Exercise Sheet 3

These exercises will be discussed on November 18

Exercise 3.1 (Plane curves) Let $C \subseteq \mathbb{P}^{2}$ be a smooth plane curve which is not a line, defined by an homogeneous polynomial $F(X, Y, Z)$ of degree $d \geq 2$. For any line $\ell \subseteq \mathbb{P}^{2}$ we can restrict the $F(X, Y, Z)$ to ℓ and obtain an homogeneous polynomial on ℓ with d roots (counted with multiplicity), which correspond to the intersection points $C \cap \ell$. We say that ℓ intersects C with multiplicity m at $p \in C \cap \ell$ if the corresponding root has multiplicity m.
a) For any $p \in C$, show that the tangent line $T_{p} C$ intersects C at p with multiplicity $m \geq 2$. We say that p is a flex, if this multiplicity is $m \geq 3$. Show that C has a finite number of flexes and count them appropriately.
b) Let $p_{0} \in \mathbb{P}^{2} \backslash C$ be any point and let $\pi: C \rightarrow \mathbb{P}^{1}$ be the projection from p_{0} onto a line in \mathbb{P}^{2}. Show that $\operatorname{mult}_{p}(\pi)$ is exactly the intersection multiplicity of the line $\ell\left(p_{0}, p\right)$ with C at p. Conclude that if p_{0} is a general point, then $\operatorname{mult}_{p}(\pi) \leq 2$ for any $p \in C$.
c) Consider the homogeneous coordinates X, Y. Show that the quotient $\frac{X}{Y}$ can be considered as a meromorphic function on C and interpret the order of its zeroes and poles geometrically. In general, do the same for the quotient $\frac{L_{1}(X, Y, Z)}{L_{0}(X, Y, Z)}$ of two linear homogeneous polynomials.

Exercise 3.2 (Consequences of Riemann-Hurwitz)

a) Let X be a compact Riemann surface with a nonconstant map $f: \mathbb{P}^{1} \rightarrow X$. Show that $X \cong \mathbb{P}^{1}$.
b) Let $f(z), g(z), h(z) \in \mathbb{C}[z]$ be nonconstant polynomials such that $f^{n}+g^{n}=h^{n}$. Show that $n=1$ or $n=2$. Hint: consider the Fermat curve $V=\left\{X^{n}+Y^{n}=Z^{n}\right\}$ in \mathbb{P}^{2} and the map $F: \mathbb{C} \rightarrow V, F(z)=[f(z), g(z), h(z)]$.
c) Let X be an hyperelliptic curve with affine model $\left\{y^{2}=\left(x-x_{1}\right) \ldots\left(x-x_{2 g+2}\right)\right\}$ as in Exercise 2.2. What is the genus of X ?

Exercise 3.3 (Meromorphic functions)
a) Let X be a compact Riemann surface. Show that all holomorphic functions $f: X \rightarrow$ \mathbb{C} are constant.
b) Let f be a meromorphic function on $\mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}$. Show that f is rational, that is $f=\frac{G(z)}{H(z)}$, where $G(z)$ and $H(z)$ are two polynomials.
c) Let X be the hyperelliptic curve with affine model $\left\{y^{2}=\left(x-x_{1}\right) \ldots\left(x-x_{2 g+2}\right)\right\}$ as in Exercise 2.2. Observe that y and x can be interpreted as meromorphic functions on X and compute their zeroes and poles.

