Exercise Sheet 4

These exercises will be discussed on December 2

Exercise 4.1 (Meromorphic functions II)

- a) Consider $f = z^3/(1-z^2)$ as a meromorphic function on $\mathbb{C}_{\infty} = \mathbb{P}^1$. Find all points p such that $\operatorname{ord}_p(f) \neq 0$. Show that the associated holomorphic map $F \colon \mathbb{P}^1 \to \mathbb{P}^1$ has degree 3. What are its ramification and branch points?
- b) Same as part (a) for $f = 4z^2(z-1)^2/(2z-1)^2$. The degree of F here should be 4.

Exercise 4.2 (The double-cover for hyperelliptic curves) Let X be a (affine) hyperelliptic curve defined by $y^2 = h(x)$ for a polynomial $h \in \mathbb{C}[x]$ of even degree with distinct roots. Let $\pi \colon X \to \mathbb{C}$ be the map defined by coordinate projection $\pi(x, y) = x$.

- a) Show that the ramification divisor $R_{\pi} = \sum_{p \in X} [\operatorname{mult}_p(\pi) 1] p$ of π is the divisor of zeroes $\operatorname{div}_0(y)$ of the meromorphic function y on X. Can you draw a picture giving a geometric intuition for your reasoning?
- b) Does (a) also hold if the polynomial h has odd degree? If h has odd degree 2g + 1, then $y^2 = h(x)$ defines the curve as usual in one chart, but the other chart is given by $w^2 = k(z)$ for $k(z) = z^{2g+2}h(1/z)$ with isomorphism $\phi(x, y) = (1/x, y/x^{g+1})$ as usual.
- c) What is the branch divisor $B_{\pi} = \sum_{q \in Y} \left[\sum_{p \in \pi^{-1}(q)} (\operatorname{mult}_p(\pi) 1) \right] q$ of π ?
- d) Show that $\pi^*(B_{\pi}) = 2R_{\pi}$ (as divisors on X).

Exercise 4.3 (Intersection divisors) Let $C \subset \mathbb{P}^2$ be a smooth projective plane curve.

- a) If G_1 and G_2 are two homogeneous polynomials $(\neq 0)$ on \mathbb{P}^2 , then $\operatorname{div}(G_1G_2) = \operatorname{div}(G_1) + \operatorname{div}(G_2)$.
- b) Compute the intersection divisors of the lines defined by X = 0, Y = 0, and Z = 0 with C, where C is defined by $Y^2Z = X^3 XZ^2$.
- c) Show that the intersection divisor of any two distinct lines in \mathbb{P}^2 has degree 1 (on either line). The intersection divisor of a homogeneous polynomial G of degree d with a line has degree d.
- d) When is the intersection divisor of a line aX + bY + cZ = 0 with a conic C, say $XY = Z^2$, of the form 2p for some $p \in C$?