Exercise 8.1 (Consequences of Riemann-Roch)

a) Show that a compact Riemann surface X has genus zero if and only if $X \cong \mathbb{P}^{1}$.
b) Show that a canonical divisor on a Riemann surface X is always base-point-free, unless $X \cong \mathbb{P}^{1}$.
c) Show that a canonical divisor on a Riemann surface X is very ample if and only if X is not hyperelliptic, meaning that there is no degree two map $X \rightarrow \mathbb{P}^{1}$.

Exercise 8.2 (The canonical map) Let X be a compact Riemann surface of positive genus and let $\omega_{1}, \ldots, \omega_{g}$ be a basis of $H^{0}\left(X, \omega_{X}\right)$. We can define a canonical map:

$$
\varphi: X \longrightarrow \mathbb{P}^{g-1}, \quad p \mapsto\left[\omega_{1}(p), \ldots, \omega_{g}(p)\right]
$$

by taking for any point $p \in X$ a neighborhood where $\omega_{i}=f_{i}(z) d z$ and then setting $\varphi(p)=\left[f_{1}(z), \ldots, f_{g}(z)\right]$.
a) Show that this is well-defined and unique, up to a linear change of coordinates.
b) Compare this map with the one induced by the complete linear system of a canonical divisor. In particular show that

$$
\left\{\varphi^{*} H \mid H \subseteq \mathbb{P}^{g-1} \text { hyperplane }\right\}=\{K \mid K \text { canonical divisor }\}
$$

c) Prove that a canonical divisor is base-point-free if and only if for every point $p \in X$ there is a differential form $\omega \in H^{0}\left(X, \omega_{X}\right)$ such that $\omega(p) \neq 0$.
d) Let $f: X_{1} \rightarrow X_{2}$ an isomorphism of compact Riemann surfaces and let $\varphi_{i}: X_{i} \rightarrow$ \mathbb{P}^{g-1} be a canonical map for X_{i}. Show that there is a linear change of coordinates $F: \mathbb{P}^{g-1} \rightarrow \mathbb{P}^{g-1}$ such that $F \circ \varphi_{1}=\varphi_{2} \circ f$.

Exercise 8.3 (Differentials)

a) Let X be an hyperelliptic curve with affine model $\left\{y^{2}=f(x)\right\}$, where $f(x)$ is a polynomial of degree $2 g+2 \geq 4$. Show that a basis of $H^{0}\left(X, \omega_{X}\right)$ is given by

$$
\frac{1}{y} d x, \frac{x}{y} d x, \ldots, \frac{x^{g-1}}{y} d x .
$$

In particular you should understand how to extend this to the whole curve. Conclude that canonical map $X \rightarrow \mathbb{P}^{g-1}$ is a double cover of X onto a rational normal curve of degree $g-1$.
b) Let $X \subseteq \mathbb{P}^{2}$ be a smooth plane curve of degree d, with an affine model $\{f(x, y)=0\}$. Show that a basis of $H^{0}\left(X, \omega_{X}\right)$ is given by

$$
\frac{x^{a} y^{b}}{f_{y}} d x, \quad a \geq 0, b \geq 0, a+b \leq d-3
$$

In particular observe that the canonical map can be realized as the composition

$$
X \hookrightarrow \mathbb{P}^{2} \hookrightarrow \mathbb{P}^{N_{d-3}}
$$

where the second map is the Veronese embedding of degree $d-3$.
c) Show that no smooth plane curve of degree $d \geq 4$ is hyperelliptic.

