Exercise Sheet 4

These exercises will be discussed on December 2

Exercise 4.1 (Meromorphic functions II)
a) Consider $f=z^{3} /\left(1-z^{2}\right)$ as a meromorphic function on $\mathbb{C}_{\infty}=\mathbb{P}^{1}$. Find all points p such that $\operatorname{ord}_{p}(f) \neq 0$. Show that the associated holomorphic map $F: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ has degree 3 . What are its ramification and branch points?
b) Same as part (a) for $f=4 z^{2}(z-1)^{2} /(2 z-1)^{2}$. The degree of F here should be 4 .

Exercise 4.2 (The double-cover for hyperelliptic curves) Let X be a (affine) hyperelliptic curve defined by $y^{2}=h(x)$ for a polynomial $h \in \mathbb{C}[x]$ of even degree with distinct roots. Let $\pi: X \rightarrow \mathbb{C}$ be the map defined by coordinate projection $\pi(x, y)=x$.
a) Show that the ramification divisor $R_{\pi}=\sum_{p \in X}\left[\operatorname{mult}_{p}(\pi)-1\right] p$ of π is the divisor of zeroes $\operatorname{div}_{0}(y)$ of the meromorphic function y on X. Can you draw a picture giving a geometric intuition for your reasoning?
b) Does (a) also hold if the polynomial h has odd degree?

If h has odd degree $2 g+1$, then $y^{2}=h(x)$ defines the curve as usual in one chart, but the other chart is given by $w^{2}=k(z)$ for $k(z)=z^{2 g+2} h(1 / z)$ with isomorphism $\phi(x, y)=\left(1 / x, y / x^{g+1}\right)$ as usual.
c) What is the branch divisor $B_{\pi}=\sum_{q \in Y}\left[\sum_{p \in \pi^{-1}(q)}\left(\operatorname{mult}_{p}(\pi)-1\right)\right] q$ of π ?
d) Show that $\pi^{*}\left(B_{\pi}\right)=2 R_{\pi}$ (as divisors on X).

Exercise 4.3 (Intersection divisors) Let $C \subset \mathbb{P}^{2}$ be a smooth projective plane curve.
a) If G_{1} and G_{2} are two homogeneous polynomials $(\neq 0)$ on \mathbb{P}^{2}, then $\operatorname{div}\left(G_{1} G_{2}\right)=$ $\operatorname{div}\left(G_{1}\right)+\operatorname{div}\left(G_{2}\right)$.
b) Compute the intersection divisors of the lines defined by $X=0, Y=0$, and $Z=0$ with C, where C is defined by $Y^{2} Z=X^{3}-X Z^{2}$.
c) Show that the intersection divisor of any two distinct lines in \mathbb{P}^{2} has degree 1 (on either line). The intersection divisor of a homogeneous polynomial G of degree d with a line has degree d.
d) When is the intersection divisor of a line $a X+b Y+c Z=0$ with a conic C, say $X Y=Z^{2}$, of the form $2 p$ for some $p \in C$?

