Riemann Surfaces and Algebraic Curves WiSe 2020/21

Exercise Sheet 4

These exercises will be discussed on December 9

Exercise 5.1 (Lifting points on tori) Let p_1, p_2, \ldots, p_d and q_1, q_2, \ldots, q_d be points on a complex torus $X = \mathbb{C}/L$ for a lattice $L = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \subset \mathbb{C}$. Show that there are x_1, x_2, \ldots, x_d and y_1, y_2, \ldots, y_d in \mathbb{C} such that $\overline{x_i} = p_i, \overline{y_j} = q_j$ with $\sum x_i = \sum y_j$ if and only if $\sum p_i = \sum q_j$ in the quotient group law on X.

Exercise 5.2 (More on Theta Functions) Let $L = \mathbb{Z} + \mathbb{Z}\tau$ a lattice in \mathbb{C} where $\tau \in \mathbb{C}$ with positive imaginary part.

- a) Show that $\theta_{\tau}(z+a+b\tau) = \exp(-\pi i b^2 \tau 2\pi i b z) \theta_{\tau}(z)$.
- b) Show that $\theta^{(x)}(z+\tau) = -\exp(-2\pi i(z-x)) \cdot \theta^{(x)}(z)$.
- c) Let $a, b \in \frac{1}{\ell}\mathbb{Z}$ be rational numbers with denominator that divides $\ell \in \mathbb{N}$. Set

$$\vartheta_{a,b}(z,\tau) = \sum_{n=-\infty}^{\infty} \exp(\pi i (a+n)^2 \tau + 2\pi i (n+a)(z+b))$$

Show that $\vartheta_{0,0}(z,\tau) = \theta_{\tau}(z)$ and, more interestingly, that for all $p,q \in \mathbb{Z}$

$$\vartheta_{a+p,b+q}(z,\tau) = \exp(2\pi i a q) \cdot \vartheta_{a,b}(z,\tau).$$

Exercise 5.3 (Abel's Theorem for a Torus) Let τ be a complex number with positive real part and let L be the lattice $\mathbb{Z} + \mathbb{Z}\tau \subset \mathbb{C}$. Write $X = \mathbb{C}/L$ for the Riemann surface obtained as the quotient. Define the map $A: \operatorname{Div}(X) \to X$, $\sum_{p \in X} n_p \cdot p \mapsto \sum n_p \cdot p$, where the second sum is taken with respect to the group structure on X.

- a) Show that a divisor D is principal if and only if deg(D) = 0 and A(D) = 0.
- b) Conclude that two divisors D_1 and D_2 on X are linearly equivalent if and only if $\deg(D_1) = \deg(D_2)$ and $A(D_1) = A(D_2)$.
- c) Show that for every divisor D of degree 1 there is a unique point $q \in X$ such that D is linearly equivalent to the divisor q.